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We use a discrete dynamical model with three evolution rules in order to analyze the structure of a partially ordered set of signed
integer partitions whose main properties are actually not known.This model is related to the study of some extremal combinatorial
sum problems.

1. Introduction

A dynamical system is by definition a system whose state
changes with time 𝑡. We have a discrete dynamical system
when 𝑡 is an integer or a natural number, and the elements of
the system can be obtained in the form 𝑢

𝑡+1
= 𝐹(𝑢

𝑡
), where 𝐹

is some global function which describes the evolution rule of
the system (see [1]). In a series of very recentworks, the theory
of discrete dynamical systems has been applied in several
contexts. In [2], the theory of discrete dynamical systems
is applied in order to analyze some models of concurrent
computing systems. In [3], a dynamical model of parallel
computation on bi-infinite time scale with an approach
similar to two-sided symbolic dynamics is constructed. In
[4], the authors analyze the orbit structure of parallel discrete
dynamical systems over directed dependency graphs, with
Boolean functions as global functions. In [5], the authors
extend the manner of defining the evolution update of
discrete dynamical systems on Boolean functions, without
limiting the local functions to being dependent restrictions
of a global one. Finally, in [6] is given a complete character-
ization of the orbit structure of parallel discrete dynamical
systems with maxterm and minterm Boolean functions as
global functions. In [7], the authors have introduced the poset
(𝑆(𝑛, 𝑑, 𝑟), ⊑) of all the signed integer partitions 𝑟 ≥ 𝑎

𝑟
≥ ⋅ ⋅ ⋅ ≥

𝑎
1
≥ 0 ≥ 𝑏

1
≥ ⋅ ⋅ ⋅ ≥ 𝑏

𝑛−𝑟
≥ −(𝑛 − 𝑟), where the positive parts

and the negative parts are all distinct between them and the
number of nonzero parts is exactly 𝑑. In this case, the partial
order ⊑ is that on the components. The concept of signed
integer partition has been introduced in [8] and studied in
[9] from an arithmetical point of view. In [7, 10], it is shown

that the structure of the lattice 𝑆(𝑛, 𝑑, 𝑟) is strictly related to
the study of some combinatorial extremal sum problems. In
this paper, we study some particular type of signed partitions
(specifically, of the signed partitions of 𝑆(𝑛, 𝑑, 𝑟)) by adopting
the interesting point of view of the discrete dynamical
models. In particular, we analyze the lattice 𝑆(𝑛, 𝑑, 𝑟) as a
discrete dynamical model with three local evolution rules
whose dynamics is studied in a sequential mode. The way
to study a lattice of classical partitions as a discrete dynamic
model having some particular evolution rules is implicit in
[11], where Brylawski proposed a dynamical approach to
study the lattice 𝐿

𝐵
(𝑛) of all the partitions of the fixed positive

integer 𝑛 with the dominance ordering. In such a context,
a configuration of the system is represented by an ordered
partition of an integer 𝑛, that is, a decreasing sequence 𝑎 =
(𝑎
1
, . . . , 𝑎

𝑛
) having sum 𝑛, whose blocks of the corresponding

Young diagram are considered as mobile sand grain, and the
movement of a sand grain, respects the following rules.

Rule 1 (vertical rule). One grain can move from a column
to the next column if the difference of height of these two
columns is greater than or equal to 2.

Rule 2 (horizontal rule). If a column containing 𝑝 + 1 grains
is followed by a sequence of columns containing 𝑝 grains and
then one column containing 𝑝 − 1 grains, then one grain of
the first column can slip to the last column.

In this paper, we prove that the covering relation in the
lattice 𝑆(𝑛, 𝑑, 𝑟) is uniquely determined by three evolution
rules of our discrete dynamicalmodel.We articulate the proof
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of this result by contradiction by using only the first-order
logic. This method of proof is very laborious; however, its
advantage is that it can be easily implemented on a proof
assistant checker based on the first-order logic (e.g., Mizar).
The paper is articulated as follows. In Section 2, we recall
some basic definitions and preliminary results, for example,
the definition of 𝑆(𝑛, 𝑑, 𝑟) and some of its properties. In
Section 3, we explain how to see the signed partitions of
𝑆(𝑛, 𝑑, 𝑟) as configurations of our discrete dynamical model
and we also describe its evolution rules. In Section 4, we
assume by contradiction that there is a generic element 𝑤
of 𝑆(𝑛, 𝑑, 𝑟) that covers another generic element𝑤 ∈ 𝑆(𝑛, 𝑑, 𝑟)
but𝑤 is not generated by𝑤with none of our evolution rules.
From this assumption we deduce several propositions and
conditions that we use in order to prove our principal result,
that is, Theorem 4.

2. Definitions and Preliminary Results

If (𝑋, ≤) is a poset and 𝑥, 𝑦 ∈ 𝑋, we write 𝑦 ⋗ 𝑥 (or 𝑥 ⋖

𝑦) if 𝑦 covers 𝑥. Now we briefly recall the definition of the
lattice 𝑆(𝑛, 𝑟) that we have introduced in [7] in a more formal
context. Let 𝑛 and 𝑟 be two nonnegative integers such that
𝑟 ≤ 𝑛.

We call (𝑛, 𝑟)-string a 𝑛-tuplet of integers

𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
| 𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟
, (1)

such that

(i) 𝑎
1
, . . . , 𝑎

𝑟
∈ {1, . . . , 𝑟, 0};

(ii) 𝑏
1
, . . . , 𝑏

𝑛−𝑟
∈ {−1, . . . , −(𝑛 − 𝑟), 0};

(iii) 𝑎
𝑟
≥ ⋅ ⋅ ⋅ ≥ 𝑎

1
≥ 0 ≥ 𝑏

1
≥ ⋅ ⋅ ⋅ ≥ 𝑏

𝑛−𝑟
;

(iv) the unique element in (1) which can be repeated is 0.

If 𝑤 is a (𝑛, 𝑟)-string, we call parts of 𝑤 the integers
𝑎
𝑟
, . . . , 𝑎

1
, 𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

, nonnegative parts of 𝑤 the integers
𝑎
𝑟
, . . . , 𝑎

1
, and nonpositive parts of 𝑤 the integers 𝑏

1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

.
We set 𝑤

+
= 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
| and 𝑤

−
= |𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

. In some cases,
we do not distinguish between nonnegative and nonpositive
parts of 𝑤, and we write more simply 𝑤 = 𝑙

1
⋅ ⋅ ⋅ 𝑙
𝑛
instead of

𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
|𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

. We also denote by |𝑤|
>
the number

of parts of 𝑤 that are strictly positive, with |𝑤|
<
the number

of parts of 𝑤 that are strictly negative, and we set ‖𝑤‖ =

|𝑤|
>
+ |𝑤|
<
. 𝑆(𝑛, 𝑟) is the set of all the (𝑛, 𝑟)-strings. If 𝑤 =

𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
|𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

and 𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎


1
|𝑏


1
⋅ ⋅ ⋅ 𝑏


𝑛−𝑟
are two (𝑛, 𝑟)-

strings, we set𝑤
+
= 𝑤


+
if 𝑎
𝑖
= 𝑎
𝑖
for all 𝑖 = 𝑟, . . . , 1, 𝑤

−
= 𝑤


−

if 𝑏
𝑗
= 𝑏
𝑗
for all 𝑗 = 1, . . . , 𝑛 − 𝑟, and 𝑤 = 𝑤

 if 𝑤
+
= 𝑤


+

and𝑤
−
= 𝑤


−
. On 𝑆(𝑛, 𝑟), we consider the partial order on the

components that we denote by ⊑. To simplify the notations,
in all the numerical examples the integers on the right of
the vertical bar | will be written without minus sign. Since
(𝑆(𝑛, 𝑟), ⊑) is a finite distributive lattice, it is also graded, with
minimal element 0 ⋅ ⋅ ⋅ 0|12 ⋅ ⋅ ⋅ (𝑛 − 𝑟) and maximal element
𝑟(𝑟 − 1) ⋅ ⋅ ⋅ 21|0 ⋅ ⋅ ⋅ 0.

We recall now the concept of involution poset (see [12, 13]
for some recent studies on such class of posets). An involution
poset (IP) is a poset (𝑋, ≤, 𝑐) with a unary operation 𝑐 : 𝑥 ∈
𝑋 → 𝑥

𝑐
∈ 𝑋, such that

(I1) (𝑥𝑐)𝑐 = 𝑥, for all 𝑥 ∈ 𝑋;
(I2) if 𝑥, 𝑦 ∈ 𝑋 and if 𝑥 ≤ 𝑦, then 𝑦𝑐 ≤ 𝑥𝑐.

The map 𝑐 is called complementation of 𝑋 and 𝑥
𝑐 the

complement of 𝑥. Let us observe that if 𝑋 is an involution
poset, by (𝐼1) it follows that 𝑐 is bijective and by (𝐼1) and
(𝐼2) it holds that if 𝑥, 𝑦 ∈ 𝑋 are such that 𝑥 < 𝑦, then
𝑦
𝑐
< 𝑥
𝑐. If (𝑋, ≤, 𝑐) is an involution poset and if 𝑍 ⊆ 𝑋, we

will set 𝑍𝑐 = {𝑧𝑐 : 𝑧 ∈ 𝑍}. We note that if 𝑋 is an involution
poset, then𝑋 is a self-dual poset because from (𝐼1) and (𝐼2) it
follows that if 𝑥, 𝑦 ∈ 𝑋, we have that 𝑥 ≤ 𝑦, if and only if 𝑦𝑐 ≤
𝑥
𝑐, and this is equivalent to say that the complementation is

an isomorphism between 𝑋 and its dual poset 𝑋∗. In [7], it
has been shown that (𝑆(𝑛, 𝑟), ⊑) is an involution poset and its
complementation map 𝑐 is the following:

(𝑎
𝑘
⋅ ⋅ ⋅ 𝑎
1
0 ⋅ ⋅ ⋅ 0 | 0 ⋅ ⋅ ⋅ 0 𝑏

1
⋅ ⋅ ⋅ 𝑏
𝑙
)
𝑐

= 𝑎


𝑟−𝑘
⋅ ⋅ ⋅ 𝑎


1
0 ⋅ ⋅ ⋅ 0 | 0 ⋅ ⋅ ⋅ 0 𝑏



1
⋅ ⋅ ⋅ 𝑏


𝑛−𝑟−𝑙
,

(2)

where {𝑎
1
, . . . , 𝑎



𝑟−𝑘
} is the usual complement of {𝑎

1
, . . . , 𝑎

𝑘
}

in {1, . . . , 𝑟}, and {𝑏
1
, . . . , 𝑏



𝑛−𝑟−𝑙
} is the usual complement of

{𝑏
1
, . . . , 𝑏

𝑙
} in {−1, . . . , −(𝑛 − 𝑟)} (e.g., in 𝑆(7, 4), we have that

(4310|001)
𝑐
= 2000|023). If 𝑑 is an integer such that 0 ≤

𝑑 ≤ 𝑛, we set now 𝑆(𝑛, 𝑑, 𝑟) = {𝑤 ∈ 𝑆(𝑛, 𝑟) : ‖𝑤‖ = 𝑑}. Its
easy to see that (𝑆(𝑛, 𝑑, 𝑟), ⊑) is a sublattice of (𝑆(𝑛, 𝑟), ⊑) and
obviously |𝑆(𝑛, 𝑑, 𝑟)| = ( 𝑛

𝑑
).

