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This paper discusses why the selection of a finite planning horizon is preferable to an infinite one for a replenishment policy of
production inventory models. In a production inventory model, the production rate is dependent on both the demand rate and the
inventory level. When there is an exponentially decreasing demand, the application of an infinite planning horizon model is not
suitable. The emphasis of this paper is threefold. First, while pointing out questionable results from a previous study, we propose
a corrected infinite planning horizon inventory model for the first replenishment cycle. Second, while investigating the optimal
solution for the minimization problem, we found that the infinite planning horizon should not be applied when dealing with an
exponentially decreasing demand. Third, we developed a new production inventory model under a finite planning horizon for
practitioners. Numerical examples are provided to support our findings.

1. Introduction

Inventory models, in general, can be classified into two
categories: infinite and finite planning horizon. For inventory
models with the finite planning horizon, the goal is to
minimize the total cost. On the other hand, without the
present value, that is, not considering the time value of
money, the total cost for the entire infinite planning horizon
will go to infinity such that researchers are not able to
compare the total cost for different inventory policies. The
prevailing solution to this dilemma is tominimize the average
cost of the first replenishment cycle because of a constant
demand that implies an identical replenishment policy for
the second replenishment cycle. As a result, theminimization
of the average cost for the first replenishment cycle will
lead to the optimal solution. The original paper of Wilson’s
EOQmodel [1] is an example of an infinite planning horizon
problem.

It should be noted that practitioners in previous studies
seemed to randomly decide whether to use an infinite
planning horizon or a finite one. That is, they make their

choice either by routine experience or by referencing other
studies without explaining or considering the choice that
fits the characteristics of date on hand. For examples, under
the assumptions of time-vary demand, production, and
deterioration rate, Goyal and Giri [2] developed two models
by employing different modeling approaches over an infinite
planning horizon. On the other hand, Goyal’s model [3] was
considered as a finite planning horizon problem over time
period [0, 𝑇], where the replenishment cycle did not repeat
itself in the same manner. It infers that each replenishment
cycle within the planning horizon [0, 𝑇] has different optimal
solution such that the solution finding process requires the
minimization of the total cost over the entire time period.
For both studies, the reasoning behind the selection of either
planning horizons was not explained. The purpose of this
paper is to point out that in practice, some inventory models
work sensibly over an infinite planning horizon. Managers
under a highly competitive environment should be making
correct and coherent decisions toward the development of
inventory models that fit the pursuit of effective cost control.
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Many papers have also discussed production inventory
models under different conditions. By viewing the produc-
tion rate as a variable, Bhunia and Maiti [4] developed two
inventory systems. In the first system, the production rate
was dependent on the inventory level, while the production
rate was dependent upon the demand in the second. Su and
Lin [5] combined the two models creating a model where
production rate is dependent on both inventory level and
demand. Moreover, Su and Lin [5] assumed that shortages
were allowed with complete backlog and an exponentially
decreasing demand.

We will show that finding the minimum value of the first
replenishment cycle is not reasonable with an exponentially
decreasing demand since the optimal solution for the produc-
tion period will go to infinity, implying that the average cost
is decreasing to zero. In response, we have developed a finite
planning horizon production inventory model.

There are two primary reasons that justify assuming that
the demand will decrease exponentially. First, the numerous
innovations in the field of technology contribute to the expe-
dited release of new merchandises, tremendously decreasing
demand for the existing products in the market. Second,
rapid changes in consumer preferences also greatly impact
the sales of current merchandise. For instance, less than a
year after a new camera cellular phone is introduced, an even
newer generationwill hit themarket, with higher dpi than the
previous generation. As a result, the demand for the old cell
phone will plunge drastically.

Su and Lin [5] tried to extend the findings of Bhunia and
Maiti [4], but their derivation for the differential equations
with boundary conditions contained questionable results.
Moreover, they could not analyze how many local minimum
points exist. Up to now, there have been four published papers
that have referred to Su and Lin [5] in their studies, Chu and
Chung [6], Alfares et al. [7], Feng and Yamashiro [8], and
Kang [9]. However, none of these papers have been made
aware of the fundamental flaw in Su and Lin [5].

The derivation of Su and Lin [5] for the inventory
level of the third phase contained questionable results such
that their findings for relations among decision variables
and their objective function also had questionable results.
Moreover, we showed that their model is not suitable for
infinite planning horizon, and then we studied the inventory
model with finite planning horizon. There are two closely
related papers, Yang et al. [10] and Lin et al. [11], that are
considered for the finite planning horizon.There two models
are developed for the EOQ with one decision variable to
show that the optimal replenishment policy is independent of
the demand type. However, there are four decision variables
in our EPQ inventory model. We find two relations among
these decision variables of the optimal solution for the infinite
planning horizon, then two independent decision variables
are left. For the finite planning horizon, we proved that there
is only one decision variable left. These two papers have
significant contribution for the theoretical development of
EOQ inventory models, but their findings cannot be applied
to our EPQ inventory model.

There are four phases for an EPQ inventory model,
and then we proved that there is an upper bound for the

elapse time for the first phase. It is an important finding
when we applied a program to locate the optimal solution.
For the infinite planning horizon, we showed that four
decision variables are related, so only two independent
decision variables are left, and we find the relations among
decision variables that reduced the tedious computation for
the minimum value. For the finite planning horizon, in
each replenishment cycle, we proved that there is only one
independent decision variable that achieves the efficiency
for computation. Our first main contribution is providing
an analytical approach to solve the optimal solution such
that the result from computer programs is supported by
the mathematical theorem. Our second main contribution is
to reduce the number of independent decision variables to
its minimum such that for obtaining the optimal solution,
computer programs can be executed effectively.

2. Notation and Assumptions

To avoid confusion, we will use the same assumptions and
notation as Su and Lin [5]:

𝜃 : deterioration rate,
𝐼
𝑚
: maximum inventory level,

𝐼
𝑏
: unfilled order backlog,

𝐶: setup cost for each new cycle,
𝐶
𝑑
: the cost of a deteriorated item,

𝐶
𝑖
: inventory carrying cost per unit time,

𝐶
𝑠
: shortage cost per unit,

𝐾: total average cost of the system.