We call signed Young diagrams (briefly SYD) an ordered
couple 𝐷 = 𝐷

1
: 𝐷
2
, where 𝐷

1
is a Young diagram of an

integer partition built with decreasing columns instead with
decreasing rows, and 𝐷

2
is a Young diagram of an integer

partition built with increasing columns. In the sequel, we will
call pile a column of a Young diagram and grain a square of a
pile. For example,

:𝐷=

(3)

is determined by the partitions 4331 and 113. If 𝑤 =

𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
|𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

∈ 𝑆(𝑛, 𝑟), we denote by 𝐷(𝑤) the signed
Young diagram 𝐷(𝑤) = 𝐷

+
(𝑤) : 𝐷

−
(𝑤), where 𝐷+(𝑤) is

the Young diagram of the partition (𝑎
𝑟
, . . . , 𝑎

1
) and 𝐷−(𝑤) is

the Young diagram of the partition (−𝑏
1
, . . . , −𝑏

𝑛−𝑟
). Now, if

𝐷 = 𝐷
1
: 𝐷
2
is a SYD, where (𝑎

𝑡
, . . . , 𝑎

1
) is the decreasing

partition having 𝐷
1
as Young diagram and ((−𝑏

1
), . . . , (−𝑏

𝑠
))

is the increasing partition having 𝐷
2
as Young diagram, we

set 𝑝(𝐷) = 𝑎
𝑡
⋅ ⋅ ⋅ 𝑎
1
|(−𝑏
1
) ⋅ ⋅ ⋅ (−𝑏

𝑠
) and we call 𝑝(𝐷) the signed

partition of 𝐷. We say that a signed Young diagram 𝐷 is a
(𝑛, 𝑟)-SYD if it results that 𝑝(𝐷) ∈ 𝑆(𝑛, 𝑟) and we denote with
𝑌𝑆(𝑛, 𝑟) the set of all the (𝑛, 𝑟)-SYD. It is clear that themap 𝜙 :
𝑤 → 𝐷(𝑤) is a bijection between 𝑆(𝑛, 𝑟) and 𝑌𝑆(𝑛, 𝑟), whose
inverse function is the map 𝜓 : 𝐷 → 𝑝(𝐷); therefore, in the
sequel, we will identify the elements of 𝑆(𝑛, 𝑟) with the (𝑛, 𝑟)-
SYDs of 𝑌𝑆(𝑛, 𝑟). If 𝐴 and 𝐵 are two usual Young diagrams,
we set 𝐴 ⊆ 𝐵 if 𝐴 is a subdiagram of 𝐵. If 𝐷 = 𝐷

1
: 𝐷
2
and

𝐷

= 𝐷


1
: 𝐷


2
are two SYDs, we set

𝐷 ⊑ 𝐷

⇐⇒ 𝐷

1
⊆ 𝐷


1
, 𝐷

2
⊇ 𝐷


2
. (4)
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Therefore, it is clear that we can identify (𝑆(𝑛, 𝑟), ⊑) with
(𝑌𝑆(𝑛, 𝑟), ⊑). Nowwe set𝑌𝑆(𝑛, 𝑑, 𝑟) = {𝐷(𝑤) : 𝑤 ∈ 𝑆(𝑛, 𝑑, 𝑟)}.
Obviously we can identify (𝑌𝑆(𝑛, 𝑑, 𝑟), ⊑) with (𝑆(𝑛, 𝑑, 𝑟), ⊑).
If (𝐻) is a statement, in the sequel we denote by ¬(𝐻) the
negation of (𝐻).

3. Description of the Evolution Rules

In our dynamic model, the set of all configurations is exactly
𝑌𝑆(𝑛, 𝑑, 𝑟). Our goal is to define some rules of evolution
that starting from the minimum of 𝑌𝑆(𝑛, 𝑑, 𝑟) allow us to
reconstruct the Hasse diagram of 𝑌𝑆(𝑛, 𝑑, 𝑟) (and therefore
to determine the covering relations in 𝑆(𝑛, 𝑑, 𝑟)).

Let 𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
|𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

∈ 𝑆(𝑛, 𝑑, 𝑟) and 𝐷 = 𝐷(𝑤) =

𝐷
+
(𝑤) : 𝐷

−
(𝑤). If 1 ≤ 𝑖 ≤ 𝑟, we call 𝑖th-plus pile

of 𝐷, and we denote it by 𝐶
+
(𝑖, 𝐷), the 𝑖th pile of 𝐷+(𝑤)

that corresponds to part 𝑎
𝑖
of 𝑤 and, if 1 ≤ 𝑗 ≤ 𝑛 − 𝑟,

we call 𝑗th-minus pile of 𝐷, and we denote it by 𝐶
−
(𝑗, 𝐷),

the 𝑗th pile of 𝐷−(𝑤) that corresponds to part 𝑏
𝑗
of 𝑤.

We call the pile 𝐶+(𝑖, 𝐷) 𝑝𝑙𝑢𝑠 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 𝑝𝑖𝑙𝑒 if 𝑎
𝑖
= 1 and

𝐶
−
(𝑗, 𝐷) 𝑚𝑖𝑛𝑢𝑠 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 𝑝𝑖𝑙𝑒 if 𝑏

𝑗
= 1. Let us note that if

there exists a plus singleton pile, then it is necessarily unique,
analogously for a minus singleton pile. If 1 < 𝑖 ≤ 𝑟, we set
Δ
+

𝑖
(𝑤) = 𝑎

𝑖
− 𝑎
𝑖−1

and we call Δ+
𝑖
(𝑤) the plus height difference

of 𝑤 in 𝑖. If 1 < 𝑗 ≤ 𝑛 − 𝑟, we set Δ−
𝑗
(𝑤) = |𝑏

𝑗
| − |𝑏
𝑗−1
| and we

call Δ−
𝑗
(𝑤) the minus height difference of 𝑤 in 𝑗. If 1 < 𝑖 ≤ 𝑟,

we say that𝑤 has a plus cliff at 𝑖 if Δ+
𝑖
(𝑤) ≥ 2. If 1 < 𝑗 ≤ 𝑛 − 𝑟,

we say that 𝑤 has aminus cliff at 𝑗 if Δ−
𝑗
(𝑤) ≥ 2.

Remark 1. When we apply the following rules to one element
𝑤 ∈ 𝑆(𝑛, 𝑟), we impose that there is an “invisible” extra pile
in the imaginary place (𝑟 + 1) of 𝐷+(𝑤) having exactly 𝑟 + 1
grains. This is only a formal trick for decreas the number of
rules necessary for ourmodel; therefore, the (𝑟+1)th pilemust
be not considered as a part of 𝑤.

3.1. Evolution Rules.

Rule 1. If the 𝑖th-plus pile has at least one grain and if𝑤 has a
plus cliff at 𝑖+1, then one grainmust be added on the 𝑖th-plus
pile:

∙

: :
(5)

Rule 2. If there is not a plus singleton pile and there is aminus
singleton pile, then the latter must be shifted to the side of the
lowest non empty plus pile:

:: ∙∙

(6)

Rule 3. One grain must be deleted from the 𝑗th-minus pile if
𝑤 has a minus cliff at 𝑗:

: :

∙

(7)

Remark 2. (i) Under the hypothesis in Rule 3, the 𝑗th plus
must have at least 2 grains.

(ii) In Rule 2, the lowest non empty plus pile can also be
the invisible column in the place 𝑟+1. In this case, all the plus
piles are empty and a possible minus singleton pile must be
shifted in the place 𝑟.

4. Main Result

In the sequel, we write 𝑤→ 𝑘 𝑤 (or 𝑤 = 𝑤→ 𝑘) to denote
that𝑤 is an 𝑛-tuplet of integers obtained from𝑤 applying the
Rule 𝑘, for 𝑘 = 1, 2, 3, and that ¬(𝑤→ 𝑘 𝑤) if the condition
𝑤→
𝑘
𝑤
 is false. We also set

∇ (𝑤) = {𝑤

: 𝑤→

𝑘
𝑤

, 𝑘 = 1, 2, 3} . (8)

Proposition 3. If𝑤 ∈ 𝑆(𝑛, 𝑑, 𝑟), then∇(𝑤) ⊆ {𝑤 ∈ 𝑆(𝑛, 𝑑, 𝑟) :
𝑤

⋗ 𝑤}.

Proof. Let𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
|𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

∈ 𝑆(𝑛, 𝑑, 𝑟), 𝑎
𝑟+1

= 𝑟+1 (the
invisible pile in the place 𝑟+1), and𝐷 = 𝐷(𝑤).We distinguish
the three possible cases related to the previous rules.

Case 1. Let us assume that 𝑟 ≥ 𝑖 ≥ 1, 𝑎
𝑖
̸= 0, and that 𝑤 has

a plus cliff at 𝑖 + 1. If 𝑤 = 𝑤→ 1, then 𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
𝑖+1
(𝑎
𝑖
+

1)𝑎
𝑖−1
⋅ ⋅ ⋅ 𝑎
1
|𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

. It is clear that ‖𝑤‖ = 𝑑 because 𝑎
𝑖
̸= 0.