The assumptions below are used.

(1) A single item is considered over (a) an infinite
planning horizon for the first model and (b) a finite
planning horizon of 𝑇 units of time for the second
model which is subject to a constant deterioration
rate.

(2) Demand rate,𝐷(𝑡), is known and decreases exponen-
tially so that𝐷(𝑡) = 𝐴 exp(−𝜆𝑡), where𝐴 is the initial
demand rate and 𝜆 is the decreasing rate of demand,
0 ≤ 𝜆 ≤ 1.

(3) 𝐼(𝑡) is the inventory level.
(4) Production rate, 𝑃(𝑡), depends on both the demand

and the inventory level with 𝑃(𝑡) = 𝑎 + 𝑏𝐷(𝑡) − 𝑐𝐼(𝑡),
𝑎 > 0, 0 ≤ 𝑏 < 1, and 0 ≤ 𝑐 < 1.

(5) Deterioration of the units is considered only after
those units are received and put in inventory.

(6) There is no replacement or repair of deteriorated
items.

(7) Shortages are allowed and fully backordered.
(8) Two extra conditions, 𝜆 > 𝑐 + 𝜃 and 𝑎 ≥ 𝐴, are added

(explained in Section 4).
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Remark 1. Su and Lin [5] assumed that 𝑇 is a prescribed
period of time and denoted by 𝑡

4
= 𝑇. Note that in the

beginning, Su and Lin [5] tried to develop a production
inventory model for a finite planning horizon, say [0, 𝑇].
However, during their derivation, they considered the prob-
lem ofminimizing the average cost for the first replenishment
cycle in the infinite planning horizon. To clearly distinguish
the difference between infinite and finite planning horizon,
we will separate the problem into two cases.

Case (a). We minimize the average cost of the first replen-
ishment cycle. It is a minimization problem with an infinite
planning horizon.
Case (b). We minimize the total cost over a finite planning
horizon of [0, 𝑇].

3. A Review of Su and Lin [5]

In Su and Lin [5], the first replenishment cycle can be divided
into four phases based on the time interval:

(a) the first phase [0, 𝑡
1
]: the production dominates

demand and deterioration, and the inventory level
accumulates,

(b) the second phase [𝑡
1
, 𝑡
2
]: no production activity takes

place. Demand and deterioration dominate, and so
the inventory level gradually drops to zero at 𝑡

2
,

(c) the third phase [𝑡
2
, 𝑡
3
]: no production and no deteri-

oration take place. The shortage accumulates to 𝐼
𝑏
at

𝑡
3
,

(d) the fourth phase [𝑡
3
, 𝑡
4
]: the production is resumed,

shortages accumulated during the third phase are
fully backordered, and the inventory level returns to
zero at 𝑡

4
.

The differential equations developed by Su and Lin [5] for
governing stock levels over the four different phases during
the first replenishment cycle, [0, 𝑡

4
], can be expressed as

follows:

𝑑

𝑑𝑡
𝐼 (𝑡) = 𝑃 (𝑡) − 𝐷 (𝑡) − 𝜃𝐼 (𝑡)

= 𝑎 +(𝑏 − 1)𝐴 exp (−𝜆𝑡) −(𝑐 + 𝜃) 𝐼 (𝑡) , 0 < 𝑡 < 𝑡
1
,

𝑑

𝑑𝑡
𝐼 (𝑡) = − 𝐷 (𝑡) − 𝜃𝐼 (𝑡)

= − 𝐴 exp (−𝜆𝑡) − 𝜃𝐼 (𝑡) , 𝑡
1
< 𝑡 < 𝑡

2
,

𝑑

𝑑𝑡
𝐼 (𝑡) = −𝐷 (𝑡) = −𝐴 exp (−𝜆𝑡) , 𝑡

2
< 𝑡 < 𝑡

3
,

𝑑

𝑑𝑡
𝐼 (𝑡) = 𝑃 (𝑡) − 𝐷 (𝑡)

= 𝑎 + (𝑏 − 1)𝐴 exp (−𝜆𝑡) − 𝑐𝐼 (𝑡) ,

𝑡
3
< 𝑡 < 𝑡

4
.

(1)

Under the boundary conditions,

𝐼 (0) = 0, 𝐼 (𝑡
1
) = 𝐼
𝑚
, 𝐼 (𝑡

2
) = 0,

𝐼 (𝑡
3
) = −𝐼

𝑏
, 𝐼 (𝑡

4
) = 0,

(2)

Su and Lin [5] found that

𝐼 (𝑡) =
𝑎

𝑐 + 𝜃
(1 − exp (− (𝑐 + 𝜃) 𝑡))

+
𝐴 (1 − 𝑏)

𝜆 − 𝑐 − 𝜃
(exp (−𝜆𝑡) − exp (− (𝑐 + 𝜃) 𝑡)) ,

0 ≤ 𝑡 ≤ 𝑡
1
,

(3)

𝐼 (𝑡) =
𝐴 exp (−𝜆𝑡)

𝜆 − 𝜃
(1 − exp (− (𝜆 − 𝜃) (𝑡

2
− 𝑡))) ,

𝑡
1
≤ 𝑡 ≤ 𝑡

2
,

(4)

𝐼 (𝑡) = (
𝐴

𝜆
) (exp (−𝜆𝑡) − 1) , 𝑡

2
≤ 𝑡 ≤ 𝑡

3
, (5)

𝐼 (𝑡) = −
𝑎

𝑐
(exp (𝑐 (𝑡

4
− 𝑡)) − 1)

−
𝐴 (1 − 𝑏)

𝜆 − 𝑐
exp (−𝜆𝑡) (exp (− (𝜆 − 𝑐) (𝑡

4
− 𝑡)) − 1) ,

𝑡
3
≤ 𝑡 ≤ 𝑡

4
.

(6)

However, the result Su and Lin [5] derived in (5) is false. The
expression should be revised as

𝐼 (𝑡) = (
𝐴

𝜆
) (exp (−𝜆𝑡) − exp (−𝜆𝑡

2
)) , 𝑡

2
≤ 𝑡 ≤ 𝑡

3
. (7)

Owing to an error in (5) of their derivations for 𝐼
𝑚
and 𝐼
𝑏
, the

relation between 𝑡
1
and 𝑡
2
, say 𝑡

2
= 𝑅(𝑡

1
), and the relation

between 𝑡
3
and 𝑡
4
, say 𝑡

3
= 𝑅(𝑡

4
), all contain questionable

results. It implies that their objective function,𝐾(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
),

is also false.
Su and Lin [5] derived the expression, 𝐾(𝑡

1
, 𝑡
2
, 𝑡
3
, 𝑡
4
) =

𝐾(𝑡
1
, 𝑡
2
(𝑡
1
), 𝑡
3
(𝑡
4
), 𝑡
4
), so that the objective function has two

independent variables, 𝑡
1
and 𝑡
4
. They computed 𝜕𝐾/𝜕𝑡

1
= 0

and 𝜕𝐾/𝜕𝑡
4
= 0. However, they could not analyze whether a

system that is comprised of 𝜕𝐾/𝜕𝑡
1
= 0 and 𝜕𝐾/𝜕𝑡

4
= 0 has

solution.

4. Our Improvement for Infinite Planning
Horizon Model

It should be pointed out that the result of (3) is based on the
condition 𝜆 ̸= 𝑐+𝜃. On the other hand, if 𝜆 = 𝑐+𝜃, (3) should
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be revised as

𝐼 (𝑡) = (
𝑎

𝜆
) (1 − exp (−𝜆𝑡))

− 𝐴𝑡 (1 − 𝑏) exp (−𝜆𝑡) , 0 ≤ 𝑡 ≤ 𝑡
1
.

(8)

Hence, if we try to provide a complete study for the pro-
duction inventory model of Su and Lin [5], then our model
should be divided into seven cases: case (1): 𝑐 + 𝜃 < 𝜆, case
(2): 𝑐 + 𝜃 = 𝜆, case (3): 𝑐 < 𝜆 < 𝑐 + 𝜃, case (4): 𝑐 = 𝜆, case (5):
𝜃 < 𝜆 < 𝑐, case (6): 𝜃 = 𝜆, and case (7): 𝜃 > 𝜆.

To focus on the investigation of a production inven-
tory model where the production rate is dependent both
on demand and inventory level, demand is exponentially
decreasing, and shortages are fully backordered, we add two
extra conditions: 𝜆 > 𝑐 + 𝜃 and 𝑎 ≥ 𝐴.

The reasoning behind the addition of an extra condition,
𝑎 ≥ 𝐴, is as follows: when 𝑡 = 0, the demand rate 𝐷(0) = 𝐴,
the inventory level 𝐼(0) = 0, and the production rate 𝑃(0) =
𝑎 + 𝑏𝐴. For the accumulation of inventory during the first
phase [0, 𝑡

1
], it implies that 𝑎 + 𝑏𝐴 ≥ 𝐴 for 0 ≤ 𝑏 < 1. For the

special case of 𝑏 = 0, we know that 𝑎 ≥ 𝐴 is valid. Therefore,
we derive that 𝑎 ≥ (1 − 𝑏)𝐴 when 0 < 𝑏 < 1.

If 𝑎 < 𝐴, then the domain of 𝑏 has a lower bound
satisfying the expression, 𝑏 ≥ 1−(𝑎/𝐴), such that the domain
of 𝑏 should be changed from [0, 1) to [1 − (𝑎/𝐴), 1).

Moreover, Su and Lin [5] assumed in their numerical
example that 𝐴 = 200 and 𝑎 = 200. Their assumption
provides support for our extra condition of 𝑎 ≥ 𝐴. They
also assumed that 𝜆 = 0.3, 𝜃 = 0.05, and 𝑐 = 0.2

which provides evidence that our condition, 𝜆 > 𝑐 + 𝜃,
is reasonable. Moreover, the condition of 𝜆 > 𝑐 + 𝜃 will
focus on the development of a production inventory that is
compatible with the numerical examples in Su and Lin [5]
and to avoid tedious discussion for different inventorymodels
with different relations among 𝜆, 𝑐, and 𝜃.

Based on (3), (4), (6), and (7) and the boundary condi-
tions of (2), we derive that

𝐼
𝑚
=

𝑎

𝑐 + 𝜃
(1 − exp (− (𝑐 + 𝜃) 𝑡

1
))

+
𝐴 (1 − 𝑏)

𝜆 − 𝑐 − 𝜃
(exp (−𝜆𝑡

1
) − exp (− (𝑐 + 𝜃) 𝑡

1
))

=
𝐴 exp (−𝜆𝑡

1
)

𝜆 − 𝜃
(1 − exp (− (𝜆 − 𝜃) (𝑡

2
− 𝑡
1
))) ,

𝐼
𝑏
= (

𝐴

𝜆
) (exp (−𝜆𝑡

2
) − exp (−𝜆𝑡

3
))

= (
𝑎

𝑐
) (exp (𝑐 (𝑡

4
− 𝑡
3
)) − 1)

+
𝐴 (1 − 𝑏)

𝜆 − 𝑐
(exp ((𝑐 − 𝜆) (𝑡

4
− 𝑡
3
)) − 1) exp (−𝜆𝑡

3
) .

(9)

From (9), we find the relation between 𝑡
1
and 𝑡
2
and then the

relation among 𝑡
2
, 𝑡
3
, and 𝑡

4
:

𝑡
2
=

1

𝜃 − 𝜆
ln [ exp ((𝜃 − 𝜆) 𝑡

1
)

−
𝑎 (𝜆 − 𝜃)

𝐴 (𝑐 + 𝜃)
(exp (𝜃𝑡

1
) − exp (−𝑐𝑡

1
))

−
(𝜆 − 𝜃) (1 − 𝑏)

𝜆 − 𝑐 − 𝜃

× (exp ((𝜃 − 𝜆) 𝑡
1
) − exp (−𝑐𝑡

1
)) ] ,

(10)

𝐴

𝜆
(exp (−𝜆𝑡

2
) − exp (−𝜆𝑡

3
)) +

𝑎

𝑐
+
𝐴 (1 − 𝑏)

𝜆 − 𝑐
exp (−𝜆𝑡

3
)

= (
𝑎

𝑐
+
𝐴 (1 − 𝑏)

𝜆 − 𝑐
exp (−𝜆𝑡

4
)) exp (𝑐 (𝑡

4
− 𝑡
3
)) .