Since there is a plus cliff at 𝑖 + 1, we have 𝑎
𝑖+1
− 𝑎
𝑖
≥ 2; hence,

𝑎
𝑖+1
≥ 𝑎
𝑖
+ 2 > 𝑎

𝑖
+ 1 > 𝑎

𝑖
> 𝑎
𝑖−1

, and this implies that 𝑤 ∈
𝑆(𝑛, 𝑑, 𝑟). We must show now that 𝑤 covers 𝑤 in 𝑆(𝑛, 𝑑, 𝑟).
Since 𝑤 and 𝑤 differ between them only in the place 𝑖 for 𝑎

𝑖

and 𝑎
𝑖
+ 1, respectively, it is clear that there does not exist an

element 𝑧 ∈ 𝑆(𝑛, 𝑑, 𝑟) such that 𝑤 ⊏ 𝑧 ⊏ 𝑤. Hence, 𝑤 ⋗ 𝑤.

Case 2. Let us assume that in 𝐷(𝑤) there is not a plus
singleton pile and that there is a minus singleton pile
(we say 𝐶−(𝑗, 𝐷), for some 1 ≤ 𝑗 ≤ 𝑛 − 𝑟). Since
𝑎
𝑟+1

= 𝑟 + 1, we can assume that 𝑎
𝑖+1

> 0, 𝑎
𝑖
=

0, for some 1 ≤ 𝑖 ≤ 𝑟. This means that 𝑤 has the
following form: 𝑤 = 𝑎

𝑟
⋅ ⋅ ⋅ 𝑎
𝑖+1
00 ⋅ ⋅ ⋅ 0|0 ⋅ ⋅ ⋅ 0(−1)𝑏

𝑗+1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

,
where 𝑎

𝑖+1
> 1 (otherwise 𝐷(𝑤) has a plus singleton

pile). Applying Rule 2 to 𝑤, we obtain 𝑤 = 𝑤→
2, where

𝑤

= 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
𝑖+1
10 ⋅ ⋅ ⋅ 0|0 ⋅ ⋅ ⋅ 00𝑏

𝑗+1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

. It is clear then that
𝑤

∈ 𝑆(𝑛, 𝑟) and ‖𝑤‖ = 𝑑 since 𝑤 is obtained from 𝑤 with

only a shift of the pile-1 to the left in the place 𝑖. Let us note that
the only elements 𝑧

1
, 𝑧
2
∈ 𝑆(𝑛, 𝑟) such that 𝑤 ⊏ 𝑧

1
⊏ 𝑤
 and

𝑤 ⊏ 𝑧
2
⊏ 𝑤
 are 𝑧

1
= 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
𝑖+1
10 ⋅ ⋅ ⋅ 0|0 ⋅ ⋅ ⋅ 0(−1)𝑏

𝑗+1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

and 𝑧
2
= 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
𝑖+1
00 ⋅ ⋅ ⋅ 0|0 ⋅ ⋅ ⋅ 00𝑏

𝑗+1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

, but ‖𝑧
1
‖ = 𝑑+1

and ‖𝑧
2
‖ = 𝑑 − 1; hence, 𝑧

1
, 𝑧
2
are not elements of 𝑆(𝑛, 𝑑, 𝑟).

This implies that 𝑤 covers 𝑤 in 𝑆(𝑛, 𝑑, 𝑟).

Case 3. If 1 < 𝑗 ≤ 𝑛 − 𝑟 and 𝑤 has a minus cliff at 𝑗, we apply
Rule 3 to 𝑤 on the pile 𝐶−(𝑗, 𝐷) and we obtain 𝑤 = 𝑤→ 3,
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where𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
|𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑗−1
(𝑏
𝑗
+1)𝑏
𝑗+1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

. Since𝑤 has a
minus cliff at 𝑗, we have −𝑏

𝑗
+𝑏
𝑗−1

= |𝑏
𝑗
|−|𝑏
𝑗−1
| ≥ 2; therefore,

𝑤

∈ 𝑆(𝑛, 𝑟) because 0 ≥ 𝑏

𝑗−1
≥ 𝑏
𝑗
+ 2 > 𝑏

𝑗
+ 1 > 𝑏

𝑗
> 𝑏
𝑗+1

and
‖𝑤

‖ = 𝑑 since 𝑏

𝑗
≤ −2 implies 𝑏

𝑗
+ 1 < 0. As in Case 1, we

note that𝑤 covers𝑤 in 𝑆(𝑛, 𝑑, 𝑟) because they differ between
them only for a grain in the place 𝑗.

The main result of this paper is to prove that if 𝑤,𝑤 ∈
𝑆(𝑛, 𝑑, 𝑟), then 𝑤

 covers 𝑤 in 𝑆(𝑛, 𝑑, 𝑟) if and only if
𝑤→
𝑘
𝑤
 for some 𝑘 ∈ {1, 2, 3}. Obviously this result can be

reformulated as follows.

Theorem 4. If 𝑤 ∈ 𝑆(𝑛, 𝑑, 𝑟), then ∇(𝑤) = {𝑤 ∈ 𝑆(𝑛, 𝑑, 𝑟) :
𝑤

⋗ 𝑤}.

By Proposition 3, to prove Theorem 4, it suffices to show
that {𝑤 ∈ 𝑆(𝑛, 𝑑, 𝑟) : 𝑤 ⋗ 𝑤} ⊆ ∇(𝑤). To show this inclu-
sion, we proceed by contradiction as follows. We start with
the following hypotheses:

𝑤,𝑤

∈ 𝑆 (𝑛, 𝑑, 𝑟) , 𝑤 = 𝑎

𝑟
⋅ ⋅ ⋅ 𝑎
1
| 𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟
,

𝑤

= 𝑎


𝑟
⋅ ⋅ ⋅ 𝑎


1
| 𝑏


1
⋅ ⋅ ⋅ 𝑏


𝑛−𝑟
, 𝑤

⋗ 𝑤

(9)

and we also assume that

¬ (𝑤→
𝑘
𝑤

) for each 𝑘 = 1, 2, 3. (10)

Then the proof of Theorem 4 will consist into show that
the hypotheses (9) and the conditions (10) always lead to
contradictory cases, so that it must be necessarily verified the
inclusion {𝑤 ∈ 𝑆(𝑛, 𝑑, 𝑟) : 𝑤 ⋗ 𝑤} ⊆ ∇(𝑤).

We will articulate the proof ofTheorem 4 in several cases.
Each possible case will be placed in the form of a proposition
and we will obtain a contradiction in all cases, showing,
hence, the thesis of the theorem. Before proceeding, let us
note that in some cases we also use the alternative notations
𝑤 = 𝑙
1
⋅ ⋅ ⋅ 𝑙
𝑛
and 𝑤 = 𝑙

1
⋅ ⋅ ⋅ 𝑙


𝑛
.

We set now

Ω
1
(𝑤) = {𝑖 ∈ {1, . . . , 𝑟} : 𝑎

𝑖
> 0, 𝑎

𝑖+1
− 𝑎
𝑖
≥ 2} ,

Ω
3
(𝑤) = {𝑗 ∈ {2, . . . , 𝑛 − 𝑟} : 𝑏

𝑗−1
− 𝑏
𝑗
≥ 2} ,

Λ
+
(𝑤, 𝑤


) = {ℎ ∈ {1, . . . , 𝑟} : 𝑎



ℎ
> 𝑎
ℎ
} ,

Λ
−
(𝑤, 𝑤


) = {𝑙 ∈ {1, . . . , 𝑛 − 𝑟} : 𝑏



𝑙
> 𝑏
𝑙
} .

(11)

Formalization of Rules 1, 2, and 3.
The description of Rules 1, 2, and 3 in terms of parts of 𝑤

and 𝑤 is the following:

(1) 𝑤→ 1 𝑤 is equivalent to
Ω
1
(𝑤) ̸= 0 AND (∃𝑖 ∈ Ω

1
(𝑤) : (𝑎



𝑖
= 𝑎
𝑖
+ 1) AND

(Λ+(𝑤, 𝑤) \ {𝑖} = Λ−(𝑤, 𝑤) = 0));
(2) 𝑤→ 2 𝑤 is equivalent to

(for all 𝑘 ∈ {1, . . . , 𝑟} 𝑎
𝑘
̸= 1) AND

(∃𝑗 ∈ {1, . . . , 𝑛 − 𝑟} such that 𝑏
𝑗
= −1) AND

(∃𝑖 ∈ {1, . . . , 𝑟} such that 𝑎
𝑖+1
> 0, 𝑎

𝑖
= 0) AND

(Λ+(𝑤, 𝑤) \ {𝑖} = Λ−(𝑤, 𝑤) \ {𝑗} = 0, 𝑎
𝑖
= 1, 𝑏
𝑗
= 0);

(3) 𝑤→ 3 𝑤 is equivalent to
Ω
3
(𝑤) ̸= 0 AND (∃𝑗 ∈ Ω

3
(𝑤) : (𝑏



𝑗
= 𝑏
𝑗
+ 1) AND

(Λ+(𝑤, 𝑤) = Λ−(𝑤, 𝑤) \ {𝑗} = 0)).
Negation of Rules 1, 2, and 3.

(1) ¬(𝑤→ 1 𝑤) ⇔ [(1A) OR (1B)],
where

(1B) is (Ω
1
(𝑤) = 0),

(1A) is [Ω
1
(𝑤) ̸= 0 AND (for all 𝑖 ∈ Ω

1
(𝑤) (𝑎

𝑖
̸= 𝑎
𝑖
+

1) OR (Λ+(𝑤, 𝑤) \ {𝑖} ̸= 0 OR Λ−(𝑤, 𝑤) ̸= 0))].