(11)

We will simplify a four-variable problem, 𝑡
1
, 𝑡
2
, 𝑡
3
, and 𝑡

4
, to

a two-variable problem of 𝑡
1
and 𝑡
3
. During [0, 𝑡

1
], produc-

tion, demand, and deterioration interact with each other to
accumulate items that will be consumed and thus deteriorate
during [𝑡

1
, 𝑡
2
] such that, trivially, 𝑡

2
− 𝑡
1
is dependent on 𝑡

1
.We

will derive the detailed relation between 𝑡
2
− 𝑡
1
and 𝑡
1
, that is,

𝑡
2
and 𝑡
1
. During [𝑡

2
, 𝑡
3
], the shortages will accumulate to be

backlogged during [𝑡
3
, 𝑡
4
] so that naturally 𝑡

4
−𝑡
3
is dependent

on 𝑡
3
− 𝑡
2
. We will derive the detailed relation between 𝑡

4
− 𝑡
3

and 𝑡
3
− 𝑡
2
, which is the relation of (i) 𝑡

4
and (ii) 𝑡

3
with 𝑡

2
.

Due to the fact that demand is varied, 𝑡
2
will influence the

shortage during [𝑡
2
, 𝑡
3
].

In the following, we will prove that 𝑡
2
can be uniquely

decided if 𝑡
1
is given. When 𝑡

1
and 𝑡
2
are given, by using the

relation in (11), the unique value of 𝑡
4
can be derived if 𝑡

3
is

also given. Hence, we will simplify a four-variable problem to
a two-variable problem. Let us rewrite (10) as

1 − exp (− (𝜆 − 𝜃) (𝑡
2
− 𝑡
1
))

=
𝑎 (𝜆 − 𝜃)

𝐴 (𝑐 + 𝜃)
[exp (𝜆𝑡

1
) − exp ((𝜆 − 𝑐 − 𝜃) 𝑡

1
)]

+
(𝜆 − 𝜃) (1 − 𝑏)

𝜆 − 𝑐 − 𝜃
[1 − exp ((𝜆 − 𝑐 − 𝜃) 𝑡

1
)] .

(12)

We tried to find the condition of 𝑡
1
under which there is

a solution to 𝑡
2
with 𝑡

2
≥ 𝑡
1
, satisfying (12). For the later

discussion, given that 𝑡
1
, we denote the unique solution of

𝑡
2
that satisfies (12) as 𝑡

2
(𝑡
1
). We will prove that the feasible

domain of 𝑡
1
is bounded, guaranteeing the existence of 𝑡

2
.

Motivated by (12), we assume the following auxiliary
function, 𝑔(𝑡

1
), to be

𝑔 (𝑡
1
) =

𝑎 (𝜆 − 𝜃)

𝐴 (𝑐 + 𝜃)
[exp (𝜆𝑡

1
) − exp ((𝜆 − 𝑐 − 𝜃) 𝑡

1
)]

+
(𝜆 − 𝜃) (1 − 𝑏)

𝜆 − 𝑐 − 𝜃
[1 − exp ((𝜆 − 𝑐 − 𝜃) 𝑡

1
)] .

(13)
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Taking the derivative of 𝑔(𝑡
1
) with respect to 𝑡

1
yields

𝑑

𝑑𝑡
1

𝑔 (𝑡
1
)

=
𝑎 (𝜆 − 𝜃)

𝐴 (𝑐 + 𝜃)
[𝜆 exp (𝜆𝑡

1
) − (𝜆 − 𝑐 − 𝜃) exp ((𝜆 − 𝑐 − 𝜃) 𝑡

1
)]

− (𝜆 − 𝜃) (1 − 𝑏) exp ((𝜆 − 𝑐 − 𝜃) 𝑡
1
) .

(14)

Under the conditions 𝑎 ≥ 𝐴 and 𝜆 > 𝑐 + 𝜃, it follows that

𝑑

𝑑𝑡
1

𝑔 (𝑡
1
)

≥
(𝜆 − 𝜃)

(𝑐 + 𝜃)
[𝜆 exp (𝜆𝑡

1
) − (𝜆 − 𝑐 − 𝜃) exp ((𝜆 − 𝑐 − 𝜃) 𝑡

1
)]

− (𝜆 − 𝜃) exp ((𝜆 − 𝑐 − 𝜃) 𝑡
1
)

=
𝜆 (𝜆 − 𝜃)

𝑐 + 𝜃
[exp (𝜆𝑡

1
) − exp ((𝜆 − 𝑐 − 𝜃) 𝑡

1
)] > 0,

(15)

showing that 𝑔(𝑡
1
) is an increasing function from 𝑔(0) = 0 to

lim
𝑡
1
→∞

𝑔(𝑡
1
) = ∞, since

lim
𝑡
1
→∞

𝑔 (𝑡
1
)

exp ((𝜆 − 𝑐 − 𝜃) 𝑡
1
)

= lim
𝑡
1
→∞

[
𝑎 (𝜆 − 𝜃)

𝐴 (𝑐 + 𝜃)
(exp ((𝑐 + 𝜃) 𝑡

1
) − 1)

+
(𝜆 − 𝜃) (1 − 𝑏)

𝜆 − 𝑐 − 𝜃
(exp (− (𝜆 − 𝑐 − 𝜃) 𝑡

1
) − 1)]

= ∞.

(16)

There is a unique point, say 𝑡#
1
, that satisfies 𝑔(𝑡#

1
) = 1.

From (3) and (13), we have

𝜆 − 𝜃

𝐴
exp (𝜆𝑡#

1
) 𝐼 (𝑡

#
1
) = 𝑔 (𝑡

#
1
) = 1. (17)

From 𝜆 > 𝑐 + 𝜃, the inequality, 𝜆 > 𝜃, is held. It follows that

𝐼 (𝑡
#
1
) =

𝐴

𝜆 − 𝜃
exp (−𝜆𝑡#

1
) . (18)

By referring to (12), we obtain

𝑔 (𝑡
#
1
) = 1 = 1 − exp (− (𝜆 − 𝜃) (𝑡

2
(𝑡

#
1
) − 𝑡

#
1
)) . (19)

According to (19), we showed that 𝑡
2
(𝑡
#
1
) − 𝑡

#
1
must go to∞ so

that 𝑡
2
(𝑡
#
1
) will go to ∞ as well. We will express the result as

lim
𝑡
1
→𝑡

#
1

𝑡
2
(𝑡
1
) = ∞ and summarize our findings in the next

lemma.

Lemma 2. 𝐼(𝑡#
1
) = (𝐴/(𝜆 − 𝜃))𝑒

−𝜆𝑡
#
1 and lim

𝑡
1
→𝑡

#
1

𝑡
2
(𝑡
1
) = ∞.

From Lemma 2, we know that the feasible domain of 𝑡
1

should be set as

0 ≤ 𝑡
1
< 𝑡

#
1
. (20)

Given 𝑡
1
, with 𝑡

1
< 𝑡

#
1
, then 𝑔(𝑡

1
) < 1 so that there is a unique

𝑡
2
, say 𝑡

2
(𝑡
1
), that satisfies

1 − exp (− (𝜆 − 𝜃) (𝑡
2
(𝑡
1
) − 𝑡
1
)) = 𝑔 (𝑡

1
) . (21)

We may explicitly express 𝑡
2
(𝑡
1
) as

𝑡
2
(𝑡
1
)

= 𝑡
1
−

1

𝜆 − 𝜃
ln [1 − 𝑎 (𝜆 − 𝜃)

𝐴 (𝑐 + 𝜃)

× [exp (𝜆𝑡
1
) − exp ((𝜆 − 𝑐 − 𝜃) 𝑡

1
)]

−
(𝜆 − 𝜃) (1 − 𝑏)

𝜆 − 𝑐 − 𝜃
[1 −exp ((𝜆 − 𝑐 − 𝜃) 𝑡

1
)]].

(22)

We will summarize our findings in the following lemma.

Lemma 3. If 𝑡
1
< 𝑡

#
1
, then there is a unique 𝑡

2
, say 𝑡

2
(𝑡
1
), as in

(22) so that (10) is satisfied.

Next, we consider the relation among 𝑡
2
, 𝑡
3
, and 𝑡

4
by

rewriting (11) as

[
𝐴

𝜆
(exp (−𝜆𝑡

2
) − exp (−𝜆𝑡

3
)) +

𝑎

𝑐
+
𝐴 (1 − 𝑏)

𝜆 − 𝑐
exp (−𝜆𝑡

3
)]

× exp (𝑐𝑡
3
)

= (
𝑎

𝑐
+
𝐴 (1 − 𝑏)

𝜆 − 𝑐
exp (−𝜆𝑡

4
)) exp (𝑐𝑡

4
) .

(23)

Motivated by (23), we assume the following auxiliary func-
tion:

𝑓 (𝑡
4
) = (

𝑎

𝑐
+
𝐴 (1 − 𝑏)

𝜆 − 𝑐
exp (−𝜆𝑡

4
)) exp (𝑐𝑡

4
) . (24)

We find that

𝑓


(𝑡
4
) = exp (𝑐𝑡

4
) [𝑎 − 𝐴 (1 − 𝑏) exp (−𝜆𝑡

4
)]

> 𝑎 − 𝐴 (1 − 𝑏) ≥ 0.
(25)

Under our assumptions of 𝑎 ≥ 𝐴 and 0 ≤ 𝑏 < 1, it can be
inferred that 𝑓(𝑡

4
) increases from 𝑓(𝑡

3
) = (𝑎/𝑐) exp(𝑐𝑡

3
) +

(𝐴(1 − 𝑏)/(𝜆 − 𝑐)) exp((𝑐 − 𝜆)𝑡
3
) to lim

𝑡
4
→∞

𝑓(𝑡
4
) = ∞.

The relation below,

[
𝐴

𝜆
(exp (−𝜆𝑡

2
) − exp (−𝜆𝑡

3
)) +

𝑎

𝑐
+
𝐴 (1 − 𝑏)

𝜆 − 𝑐
exp (−𝜆𝑡

3
)]

× exp (𝑐𝑡
3
)

≥
𝑎

𝑐
exp (𝑐𝑡

3
) +

𝐴 (1 − 𝑏)

𝜆 − 𝑐
exp ((𝑐 − 𝜆) 𝑡

3
) = 𝑓 (𝑡

3
) ,

(26)
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holds since 𝑡
2
≤ 𝑡
3
.Therefore, if 𝑡

1
and 𝑡
3
are decided, with the

restriction 𝑡
1
< 𝑡

#
1
, then there is a unique 𝑡

2
(𝑡
1
) that satisfies

(10). Also, from (26) and the increasing function 𝑓(𝑡
4
), we

know that for a given 𝑡
3
under the condition, 𝑡

2
(𝑡
1
) ≤ 𝑡

3
,

there is a unique point explicitly denoted as 𝑡
4
(𝑡
1
, 𝑡
2
(𝑡
1
), 𝑡
3
),

simply say 𝑡
4
, that satisfies the condition, 𝑡

4
≥ 𝑡
3
, such that

the following expression,

[
𝐴

𝜆
(exp (−𝜆𝑡

2
) − exp (−𝜆𝑡

3
)) +

𝑎

𝑐
+
𝐴 (1 − 𝑏)

𝜆 − 𝑐
exp (−𝜆𝑡

3
)]

× exp (𝑐𝑡
3
)

= 𝑓 (𝑡
4
) ,

(27)

satisfies (23). We will summarize our results in the next
lemma.