(2) ¬(𝑤→ 2 𝑤) ⇔ [(2A) OR (2B) OR (2C) OR (2D)],
where

(2A) is (for all 𝑘 ∈ {1, . . . , 𝑟} 𝑎
𝑘
̸= 1) AND

(∃𝑗 ∈ {1, . . . , 𝑛 − 𝑟} such that 𝑏
𝑗
= −1) AND

(∃𝑖 ∈ {1, . . . , 𝑟} such that 𝑎
𝑖+1
> 0, 𝑎

𝑖
= 0) AND

((Λ+(𝑤, 𝑤) \ {𝑖} ̸= 0OR Λ−(𝑤, 𝑤) \ {𝑗} ̸= 0) OR
𝑎


𝑖
̸= 1 OR 𝑏

𝑗
̸= 0);

(2B) is (∃𝑘 ∈ {1, . . . , 𝑟} such that 𝑎
𝑘
= 1);

(2C) is (for all 𝑗 ∈ {1, . . . , 𝑛 − 𝑟} 𝑏
𝑗
̸= − 1);

(2D) is (for all 𝑖 ∈ {1, . . . , 𝑟} 𝑎
𝑖+1
= 0 OR 𝑎

𝑖
> 0).

(3) ¬(𝑤→ 3 𝑤) ⇔ [(3A) OR (3B)],
where

(3B) is (Ω
3
(𝑤) = 0);

(3A) is [Ω
3
(𝑤) ̸= 0 AND (for all 𝑗 ∈ Ω

3
(𝑤) (𝑏

𝑗
̸= 𝑏
𝑗
+

1) OR (Λ+(𝑤, 𝑤) ̸= 0 OR Λ−(𝑤, 𝑤) \ {𝑗} ̸= 0))].

we set

(1.1b) : 𝑤 = 00 ⋅ ⋅ ⋅ 0 | 𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟
, (12)

(1.2b) : 𝑤 = 𝑟 (𝑟 − 1) ⋅ ⋅ ⋅ (𝑘 + 1) 𝑘 ⋅ ⋅ ⋅ 0 | 𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

for some 𝑘 ∈ {1, . . . , 𝑟} .
(13)

Proposition 5. Consider (1B)⇒ ((1.1b) OR (1.2b)).

Proof. The condition Ω
1
(𝑤) = 0 means that for all 𝑖 ∈

{1, . . . , 𝑟}, 𝑎
𝑖
= 0 or 0 ≤ 𝑎

𝑖+1
− 𝑎
𝑖
≤ 1 (i.e., 𝑎

𝑖+1
− 𝑎
𝑖
= 0 or

𝑎
𝑖+1
− 𝑎
𝑖
= 1). We have then the following possibilities:

(j) 𝑎
𝑖
= 0;

(jj) 𝑎
𝑖+1
− 𝑎
𝑖
= 0 (and therefore 𝑎

𝑖+1
= 𝑎
𝑖
= 0 since 𝑤 ∈

𝑆(𝑛, 𝑟));
(jjj) 𝑎
𝑖+1
= 𝑎
𝑖
+ 1.

If 𝑎
𝑖
= 0 for all 𝑖 ∈ {1, . . . , 𝑟} then (12) holds. Let us assume

therefore that 𝑘 ∈ {1, . . . , 𝑟} is the smallest index such that
𝑎
𝑘
> 0; hence, 𝑎

𝑟
> 𝑎
𝑟−1

> ⋅ ⋅ ⋅ > 𝑎
𝑘+1

> 𝑎
𝑘
> 0 and 𝑎

𝑘−1
=

⋅ ⋅ ⋅ = 𝑎
1
= 0.Thismeans that for all indexes 𝑖 ∈ {𝑟, 𝑟−1, . . . , 𝑘+

1, 𝑘} holds necessarily (jjj). In particular, for 𝑖 = 𝑟 we have
𝑟 + 1 = 𝑎

𝑟+1
= 𝑎
𝑟
+ 1; hence, 𝑎

𝑟
= 𝑟. Now, if 𝑖 = 𝑟 − 1,

𝑟 = 𝑎
𝑟
= 𝑎
𝑟−1
+1, that is, 𝑎

𝑟−1
= 𝑟−1. Iterating (13) follows.
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We set

(2.1d) : 𝑤 = 𝑟 (𝑟 − 1) ⋅ ⋅ ⋅ 2 1 | 𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟
. (14)

Proposition 6. Consider (2D)⇔ (2.1d).

Proof. By (2D), if we take 𝑖 = 𝑟, we have 𝑎
𝑟+1

= 0 or 𝑎
𝑟
> 0;

therefore, it is necessarily 𝑎
𝑟
> 0 because by hypothesis, 𝑎

𝑟+1
=

𝑟 + 1 > 0. Thus, still by (2D), for 𝑖 = 𝑟 − 1, we have 𝑎
(𝑟−1)+1

=

𝑎
𝑟
= 0 or 𝑎

𝑟−1
> 0; therefore, it must be 𝑎

𝑟−1
> 0. By iterating,

we can deduce that 𝑎
𝑟
> 0, 𝑎

𝑟−1
> 0,. . ., 𝑎

1
> 0; hence, 𝑎

1
= 1,

𝑎
2
= 2,. . ., 𝑎

𝑟
= 𝑟 because 𝑤 is an element of 𝑆(𝑛, 𝑟), that is,

exactly (14). On the other side, if𝑤 = 𝑟(𝑟−1) ⋅ ⋅ ⋅ 2 1|𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

,
then it is immediate to note that (2D) is verified.

We set

(3.1b) : 𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
| 00 ⋅ ⋅ ⋅ 0, (15)

(3.2b) : 𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
| 00 ⋅ ⋅ ⋅ 0 (−1) (−2) ⋅ ⋅ ⋅ (−𝑙)

for some 𝑙 ∈ {1, . . . , 𝑛 − 𝑟} .
(16)

Proposition 7. Consider (3B)⇒ ((3.1b) OR (3.2b)).

Proof. The condition Ω
3
(𝑤) = 0 means that for all 𝑗 ∈

{2, . . . , 𝑛−𝑟}, 0 ≤ 𝑏
𝑗−1
−𝑏
𝑗
≤ 1 (i.e., 𝑏

𝑗−1
−𝑏
𝑗
= 0 or 𝑏

𝑗−1
−𝑏
𝑖
= 1).

We have then the following possibilities:
(i) 𝑏
𝑗−1

− 𝑏
𝑗
= 0 (and therefore 𝑏

𝑗−1
= 𝑏
𝑖
= 0 since 𝑤 ∈

𝑆(𝑛, 𝑟));
(ii) 𝑏
𝑗−1

= 𝑏
𝑗
+ 1.

If (i) holds for all 𝑗 ∈ {2, . . . , 𝑛 − 𝑟}, then (15) holds. We can
assume therefore that 𝑘 ∈ {2, . . . , 𝑛 − 𝑟} is the smallest index
such that (ii) holds. Let us observe then that if in a place 𝑗 ∈
{2, . . . , 𝑛 − 𝑟}, (ii) holds; then also in the places 𝑗+1, . . . , 𝑛 − 𝑟,
(ii) holds. In fact, if 𝑏

𝑗
= 𝑏
𝑗−1

− 1 and by absurd 𝑏
𝑗
= 𝑏
𝑗+1

=

0, then 𝑏
𝑗−1

= 1 which is a contradiction because 0 ≥ 𝑏
𝑗−1

.
Therefore, if (ii) holds in 𝑗, then it also holds in 𝑗 + 1, and
therefore, by iteration, it holds for 𝑗+1, 𝑗+2, . . . , 𝑛−𝑟. Nowwe
assume at first that 𝑘 = 2. In this case, (ii) holds for all indexes
in {2, . . . , 𝑛 − 𝑟}; therefore, 𝑏

1
= 0 or 𝑏

1
= −1 and 𝑏

2
= 𝑏
1
− 1,

𝑏
3
= 𝑏
2
−1 ⋅ ⋅ ⋅. If 𝑏

1
= 0, then𝑤 = 𝑎

𝑟
⋅ ⋅ ⋅ 𝑎
1
|0(−1)(−2) ⋅ ⋅ ⋅ (−(𝑛−

𝑟)+1) and if 𝑏
1
= −1, then𝑤 = 𝑎

𝑟
⋅ ⋅ ⋅ 𝑎
1
|(−1)(−2) ⋅ ⋅ ⋅ (−(𝑛−𝑟));

thus in both cases (ii) holds. Let now 𝑘 ≥ 3.Then 𝑏
𝑘−1

= 𝑏
𝑘−2

=

0 (because in the place 𝑘 − 1 (i) holds) and hence 0 = 𝑏
𝑘−1

=

𝑏
𝑘−2

= ⋅ ⋅ ⋅ = 𝑏
2
= 𝑏
1
. Moreover, since (i) holds in the places

𝑘, 𝑘+1, . . . , 𝑛−𝑟, we have 𝑏
𝑘
= 𝑏
𝑘−1
−1 = 0−1 = −1; therefore,

𝑏
𝑘+1

= 𝑏
𝑘
−1 = −2, . . ., 𝑏

𝑛−𝑟
= 𝑏
𝑛−𝑟−1

−1 = −(𝑛−𝑟−𝑘)−1 = −𝑙,
where 𝑙 = 𝑛 − 𝑟 − 𝑘 + 1. This completes the proof.

Proposition 8. Consider (3.1b)⇒ (𝑤
−
= 𝑤


−
=| 00 ⋅ ⋅ ⋅ 0).

Proof. Since 𝑤 ⊏ 𝑤, it must be 0 ≥ 𝑏
𝑗
≥ 𝑏
𝑗
, where 𝑏

𝑗
= 0 for

all 𝑗 ∈ {1, . . . , 𝑛 − 𝑟} because (15) implies𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
|00 ⋅ ⋅ ⋅ 0.

Therefore, 𝑏
𝑗
= 𝑏


𝑗
= 0 for all 𝑗 ∈ {1, . . . , 𝑛 − 𝑟}; that is, 𝑤 =

𝑎


𝑟
⋅ ⋅ ⋅ 𝑎


1
| 00 ⋅ ⋅ ⋅ 0.

Proposition 9. Consider
(i) (1.1b) AND (2B)⇒ absurd,
(ii) (1.1b) AND (2.1d)⇒ absurd,

(iii) (2C) AND (3.2b)⇒ absurd,
(iv) (1.1b) AND (3.1b)⇒ absurd,
(v) (1.2b) AND (3.1b)⇒ absurd.

Proof. (i), (ii), and (iii) are obvious.

(iv) By (12) and (15), it follows that 𝑤 = 0 ⋅ ⋅ ⋅ 0|0 ⋅ ⋅ ⋅ 0,
absurd.

(v) By Proposition 8, we have 𝑤
−
= 𝑤
−
. Then, since

𝑤 ⊏ 𝑤
, ‖𝑤‖ = ‖𝑤‖ and 𝑤

−
= 𝑤
−
, by (13) we deduce

that 𝑤
+
= 𝑤
+
. Hence, the absurd 𝑤 = 𝑤.

Proposition 10. Consider (1.2b) AND (2B)⇒ (2.1d).

Proof. By (2B), it follows that in (13) it must be 𝑘 = 1;
therefore, 𝑤 = 𝑟(𝑟 − 1) ⋅ ⋅ ⋅ 2 1|𝑏

1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

.

Proposition 11. Consider (2.1d) AND (3.2b)⇒ absurd.

Proof. By (14), it is immediate to observe that 𝑤
+
= 𝑤
+

because 𝑤 ⊏ 𝑤
. Then by (16), since 𝑤

+
= 𝑤
+
, ‖𝑤
−
‖ = ‖𝑤

−
‖

and 𝑤 ⊏ 𝑤
, it must also be 𝑤

−
= |00 ⋅ ⋅ ⋅ 0(−1)(−2) ⋅ ⋅ ⋅ (−𝑙).

Hence, we obtain 𝑤 = 𝑤, absurd.

Proposition 12. Consider (2A)⇒ absurd.

Proof. We set

(F) [(for all 𝑘 ∈ {1, . . . , 𝑟} 𝑎
𝑘
̸= 1) AND (∃𝑗 ∈ {1, . . . , 𝑛 −

𝑟} such that 𝑏
𝑗
= −1) AND (∃𝑖 ∈ {1, . . . , 𝑟} such that

𝑎
𝑖+1
> 0, 𝑎

𝑖
= 0)];

(G) (Λ+(𝑤, 𝑤) \ {𝑖} ̸= 0 OR Λ−(𝑤, 𝑤) \ {𝑗} ̸= 0);
(H) (𝑎

𝑖
̸= 1 OR 𝑏

𝑗
̸= 0).

Then (2A) is equivalent to ((F)AND(G))OR ((F)AND(H)).
We show at first that ((F) AND (H)) leads to a contradiction.
Next we show that ((F) AND (G) AND ¬(H)) also leads to an
absurd. This will prove the thesis;

((F) AND (H))⇒ absurd.
By (F), it follows that 𝑤 satisfies the hypothesis of Rule 2;

therefore, by Proposition 3 we can take an element 𝑧 ∈

𝑆(𝑛, 𝑑, 𝑟) such that 𝑧 = 𝑤→ 2. As in the proof of the Case 2 in
Proposition 3, it results that 𝑤 and 𝑧must have the following
form:

𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
𝑖+1
00 ⋅ ⋅ ⋅ 0 | 0 ⋅ ⋅ ⋅ 0 (−1) 𝑏

𝑗+1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟
, (17)

𝑧 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
𝑖+1
10 ⋅ ⋅ ⋅ 0 | 0 ⋅ ⋅ ⋅ 00𝑏

𝑗+1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟
, (18)

where 𝑎
𝑖+1

> 1 and 𝑏
𝑗+1

< −1. We distinguish now several
cases.

(I) 𝑏
𝑗
̸= 0. Then 𝑏

𝑗
≤ −1, and also 𝑏

𝑗
≥ 𝑏
𝑗
= −1 because

𝑤 ⊏ 𝑤
; hence 𝑏

𝑗
= −1.

We note now that

𝑎


𝑟
> 0, . . . , 𝑎



𝑖+1
> 0 (19)
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because 𝑎
𝑟
≥ 𝑎
𝑟
> 0, . . . , 𝑎



𝑖+1
≥ 𝑎
𝑖+1

> 0. Moreover, since
𝑏


𝑗
= −1, it follows that

−1 = 𝑏


𝑗
> 𝑏


𝑗+1
> ⋅ ⋅ ⋅ > 𝑏



𝑛−𝑟
(20)

because𝑤 ∈ 𝑆(𝑛, 𝑟). Now, since𝑤 ∈ 𝑆(𝑛, 𝑑, 𝑟), from the form
of𝑤 it results that 𝑑 = (𝑟 − 𝑖) + (𝑛 − 𝑟− 𝑗+ 1). Moreover, since
also𝑤 ∈ 𝑆(𝑛, 𝑑, 𝑟), we have ‖𝑤‖ = 𝑑 = (𝑟− 𝑖)+ (𝑛−𝑟−𝑗+1).
Therefore, since in (19), there are exactly 𝑟− 𝑖 inequalities and
in (20) there are exactly 𝑛 − 𝑟 − 𝑗 + 1 inequalities; it follows
that

𝑤

= 𝑎


𝑟
⋅ ⋅ ⋅ 𝑎


𝑖+1
00 ⋅ ⋅ ⋅ 0 | 0 ⋅ ⋅ ⋅ 0 (−1) 𝑏



𝑗+1
⋅ ⋅ ⋅ 𝑏


𝑛−𝑟
. (21)

(II) 𝑎
𝑖
= 0. Since 𝑤 ⊏ 𝑤

, by (17) we have two possible
cases: 𝑤 has the form (21) or

𝑤

= 𝑎


𝑟
⋅ ⋅ ⋅ 𝑎


𝑖+1
00 ⋅ ⋅ ⋅ 0 | 0 ⋅ ⋅ ⋅ 00 𝑏



𝑗+1
⋅ ⋅ ⋅ 𝑏


𝑛−𝑟
(22)

with 𝑎
𝑖+1
≥ 𝑎
𝑖+1
> 1 and 0 ≥ 𝑏

𝑗+1
. If (22) holds, then ‖𝑤‖ ≤

(𝑟 − 𝑖) + (𝑛 − 𝑟 − 𝑗) = 𝑑 − 1, which is absurd because 𝑤 ∈
𝑆(𝑛, 𝑑, 𝑟); hence it must hold necessarily (21).

(III) 𝑎
𝑖
> 1. Since 𝑤 ⊏ 𝑤 and 𝑑 = ‖𝑤‖ = ‖𝑤‖, by (17) it

follows that

𝑤

= 𝑎


𝑟
⋅ ⋅ ⋅ 𝑎


𝑖+1
𝑎


𝑖
0 ⋅ ⋅ ⋅ 0 | 0 ⋅ ⋅ ⋅ 00 𝑏



𝑗+1
⋅ ⋅ ⋅ 𝑏


𝑛−𝑟
. (23)

Then from the hypothesis 𝑎
𝑖
≥ 2 and by (18), we have 𝑤 ⊏

𝑧 ⊏ 𝑤
, which is a contradiction.

Hence the unique possibility is that 𝑤 has the form (21).
Since 𝑤 ⋗ 𝑤, we have 𝑎

𝑘
≥ 𝑎
𝑘
for 𝑘 = 𝑟, . . . , 𝑖 + 2, 𝑖 + 1 and

𝑏


𝑙
≥ 𝑏
𝑙
for 𝑙 = 𝑗 + 1, 𝑗 + 2, . . . , 𝑛 − 𝑟. Moreover, at least one

inequality of the type 𝑎
𝑘
> 𝑎
𝑘
or the type 𝑏

𝑙
> 𝑏
𝑙
must hold.

We distinguish now the several cases.
(Δ1) We assume that a unique inequality of the type 𝑎

𝑝
>

𝑎
𝑝
holds for some 𝑝 = 𝑟, . . . , 𝑖 + 2, 𝑖 + 1. Therefore, we have

𝑎


𝑘
= 𝑎
𝑘
for all 𝑘 ̸= 𝑝 and 𝑏

𝑙
= 𝑏
𝑙
for all 𝑙 = 𝑗+1, 𝑗+2, . . . , 𝑛− 𝑟.

Then, since 𝑎
𝑝+1

= 𝑎


𝑝+1
> 𝑎


𝑝
> 𝑎
𝑝
> 0 (let us note that the

previous inequalities also hold if 𝑝 = 𝑟 because 𝑎
𝑟+1

= 𝑟+ 1 =

𝑎


𝑟+1
), we have that 𝑎

𝑝+1
−𝑎
𝑝
≥ 2 and 𝑎

𝑝
> 0. Hence𝑤 satisfies

the hypotheses of Rule 1 in the place 𝑝 and so 𝑤→ 1 𝑢, where

𝑢 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
𝑝+1

(𝑎
𝑝
+ 1) 𝑎

𝑝−1
⋅ ⋅ ⋅ 𝑎
𝑖+1
0 ⋅ ⋅ ⋅ 0 |

0 ⋅ ⋅ ⋅ 0 (−1) 𝑏
𝑗+1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

(= 𝑎


𝑟
⋅ ⋅ ⋅ 𝑎


𝑝+1
(𝑎
𝑝
+ 1) 𝑎



𝑝−1
⋅ ⋅ ⋅ 𝑎


𝑖+1
0 ⋅ ⋅ ⋅ 0 |

0 ⋅ ⋅ ⋅ 0 (−1) 𝑏


𝑗+1
⋅ ⋅ ⋅ 𝑏


𝑛−𝑟
) ,

(24)

with 𝑢 ∈ 𝑆(𝑛, 𝑑, 𝑟). Now, if 𝑎
𝑝
= 𝑎
𝑝
+ 1, it results that

𝑤

= 𝑢; therefore, 𝑤→ 1 𝑤, which is a contradiction with

the hypothesis ¬(𝑤→ 1 𝑤). Otherwise, if 𝑎
𝑝
+ 1 < 𝑎



𝑝
, then

we have 𝑤 ⊏ 𝑢 ⊏ 𝑤, which is absurd because 𝑤 ⋗ 𝑤.
(Δ2) If a unique inequality of the type 𝑏

𝑞
> 𝑏
𝑞
holds for

some 𝑞 = 𝑗 + 1, 𝑗 + 2, . . . , 𝑛 − 𝑟, we deduce a contradiction

as in the proof of the previous case by using Rule 3 instead of
Rule 1.