Lemma 4. If 𝑡
1
and 𝑡
3
are given with 𝑡

1
< 𝑡

#
1
and 𝑡
2
(𝑡
1
) ≤

𝑡
3
, then there is a unique 𝑡

4
, denoted as 𝑡

4
(𝑡
1
, 𝑡
2
(𝑡
1
), 𝑡
3
) that

satisfies (11).

Up to this point, the corrected objective function below
can be provided as

𝐾(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
)

= {
𝑎

𝑐 + 𝜃
(𝑡
1
+
exp (− (𝑐 + 𝜃) 𝑡

1
) − 1

𝑐 + 𝜃
) +

𝐴 (1 − 𝑏)

𝜆 − 𝑐 − 𝜃

× (
exp (− (𝑐 + 𝜃) 𝑡

1
) − 1

𝑐 + 𝜃
−
exp (−𝜆𝑡

1
) − 1

𝜆
)

+
𝐴

𝜆 − 𝜃
(
exp (−𝜆𝑡

1
) − exp (−𝜆𝑡

2
)

𝜆
+ exp (− (𝜆 − 𝜃) 𝑡

2
)

×
exp (−𝜃𝑡

2
) − exp (−𝜃𝑡

1
)

𝜃
)}

𝜃𝐶
𝑑
+ 𝐶
𝑖

𝑡
4

+
𝐶
𝑠

𝑡
4

{
𝐴

𝜆2
(exp (−𝜆𝑡

3
) − exp (−𝜆𝑡

2
))

+
𝐴

𝜆
exp (−𝜆𝑡

2
) (𝑡
3
− 𝑡
2
) −

𝑎

𝑐2
(1 −exp (𝑐 (𝑡

4
− 𝑡
3
)))

−
𝑎

𝑐
(𝑡
4
− 𝑡
3
) +

𝐴 (1 − 𝑏)

𝜆 − 𝑐

× (exp (− (𝜆 − 𝑐) 𝑡
4
) (

exp (−𝑐𝑡
3
) − exp (−𝑐𝑡

4
)

𝑐
)

+
exp (−𝜆𝑡

4
) − exp (−𝜆𝑡

3
)

𝜆
)} +

𝐶

𝑡
4

,

(28)

with the conditions 0 < 𝑡
1
≤ 𝑡
2
≤ 𝑡
3
≤ 𝑡
4
.

Given 𝑡
1
, with 𝑡

1
< 𝑡

#
1
and (22), 𝑡

2
(𝑡
1
) can be derived.

Given a 𝑡
3
that satisfies 𝑡

2
(𝑡
1
) ≤ 𝑡
3
, then, by (23), 𝑡

4
can also be

obtained.We have learned from above discussion that only 𝑡
1

and 𝑡
3
are independent variables.

Table 1: The results for average cost of the first cycle for infinite
planning horizon.

𝑡
1

𝑡
2

𝑡
3

𝑡
4

𝐾(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
)

1.4683 2.2261 2.3148 2.3885 88.8785
2.4280 4.6512 4.9220 4.9876 102.8907
3.2554 9.1627 9.9433 9.9794 108.9192
3.6192 17.6260 19.9899 19.9985 77.4016
3.6626 25.4135 29.9900 29.9912 54.0973
3.6695 37.6621 477.5669 477.5670 3.4965
3.6696 39.0597 1745.8406 1745.8407 0.9889
3.6698 46.3253 5929.4429 5929.4434 0.2818
3.6698 46.3253 14903.3271 14903.3281 0.1158
3.6698 46.3253 19998.2832 19998.2852 0.0879

Hence, the problem becomes the minimization of
𝐾(𝑡
1
, 𝑡
2
(𝑡
1
), 𝑡
3
, 𝑡
4
(𝑡
1
, 𝑡
2
(𝑡
1
), 𝑡
3
)) under two restrictions:

𝑡
1
< 𝑡

#
1
,

𝑡
2
(𝑡
1
) ≤ 𝑡
3
.

(29)

We have derived a two-variable minimum problem of 𝑡
1

and 𝑡
3
under the conditions of (29), for the infinite horizon

minimum cost inventory model. The findings are concluded
in the next theorem.

Theorem 5. For the production inventory model with infinite
planning horizon, if one minimizes the average cost for the first
replenishment cycle, then there are two necessary conditions,
𝑡
1
< 𝑡

#
1
and 𝑡
2
(𝑡
1
) ≤ 𝑡
3
, for the production inventory model of

Su and Lin [5].

5. Numerical Examples for Infinite Planning
Horizon Inventory Model

We will employ the same numerical examples as Su and Lin
[5] for comparison purposes where 𝐴 = 200, 𝜆 = 0.3, 𝜃 =

0.05, 𝐶 = 100, 𝐶
𝑑
= 3, 𝐶

𝑠
= 10, 𝐶

𝑖
= 1, 𝑎 = 200, 𝑏 = 0.2,

and 𝑐 = 0.2. Some computation results are showed in Table 1
with 𝑡#

1
= 3.6699 arranged according to a sequence of different

values of 𝑡
3
.

From the numerical examples in Table 1, it reveals that
if we prolong the replenishment cycle, then the average
cost will eventually decrease. The rationale is that with a
negatively exponential demand function, themarket demand
will dramatically decrease, especially in a longer inventory
horizon, which will in turn significantly bring down the
corresponding average holding and shortage costs. On the
other hand, when we prolong the shortage phase with 𝑡

3
=

19998.2832 (the personal computer’s computational limit)
in order to reduce the average cost, the ordinary customers
may lose patience when waiting for the backorder. Hence,
a full backorder cannot be performed. In other words, it
is impossible to simultaneously achieve full backorder and
minimize average inventory cost. We may conclude that for
the negatively exponential demand, 𝐷(𝑡) = 𝐴 exp(−𝜆𝑡), the
infinite planning horizon production inventory model is not
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adequate. Therefore, we stop the discussion of case (a) in the
infinite planning horizon.