(Δ3) We assume now that at least two strict inequalities
among the 𝑎

𝑘
≥ 𝑎
𝑘
and 𝑏
𝑙
≥ 𝑏
𝑙
hold, and let us also assume

that the first (by left) of such strict inequalities is 𝑎
𝑝
> 𝑎
𝑝
for

some 𝑝 ∈ {𝑟, . . . , 𝑖 + 1}. We consider then the following (𝑛, 𝑟)-
string:

V = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
𝑝+1

(𝑎
𝑝
+ 1) 𝑎

𝑝−1
⋅ ⋅ ⋅ 𝑎
𝑖+1
0 ⋅ ⋅ ⋅ 0 |

0 ⋅ ⋅ ⋅ 0 (−1) 𝑏
𝑗+1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟
.

(25)

Since 𝑎
𝑝
> 𝑎
𝑝
is the first strict inequality by left, we have

𝑎


𝑝+1
= 𝑎
𝑝+1

(also if 𝑝 = 𝑟); hence 𝑎
𝑝+1

= 𝑎


𝑝+1
> 𝑎


𝑝
≥

𝑎
𝑝
+1 > 𝑎

𝑝
> 𝑎
𝑝−1

because 𝑎
𝑝
> 0; this implies that V ∈ 𝑆(𝑛, 𝑟);

therefore V ∈ 𝑆(𝑛, 𝑑, 𝑟) because ‖V‖ = ‖𝑤‖ = 𝑑. Moreover, it is
clear that 𝑤 ⊏ V. Let us observe now that V ⊏ 𝑤; in fact, by
hypothesis, 𝑤 must have at least another place 𝑞 ̸= 𝑝 where
𝑎


𝑞
> 𝑎
𝑞
or 𝑏
𝑞
> 𝑏
𝑞
and V differs by 𝑤 only in the place 𝑝. This

shows that 𝑤 ⊏ V ⊏ 𝑤, with V ∈ 𝑆(𝑛, 𝑑, 𝑟), which is absurd
because 𝑤 ⋗ 𝑤.

(Δ4) If at least two strict inequalities among the 𝑎
𝑘
≥ 𝑎
𝑘

and 𝑏
𝑙
≥ 𝑏
𝑙
hold and the first (by left) of such strict inequalities

is 𝑏
𝑝
> 𝑏
𝑝
for some 𝑝 ∈ {𝑗+1, 𝑗+2, . . . , 𝑛−𝑟}, then we deduce

a contradiction in the same way as in the previous case.
This concludes the proof that ((F) AND (H))⇒ absurd.

To complete the proof we show now that ((F) AND (G) AND
¬(H))⇒ absurd.

Since (H) is false, we have 𝑎
𝑖
= 1 and 𝑏

𝑗
= 0; there-

fore, 𝑤 has the form (17) and 𝑤 = 𝑎


𝑟
⋅ ⋅ ⋅ 𝑎


𝑖+1
10 ⋅ ⋅ ⋅ 0|0 ⋅ ⋅ ⋅

00𝑏


𝑗+1
⋅ ⋅ ⋅ 𝑏


𝑛−𝑟
. We take 𝑧 ∈ 𝑆(𝑛, 𝑑, 𝑟) as in (18), so that 𝑤

and 𝑧 differ between them only in the places 𝑖,𝑗 and 𝑤 ⊏ 𝑧.
Moreover, since 𝑤 = 𝑎



𝑟
⋅ ⋅ ⋅ 𝑎


𝑖+1
10 ⋅ ⋅ ⋅ 0|0 ⋅ ⋅ ⋅ 00𝑏



𝑗+1
⋅ ⋅ ⋅ 𝑏


𝑛−𝑟
,

by (G), (18), and (17) it follows that 𝑧 ⊏ 𝑤
. Therefore, we

obtain 𝑤 ⊏ 𝑧 ⊏ 𝑤
 that is in contrast with the hypothesis

𝑤

⋗ 𝑤.

We set now

(1A) : Ω
1
(𝑤) ̸= 0, ∀𝑖 ∈ Ω

1
(𝑤) 𝑎



𝑖
̸= 𝑎
𝑖
+ 1, (26)

(3A) : Ω
3
(𝑤) ̸= 0, ∀𝑗 ∈ Ω

1
(𝑤) 𝑏



𝑗
̸= 𝑏
𝑗
+ 1. (27)

Proposition 13. Consider

(i) (1A)⇔ (1A),
(ii) (3A)⇔ (3A).

Proof. (i)The implication⇐ is obvious. We assume now that
(1A) holds and there exists 𝑖 ∈ Ω

1
(𝑤) such that 𝑎

𝑖
= 𝑎
𝑖
+ 1

and also thatΛ+(𝑤, 𝑤)\{𝑖} ̸= 0 (i.e., there exists ℎ ̸= 𝑖 such that
𝑎


ℎ
> 𝑎
ℎ
) orΛ−(𝑤, 𝑤) ̸= 0 (i.e., there exists 𝑙 such that 𝑏

𝑙
> 𝑏
𝑙
).

Since 𝑖 ∈ Ω
1
(𝑤), we can apply Rule 1 to 𝑤 and we can take

𝑧 = 𝑤→
1. By Proposition 3, we know that 𝑧 ∈ 𝑆(𝑛, 𝑑, 𝑟) and

𝑧 ⋗ 𝑤. Moreover, since 𝑎
ℎ
> 𝑎
ℎ
(ℎ ̸= 𝑖) or 𝑏

𝑙
> 𝑏
𝑙
, we also

have 𝑧 ⊏ 𝑤; therefore, 𝑤 ⊏ 𝑧 ⊏ 𝑤, which is in contrast with
the hypothesis 𝑤 ⋗ 𝑤. Hence this proves that the condition
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𝑎


𝑖
̸= 𝑎
𝑖
+ 1must be verified for all 𝑖 ∈ Ω

1
(𝑤), which is exactly

(26).
(ii)The proof is similar to (i) applying Rule 3 to𝑤 instead

of Rule 1.

We set

(1a) : Ω
1
(𝑤) ̸= 0, ∀𝑖 ∈ Ω

1
(𝑤) 𝑎



𝑖
= 𝑎
𝑖
, (28)

(3a) : Ω
3
(𝑤) ̸= 0, ∀𝑗 ∈ Ω

3
(𝑤) 𝑏


𝑗
= 𝑏
𝑗
. (29)

Proposition 14. Consider

(i) (1A)⇒ (1a),
(ii) (3A)⇒ (3a).

Proof. (i) By (1A), we haveΩ
1
(𝑤) ̸= 0, and by the definition of

Ω
1
(𝑤) this is equivalent to say that 𝑤 satisfies the hypotheses

of Rule 1 for some 𝑖 ∈ {1, . . . , 𝑟}. Therefore, by Proposition 3,
there exists an element 𝑧

𝑖
∈ 𝑆(𝑛, 𝑑, 𝑟) such that 𝑤→ 1 𝑧

𝑖
,

where 𝑧
𝑖
= 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
𝑖+1
(𝑎
𝑖
+1)𝑎
𝑖−1
⋅ ⋅ ⋅ 𝑎
1
|𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

and obviously
𝑤 ⊏ 𝑧

𝑖
. Since 𝑎

𝑖
̸= 𝑎
𝑖
+ 1, we distinguish two cases.

(a) 𝑎
𝑖
> 𝑎
𝑖
+1. In this case𝑤 ⊏ 𝑧

𝑖
⊏ 𝑤
, that is in contrast

with the hypothesis 𝑤 ⋗ 𝑤.
(b) 𝑎
𝑖
< 𝑎
𝑖
+ 1. In this case 𝑎

𝑖
≤ 𝑎
𝑖
; hence 𝑎

𝑖
= 𝑎
𝑖
because

𝑎


𝑖
≥ 𝑎
𝑖
from the hypothesis 𝑤 ⋗ 𝑤.

(ii) The proof of this case is similar to (i).

Lemma 15. Assume that (1a) holds. If 𝑞 ∈ {2, 3, . . . , 𝑟, 𝑟 + 1},
𝑎


𝑞
= 𝑎
𝑞
, and 𝑎

𝑞−1
> 0, then 𝑎

𝑞−1
= 𝑎
𝑞−1

.

Proof. If 𝑞−1 ∈ Ω
1
(𝑤), then the thesis holds by the definition

of (1a) in (28). We assume now that 𝑞 − 1 ∉ Ω
1
(𝑤). Then

𝑎
𝑞−1

= 0 or 0 ≤ 𝑎
(𝑞−1)+1

− 𝑎
𝑞−1

= 𝑎
𝑞
− 𝑎
𝑞−1

≤ 1, and since
𝑎
𝑞−1

> 0, we necessarily have 0 ≤ 𝑎
𝑞
− 𝑎
𝑞−1

≤ 1. Now, if
𝑎
𝑞
− 𝑎
𝑞−1

= 0, we have 𝑎
𝑞
= 𝑎
𝑞−1

= 0 since 𝑤 ∈ 𝑆(𝑛, 𝑟),
which is in contradiction with 𝑎

𝑞−1
> 0. Hence, it must be

𝑎
𝑞
− 𝑎
𝑞−1

= 1; that is, 𝑎
𝑞
= 𝑎
𝑞−1

+ 1. Moreover, 𝑎
𝑞
> 𝑎


𝑞−1

because 𝑎
𝑞−1

≥ 𝑎
𝑞−1

> 0 and 𝑤 ∈ 𝑆(𝑛, 𝑟). Therefore, since
𝑎


𝑞
= 𝑎
𝑞
, we have 𝑎

𝑞−1
+ 1 = 𝑎

𝑞
= 𝑎


𝑞
> 𝑎


𝑞−1
, which implies

𝑎
𝑞−1

+ 1 > 𝑎


𝑞−1
≥ 𝑎
𝑞−1

because 𝑤 ⊏ 𝑤
. By subtracting 𝑎

𝑞−1

from each term of the previous inequalities, we obtain 1 >
𝑎


𝑞−1
− 𝑎
𝑞−1

≥ 0; therefore, it must be 𝑎
𝑞−1

= 𝑎
𝑞−1

.