6. Our Proposed Production Inventory Model
with Finite Planning Horizon

Next, we consider case (b) with a finite planning horizon,
denoted by [0, 𝑇]. To simplify the discussion, we assume
that there is one replenishment cycle during the finite plan-
ning horizon. Our results can be easily extended to several
replenishment cycles. In this setting, (28) should be revised
as follows:

𝐾(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
= 𝑇)

= {
𝑎

𝑐 + 𝜃
(𝑡
1
+
exp (− (𝑐 + 𝜃) 𝑡

1
) − 1

𝑐 + 𝜃
) +

𝐴 (1 − 𝑏)

𝜆 − 𝑐 − 𝜃

× (
exp (− (𝑐 + 𝜃) 𝑡

1
) − 1

𝑐 + 𝜃
−
exp (−𝜆𝑡

1
) − 1

𝜆
)

+
𝐴

𝜆 − 𝜃
(
exp (−𝜆𝑡

1
) − exp (−𝜆𝑡

2
)

𝜆
+ exp (− (𝜆 − 𝜃) 𝑡

2
)

×
exp (−𝜃𝑡

2
) − exp (−𝜃𝑡

1
)

𝜃
)}

𝜃𝐶
𝑑
+ 𝐶
𝑖

𝑇

+
𝐶
𝑠

𝑇
{
𝐴

𝜆2
(exp (−𝜆𝑡

3
) − exp (−𝜆𝑡

2
))

+
𝐴

𝜆
exp (−𝜆𝑡

2
) (𝑡
3
− 𝑡
2
) −

𝑎

𝑐2
(1 − exp (𝑐 (𝑇 − 𝑡

3
)))

−
𝑎

𝑐
(𝑇 − 𝑡

3
) +

𝐴 (1 − 𝑏)

𝜆 − 𝑐

× (exp (− (𝜆 − 𝑐) 𝑇) (
exp (−𝑐𝑡

3
) − exp (−𝑐𝑇)
𝑐

)

+
exp (−𝜆𝑇) − exp (−𝜆𝑡

3
)

𝜆
)} +

𝐶

𝑇
.

(30)

Here, we will derive a stronger condition than 𝑡
1
< 𝑡

#
1
for the

feasible domain of 𝑡
1
. For a given 𝑡

4
, from (10), since 𝑡

2
(𝑡
1
) is

an increasing function of 𝑡
1
, there is a unique point, say 𝑡∧

1
(𝑡
4
)

with 𝑡
2
(𝑡
∧

1
(𝑡
4
)) = 𝑡
4
. Under the condition

𝑡
1
< 𝑡
∧

1
(𝑡
4
) , (31)

the desired result 𝑡
2
(𝑡
1
) < 𝑡

4
is achieved, since 𝑡

2
(𝑡
1
) is an

increasing function of 𝑡
1
.

Lemma6. For a given 𝑡
4
, the feasible domain of 𝑡

1
is [0, 𝑡∧

1
(𝑡
4
)),

implying that 𝑡
2
(𝑡
1
) < 𝑡
4
with 𝑡

2
(𝑡
∧

1
(𝑡
4
)) = 𝑡
4
.

In the following, when 𝑡
4
is given, if we take a 𝑡

1
that

satisfies (31), then we will prove that there is a unique 𝑡
3
that

satisfies (23).

Based on (23), let us assumeother two auxiliary functions,
𝑘(𝑡) and ℎ(𝑡

3
), where

𝑘 (𝑡) =
𝑎

𝑐
exp (𝑐𝑡)

+
𝐴 (1 − 𝑏)

𝜆 − 𝑐
exp (− (𝜆 − 𝑐) 𝑡) , for 𝑡

2
≤ 𝑡 ≤ 𝑇.

(32)

With a restricted domain, 𝑘(𝑡) is related to our previous
auxiliary function 𝑓(𝑡

4
) of (24) and

ℎ (𝑡
3
)

= [
𝐴

𝜆
(exp (−𝜆𝑡

2
) − exp (−𝜆𝑡

3
)) +

𝑎

𝑐

+
𝐴 (1 − 𝑏)

𝜆 − 𝑐
exp (−𝜆𝑡

3
)] exp (𝑐𝑡

3
) , for 𝑡

2
≤ 𝑡
3
≤ 𝑇.

(33)

From (𝑑/𝑑𝑡)𝑘(𝑡) = 𝑎 exp(𝑐𝑡) − 𝐴(1 − 𝑏) exp(−(𝜆 − 𝑐)𝑡) > 0,
under the conditions 𝑎 ≥ 𝐴 and 0 ≤ 𝑏 < 1, 𝑘(𝑡) is an
increasing function which implies that

𝑘 (𝑡
2
) =

𝑎

𝑐
exp (𝑐𝑡

2
) +

𝐴 (1 − 𝑏)

𝜆 − 𝑐
exp (− (𝜆 − 𝑐) 𝑡

2
) < 𝑘 (𝑇)

=
𝑎

𝑐
exp (𝑐𝑇) + 𝐴 (1 − 𝑏)

𝜆 − 𝑐
exp (− (𝜆 − 𝑐) 𝑇) .

(34)

On the other hand, the expression

𝑑

𝑑𝑡
3

ℎ (𝑡
3
)

=
𝐴

𝜆
[𝜆 exp (− (𝜆 − 𝑐) 𝑡

3
)

+ 𝑐 (exp (−𝑐𝑡
2
) − exp (−𝜆𝑡

3
)) exp (𝑐𝑡

3
)]

+ 𝑎 exp (𝑐𝑡
3
) − 𝐴 (1 − 𝑏) exp ((𝑐 − 𝜆) 𝑡

3
) > 0

(35)

shows that ℎ(𝑡
3
) is an increasing function. If we apply (33) and

(34), then ℎ(𝑡
3
) increases from

ℎ (𝑡
2
) = 𝑘 (𝑡

2
) < 𝑘 (𝑇) , (36)

to

ℎ (𝑇) =
𝐴

𝜆
(exp (−𝜆𝑡

2
) − exp (−𝜆𝑇)) + 𝑘 (𝑇) > 𝑘 (𝑇) . (37)

Therefore, there is a unique point, say 𝑡
3
(𝑡
2
), that satisfies

ℎ (𝑡
3
(𝑡
2
)) = 𝑘 (𝑇) . (38)