We set

(1.1a) : ∃𝑙 ∈ {𝑟, . . . , 2} such that

𝑎
𝑙
> 0,

𝑤 = 𝑎
𝑟
𝑎
𝑟−1
⋅ ⋅ ⋅ 𝑎
𝑙+1
𝑎
𝑙
0 ⋅ ⋅ ⋅ 0 | 𝑏

1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟
,

𝑤

= 𝑎
𝑟
𝑎
𝑟−1
⋅ ⋅ ⋅ 𝑎
𝑙+1
𝑎
𝑙
𝑎


𝑙−1
⋅ ⋅ ⋅ 𝑎


1
| 𝑏


1
⋅ ⋅ ⋅ 𝑏


𝑛−𝑟
.

(30)

Proposition 16. Consider (1a)⇒ (1.1a).

Proof. By (28), there exists at least one element 𝑖 ∈ Ω
1
(𝑤). In

this place we have 𝑎
𝑖
> 0 and moreover 𝑎

𝑖+1
− 𝑎
𝑖
≥ 2. Since

𝑤 ∈ 𝑆(𝑛, 𝑟), it must be 𝑎
1
= 0 or 𝑎

1
= 1. If 𝑎

1
= 1, then 𝑎

2
=

2, . . . , 𝑎
𝑟
= 𝑟, which is in contrast with 𝑎

𝑖+1
− 𝑎
𝑖
≥ 2. Hence

𝑎
1
= 0 and therefore there exists 𝑙 ∈ 2, . . . , 𝑟 such that 𝑎

𝑙
> 0

and 𝑎
𝑙−1
= ⋅ ⋅ ⋅ = 𝑎

1
= 0. We take 𝑞 = 𝑟 + 1; that is, 𝑞 − 1 = 𝑟.

Since 𝑎
𝑞
= 𝑎
𝑞
= 𝑟 + 1 and 𝑎

𝑞−1
= 𝑎
𝑟
≥ 𝑎
𝑙
> 0, by Lemma 15 it

follows that 𝑎
𝑞−1

= 𝑎
𝑞−1

; that is, 𝑎
𝑟
= 𝑎
𝑟
. Let now 𝑞 = 𝑟. If 𝑟 = 𝑙,

then we have the thesis otherwise 𝑞 = 𝑟 > 𝑙; that is, 𝑞 − 1 ≥ 𝑙;
therefore 𝑎

𝑞−1
≥ 𝑎
𝑙
> 0 because 𝑤 ∈ 𝑆(𝑛, 𝑟). Then since 𝑎

𝑞
=

𝑎


𝑟
= 𝑎
𝑟
= 𝑎
𝑞
, we can apply Lemma 15 and we deduce 𝑎

𝑞−1
=

𝑎
𝑞−1

; that is, 𝑎
𝑟−1

= 𝑎
𝑟−1

. By iteration the thesis follows.

Lemma 17. Assume that (3a) holds. If 𝑞 ∈ {2, 3, . . . , 𝑛 − 𝑟 − 1},
𝑏


𝑞
= 𝑏
𝑞
< 0, then 𝑏

𝑞+1
= 𝑏
𝑞+1

.

Proof. If 𝑞 + 1 ∈ Ω
3
(𝑤), then the thesis holds by definition

of (3a) in (29). We assume now that 𝑞 + 1 ∉ Ω
3
(𝑤). Now, if

𝑏
𝑞
−𝑏
𝑞+1

= 0, we have 𝑏
𝑞
= 𝑏
𝑞+1

= 0 since𝑤 ∈ 𝑆(𝑛, 𝑟), which is
in contradiction with the hypothesis 𝑏

𝑞
< 0. Hence it must be

𝑏
𝑞
−𝑏
𝑞+1

= 1; that is, 0 > 𝑏
𝑞
= 𝑏
𝑞+1
+1; therefore 0 > 𝑏

𝑞+1
+1 =

𝑏
𝑞
= 𝑏


𝑞
> 𝑏


𝑞+1
≥ 𝑏
𝑞+1

since 𝑤 ∈ 𝑆(𝑛, 𝑟) and 𝑤 ⊏ 𝑤
. The

last inequalities provide 𝑏
𝑞+1
+1 > 𝑏



𝑞+1
≥ 𝑏
𝑞+1

. By subtracting
𝑏
𝑞+1

from each term of the previous inequalities, we obtain
1 > 𝑏


𝑞+1
− 𝑏
𝑞+1

≥ 0; therefore it must be 𝑏
𝑞+1

= 𝑏
𝑞+1

.

Proposition 18. If (3a) holds, then 𝑤 has the following form:
𝑤 = 𝑎

𝑟
⋅ ⋅ ⋅ 𝑎
1
|0 ⋅ ⋅ ⋅ 0 𝑏

𝑙
𝑏
𝑙+1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

, with 𝑏
𝑙
< 0 and 𝑙 ≥ 2.

Moreover, if 𝑏
𝑙
≤ −2, we also have 𝑤

−
= 𝑤
−
.

Proof. By (3a) in (29), we know that Ω
3
(𝑤) ̸= 0. Moreover, if

𝑗 ∈ Ω
3
(𝑤), then 𝑗 ≥ 2 and 𝑏

𝑗
< 0 because 𝑏

𝑗−1
− 𝑏
𝑗
≥ 2.

Therefore, we can take the minimum 𝑙 ∈ 2, . . . , 𝑛 − 𝑟 such
that 𝑏

𝑙
< 0; hence 𝑏

𝑙−1
= ⋅ ⋅ ⋅ = 𝑏

1
= 0 and this means that

𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
|0 ⋅ ⋅ ⋅ 0𝑏

𝑙
𝑏
𝑙+1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

. Assume now that 𝑏
𝑙
≤ −2.

Since 𝑏
𝑙−1
= 0, we have 𝑏

𝑙−1
− 𝑏
𝑙
≤ 2; therefore 𝑙 ∈ Ω

3
(𝑤). By

(3a), follows then that 𝑏
𝑙
= 𝑏
𝑙
< 0. Now, if 𝑙 = 𝑛 − 𝑟, the thesis

is true, otherwise, if 𝑙 ∈ {2, . . . , 𝑛 − 𝑟 − 1}, by Lemma 17 we
have 𝑏

𝑙+1
= 𝑏
𝑙+1
< 0. Again, if 𝑙 + 1 = 𝑛 − 𝑟, the thesis is true;

otherwise, if 𝑙 + 1 ∈ {2, . . . , 𝑛 − 𝑟 − 1}, by Lemma 17 we have
𝑏


𝑙+2
= 𝑏
𝑙+2
< 0. Proceeding repeatedly in this way we obtain

𝑏


𝑙
= 𝑏
𝑙
, 𝑏
𝑙+1

= 𝑏
𝑙+1
, . . . , 𝑏



𝑛−𝑟
= 𝑏
𝑛−𝑟

. Finally, since 𝑏
1
= ⋅ ⋅ ⋅ =

𝑏
𝑙−1

= 0 and 𝑤 ⊏ 𝑤
, we also have 𝑏

1
= ⋅ ⋅ ⋅ = 𝑏



𝑙−1
= 0. This

proves that 𝑤
−
= 𝑤
−
.

Proposition 19. Consider ((2C) AND (3a))⇒ 𝑤


−
= 𝑤
−
.

Proof. (2C) implies that 𝑤 has the form 𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
|0 ⋅ ⋅ ⋅

0 𝑏
𝑙
𝑏
𝑙+1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

, with 𝑏
𝑙

≤ −2. Since (3a) holds, by
Proposition 18, the thesis follows.

Proposition 20. Consider ((1.1a) AND (2C) AND (3a)) ⇒
absurd.

Proof. By Proposition 19, we have that 𝑤
−
= 𝑤
−
. Moreover,

by (1.1a) in (30), we also have 𝑤
+
= 𝑤
+
because ‖𝑤‖ = ‖𝑤‖ =

𝑑 and 𝑤
−
= 𝑤
−
; therefore, 𝑤 = 𝑤

. This is absurd because
𝑤

⋗ 𝑤 by hypothesis.
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Proposition 21. Consider ((1.1b) AND (2C) AND (3a)) ⇒
absurd.

Proof. By (1.1b) in (12), we know that 𝑤 = 0 ⋅ ⋅ ⋅ 0|𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

,
and this implies ‖𝑤

+
‖ = 0 and ‖𝑤

−
‖ = 𝑑. Moreover, by

Proposition 19, 𝑤
−
= 𝑤
−
; therefore it follows that ‖𝑤

−
‖ = 𝑑;

hence ‖𝑤
+
‖ = 0 since 𝑤 ∈ 𝑆(𝑛, 𝑑, 𝑟). This shows that 𝑤 = 𝑤

and this is absurd because 𝑤 ⋗ 𝑤.

Proposition 22. Consider ((1.1a) AND (2B))⇒ 𝑤


+
= 𝑤
+
.

Proof. By (1.1a) in (30) and (2B), it follows that 𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅

𝑎
𝑙+1
10 ⋅ ⋅ ⋅ 0|𝑏

1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

and𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
𝑙+1
1𝑎


𝑙−1
⋅ ⋅ ⋅ 𝑎


1
|𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑛−𝑟

.
Now, since𝑤 ∈ 𝑆(𝑛, 𝑟) and 𝑎

𝑙
= 𝑎


𝑙
= 1, we have that 1 = 𝑎

𝑙
>

𝑎


𝑙−1
≥ ⋅ ⋅ ⋅ ≥ 𝑎



1
≥ 0; that is, 𝑎

𝑙−1
= ⋅ ⋅ ⋅ = 𝑎



1
= 0. Therefore

𝑤


+
= 𝑤
+
.

Proposition 23. Consider ((1.1a) AND (2B) AND (3.1b)) ⇒
absurd.

Proof. By Proposition 22 𝑤
+
= 𝑤
+
and by Proposition 8 𝑤 =

𝑤


−
; hence 𝑤 = 𝑤 and this is a contradiction.

Proposition 24. Consider ((1.1a) AND (3.1b))⇒ absurd.

Proof. By Proposition 8, 𝑤 = 𝑤


−
= |00 ⋅ ⋅ ⋅ 0; hence ‖𝑤

+
‖ =

‖𝑤
+
‖ = 𝑑 because 𝑤,𝑤 ∈ 𝑆(𝑛, 𝑑, 𝑟). Moreover, by (1.1a) in

(30), it follows that

𝑤


+
= 𝑤
+
= 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
𝑙+1
𝑎
𝑙
0 ⋅ ⋅ ⋅ 0. (31)

Therefore, 𝑤 = 𝑤, which is absurd.

Proposition 25. Consider ((1.1a) AND (2B) AND (3a)) ⇒
absurd.

Proof. By Proposition 18, we have𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
|0 ⋅ ⋅ ⋅ 0𝑏

𝑙
𝑏
𝑙+1
⋅ ⋅ ⋅

𝑏
𝑛−𝑟

with 𝑏
𝑙
< 0 and 𝑙 ≥ 2. By Proposition 22, 𝑤

+
= 𝑤
+
. Now,

if 𝑏
𝑙
≤ −2, by Proposition 18 we have 𝑤

−
= 𝑤
−
and therefore

𝑤

= 𝑤, which is absurd. So we can assume that 𝑏

𝑙
= −1.

Since 𝑤
+
= 𝑤
+
, ‖𝑤‖ = ‖𝑤‖ = 𝑑 and 𝑤 ⊏ 𝑤

, it follows that
𝑏


𝑙
cannot be 0; otherwise, it is ‖𝑤‖ < 𝑑. This implies that it

must be 𝑏
𝑙
= −1. We distinguish now two cases.

Case 1. If 𝑙 ∈ {2, . . . , 𝑛−𝑟−1}, since 𝑏
𝑙
= 𝑏


𝑙
= −1, by Lemma 17

(with 𝑞 = 𝑙) we obtain 𝑏
𝑙+1
= 𝑏


𝑙+1
< 0. Now, if 𝑙 + 1 = 𝑛 − 𝑟,

then 𝑤
−
= 𝑤


−
, and as before this provides a contradiction. If

𝑙 + 1 < 𝑛 − 𝑟, we can still apply Lemma 17 (with 𝑞 = 𝑙 + 1) and
therefore have 𝑏

𝑙+2
= 𝑏


𝑙+2
< 0. Proceeding in this way in all

cases we always obtain 𝑤
−
= 𝑤


−
and hence is absurd.

Case 2. If 𝑙 = 𝑛 − 𝑟, then 𝑤 = 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
| 0 ⋅ ⋅ ⋅ 0(−1), and since

‖𝑤

‖ = ‖𝑤‖ = 𝑑, 𝑤 ⊏ 𝑤

, and 𝑤
+
= 𝑤
+
, it must also be

𝑤

= 𝑎
𝑟
⋅ ⋅ ⋅ 𝑎
1
|0 ⋅ ⋅ ⋅ 0(−1); that is, 𝑤 = 𝑤, absurd.

Proposition 26. Consider ((1.1a) AND (2B) AND (3.2b)) ⇒
absurd.

Proof. By Proposition 22, 𝑤
+
= 𝑤
+
. Then by (3.2b) in (16),

since 𝑤
+
= 𝑤
+
, ‖𝑤
−
‖ = ‖𝑤

−
‖, and 𝑤 ⊏ 𝑤, it must also be

𝑤


−
=| 00 ⋅ ⋅ ⋅ 0 (−1) (−2) ⋅ ⋅ ⋅ (−𝑙) . (32)

Hence we obtain 𝑤 = 𝑤, absurd.

Proposition 27. Consider ((1.2b) AND (2C) AND (3a)) ⇒
absurd.

Proof. By Proposition 19, 𝑤
−
= 𝑤
−
. Then, since 𝑤 ⊏ 𝑤

,
‖𝑤

‖ = ‖𝑤‖, and 𝑤

−
= 𝑤
−
, by (1.2b) in (13) we deduce that

𝑤


+
= 𝑤
+
. Hence the absurd 𝑤 = 𝑤.

Proposition 28. Consider ((2.1d) AND (3a))⇒ absurd.

Proof. Since 𝑤 ⊏ 𝑤
 by (2.1d) in (14), it follows that

𝑤


+
= 𝑤
+
. Then, since (3a) in (29) holds, the same proof of

Proposition 25 leads to the absurd 𝑤 = 𝑤.

We complete now the proof of our main result; that is,
we provide three syntactic trees where each possible path
from the roots to the leaves leads to a contradiction. In the
following we draw each tree and next we also write all the
implication chains for each path from the roots to the leafs.

We recall at first some useful implications and equiva-
lences already proved in the previous section:

(Θ1A) (1A) ⇔ [by Proposition 13 (i)] (1A) ⇒ [by
Proposition 14] (1a)⇒ [by Proposition 16] (1.1a)

(Θ2A) (2A)⇒ [by Proposition 12] absurd

(Θ2D) (2D)⇔ [by Proposition 6] (2.1d)

(Θ3A) (3A) ⇔ [by Proposition 13 (ii)] (3A) ⇒ [by
Proposition 14] (3a) ⇒ [see statement of
Proposition 18] Proposition 18.

The first tree that we consider is that having the condition
(1A) as root (we denote such tree with TREE(1A)).

TREE (1A):

2D

3B

3.2b3.1b

2C

3B

3.2b3.1b

2B

3B

3.2b3.1b

Absurd

1A

2A

3A
3A

3A

(33)

We observe now that by virtue of Proposition 5 when we
start from the condition (1B), we must consider two subtrees,
the first with root (1.1b) (which we denote by TREE(1.1b))
that is
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TREE (1.1b):

1.1b

2D

3B

3.2b3.1b

2C

3B

3.2b3.1b

2B

3B

3.2b3.1b

Absurd

2A

3A
3A

3A

(34)

and the second (which we denote by TREE(1.2b)) that is
TREE (1.2b):

1.2b

2D

3B

3.2b3.1b

2C

3B

3.2b3.1b

2B

3B

3.2b3.1b

Absurd

2A

3A
3A

3A

(35)

Let us note that the ramification

3B

3.2b3.1b

(36)

in each of the previous trees follows by Proposition 7.
We have then exactly 27 possible paths from the roots to

the leafs in all the previous trees (we exclude the paths that
lead to (2A) because we already know that they lead to a
contradiction by Θ2A). In the following we write all these
27 paths and, for each, the related proposition that leads to
a contradiction together with some implication among the
Θ1A, Θ2D, and Θ3A. In the sequel, the node (3B) is omitted
for brevity because it is only an intermediate node and in the
paths that involve (3B) we use only the leafs (3.1b) and (3.2b)
to deduce the related contradictions:

(1A) AND (2B) AND (3A)⇒ absurd byΘ1A,Θ3A,
and Proposition 25
(1A) AND (2B) AND (3.1b) ⇒ absurd by Θ1A and
Proposition 23
(1A) AND (2B) AND (3.2b) ⇒ absurd by Θ1A and
Proposition 26
(1A) AND (2C) AND (3A)⇒ absurd byΘ1A,Θ3A,
and Proposition 20
(1A) AND (2C) AND (3.1b) ⇒ absurd by Θ1A and
Proposition 24
(1A) AND (2C) AND (3.2b)⇒ absurd by Θ1A and
Proposition 9 (iii)
(1A) AND (2D) AND (3A)⇒ absurd byΘ2D,Θ3A,
and Proposition 28

(1A) AND (2D) AND (3.1b) ⇒ absurd by Θ1A and
Proposition 24
(1A) AND (2D) AND (3.2b)⇒ absurd by Θ2D and
Proposition 11

(1.1b) AND (2B) AND (3A) ⇒ absurd by
Proposition 9 (i)
(1.1b) AND (2B) AND (3.1b) ⇒ absurd by
Proposition 9 (i)
(1.1b) AND (2B) AND (3.2b) ⇒ absurd by
Proposition 9 (i)
(1.1b) AND (2C) AND (3A) ⇒ absurd by Θ3A and
by Proposition 21
(1.1b) AND (2C) AND (3.1b) ⇒ absurd by
Proposition 9 (iv)
(1.1b) AND (2C) AND (3.2b) ⇒ absurd by
Proposition 9 (iii)
(1.1b) AND (2D) AND (3A)⇒ absurd by Θ2D and
by Proposition 9 (ii)
(1.1b) AND (2D) AND (3.1b)⇒ absurd by Θ2D and
by Proposition 9 (ii)
(1.1b) AND (2D) AND (3.2b)⇒ absurd by Θ2D and
by Proposition 9 (ii)

(1.2b) AND (2B) AND (3A) ⇒ (1.2b) AND (2D)
AND (3A) (that we examine below) by Θ2D and by
Proposition 10
(1.2b) AND (2B) AND (3.1b) ⇒ (1.2b) AND (2D)
AND (3.1b) (that we examine below) by Θ2D and by
Proposition 10
(1.2b) AND (2B) AND (3.2b) ⇒ (1.2b) AND (2D)
AND (3.2b) (that we examine below) by Θ2D and by
Proposition 10
(1.2b) AND (2C) AND (3A)⇒ absurd by Θ3A and
by Proposition 27
(1.2b) AND (2C) AND (3.1b) ⇒ absurd by
Proposition 9 (v)
(1.2b) AND (2C) AND (3.2b) ⇒ absurd by
Proposition 9 (iii)
(1.2b) AND (2D)AND (3A)⇒ absurd byΘ2D,Θ3A,
and Proposition 28
(1.2b) AND (2D) AND (3.1b) ⇒ absurd by
Proposition 9 (v)
(1.2b) AND (2D) AND (3.2b)⇒ absurd by Θ2D and
by Proposition 11

This concludes the proof of Theorem 4. Below we draw
the Hasse diagram of the lattice 𝑆(5, 3, 2) by using the
evolutionRules 1, 2, and 3 startingwith theminimumelement
of this lattice, which is 00|123. We label a generic edge of the
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next diagram with the symbol 𝑅𝑘 if it leads to a production
that uses the Rule 𝑘, for 𝑘 ∈ {1, 2, 3}:

:

:

: :

: :

: :

:

:

3

𝑅1

𝑅
1

𝑅1

𝑅
2

𝑅
2

𝑅
2

𝑅
3

𝑅
3

𝑅
3

𝑅
3

𝑅
3

𝑅

(37)
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