When 𝑡
4
= 𝑇 is given, based on the previous discussion, if

𝑡
1
is given with 𝑡

1
< 𝑡
∧

1
(𝑡
4
), then we have 𝑡

2
(𝑡
1
) < 𝑡
4
. From

(38), there exists a unique point, 𝑡
3
(𝑡
2
), with ℎ(𝑡

3
(𝑡
2
(𝑡
1
))) =

𝐾(𝑇) such that 𝑡
2
(𝑡
1
), 𝑡
3
(𝑡
2
(𝑡
1
)), and 𝑡

4
satisfy (23). Hence,

for a finite-horizon minimum cost inventory model, we have
simplified a four-variable problem to a one-variable problem.
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Hence, in the following, if we only consider those 𝑡
1
s that

satisfy the condition of (31), then

𝑡
2
(𝑡
1
) < 𝑡
4
. (39)

By (23) and (38), the relation, 𝑡
3
= 𝑡
3
(𝑡
2
), implies that

𝑡
4
(𝑡
1
, 𝑡
2
(𝑡
1
) , 𝑡
3
(𝑡
2
(𝑡
1
))) = 𝑡

4
, (40)

where 𝑡
4
(𝑡
1
, 𝑡
2
(𝑡
1
), 𝑡
3
), defined in Lemma 4, satisfies (11).

The objective function becomes a one-variable problem

𝐾(𝑡
1
)

= 𝐾 (𝑡
1
, 𝑡
2
(𝑡
1
) , 𝑡
3
(𝑡
2
(𝑡
1
)) , 𝑡
4
= 𝑇)

=
𝐶

𝑇
+
𝜃𝐶
𝑑
+ 𝐶
𝑖

𝑇

× {
𝑎

𝑐 + 𝜃
(𝑡
1
+
exp (− (𝑐 + 𝜃) 𝑡

1
) − 1

𝑐 + 𝜃
)

+
𝐴 (1 − 𝑏)

𝜆 − 𝑐 − 𝜃
(
exp (− (𝑐 + 𝜃) 𝑡

1
) − 1

𝑐 + 𝜃

−
exp (−𝜆𝑡

1
) − 1

𝜆
)

+
𝐴

𝜆 − 𝜃
(
exp (−𝜆𝑡

1
) − exp (−𝜆𝑡

2
)

𝜆

+ exp (− (𝜆 − 𝜃) 𝑡
2
)

×
exp (−𝜃𝑡

2
) − exp (−𝜃𝑡

1
)

𝜃
)}

+
𝐶
3

𝑇
{
𝐴

𝜆2
(exp (−𝜆𝑡

3
) − exp (−𝜆𝑡

2
))

+
𝐴

𝜆
exp (−𝜆𝑡

2
) (𝑡
3
− 𝑡
2
)

−
𝑎

𝑐2
(1 − exp (𝑐 (𝑇 − 𝑡

3
))) −

𝑎

𝑐
(𝑇 − 𝑡

3
)

+
𝐴 (1 − 𝑏)

𝜆 − 𝑐
( exp (− (𝜆 − 𝑐) 𝑇)

× (
exp (−𝑐𝑡

3
) − exp (−𝑐𝑇)
𝑐

)

+
exp (−𝜆𝑇) − exp (−𝜆𝑡

3
)

𝜆
)} .

(41)

We will summarize our findings in the next theorem.

Theorem 7. For the production inventory model with the
finite planning horizon, [0, 𝑡

4
], if one only considers one

replenishment cycle, there is a natural restriction 𝑡
1
< 𝑡
∧

1
(𝑡
4
),

creating a one-variable minimum problem.

FromTheorem 7, computer program asMathCAD can be
adopted to locate the optimal solution.Wemay point out that
the benefits to the simplified production inventorymodel that
we have proposed include (a) easy to use for decisionmakers,
(b) reduction of the solution space (computation time) in
determining the parameter setting, and (c) reduction of the
model complexity.

7. Numerical Example for the Finite
Planning Horizon

For the finite planning horizon production inventory model
with the same data, 𝐴 = 200, 𝜆 = 0.3, 𝜃 = 0.05, 𝐶 = 100,
𝐶
𝑑
= 3, 𝐶

𝑠
= 10, 𝐶

𝑖
= 1, 𝑎 = 200, 𝑏 = 0.2, 𝑐 = 0.2,

and 𝑇 = 2, we find the optimal solution, 𝑡∗
1
= 1.2742. With

(12), it shows that 𝑡∗
2

= 1.8620. With (38), it shows that
𝑡
∗

3
= 1.9306. Finally, with (41), we find that theminimum cost

is 𝐾(𝑡∗
1
, 𝑡
∗

2
, 𝑡
∗

3
, 𝑡
∗

4
) = 89.7151. The above discussion is based

on the preset condition that there is one replenishment cycle.
However, under the multiple replenishment cycles, the total
setup cost will be at least 200, and then the average cost during
[0, 2] is more than one hundred that is larger than the result
of one replenishment cycle. It specifies that the average cost
for multiple replenishment cycles is much larger than that of
one replenishment cycle. Hence, for this numerical example,
we only consider one replenishment cycle.

Particle swarm optimization is applied to check our
findings. Both approaches have the same optimal solution.

8. Conclusion and Further Direction

We have shown that with an exponentially decreasing
demand, the goals of simultaneously minimizing the average
cost for the first replenishment cycle and fully backorder-
ing the shortage items cannot be applied for an infinite-
horizon minimum cost inventory model. The result of our
investigation explicitly reveals that using the infinite planning
horizon model is inappropriate in practice. For the finite
planning horizon, we have shown that the four-phase pro-
duction inventorymodel can be converted to a single variable
problem in order to find the minimum solution. Our study
not only provides a sound operational formulation but also
offers a practical and efficient approach in the location of the
optimal solution.

The study we have carried out can probably be viewed as
the first attempt to solve a finite planning horizon production
inventorymodel. In the future, it would be interesting to show
that our objective function is convex to ensure the existence
of a localminimum.Moreover, the issues of how to decide the
optimal solution under several replenishment cycles and how
to verify the convexity of the minimum value under multiple
replenishment cycles deserve further study.
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