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Abstract. The interaction between linear, quadratic programming and regression anal-
ysis are explored by both statistical and operations research methods. Estimation and
optimization problems are formulated in two different ways: on one hand linear and
quadratic programming problems are formulated and solved by statistical methods, and
on the other hand the solution of the linear regression model with constraints makes
use of the simplex methods of linear or quadratic programming. Examples are given to
illustrate the ideas.
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1. Introduction

We will discuss the interaction between linear, quadratic programming and
regression analysis. These interactions are considered both from a statisti-
cal point of view and from an optimization point of view. We also exam-
ine the algorithms established by both statistical and operations research
methods. Minimizing the sum of the absolute values of the regression has
shown that it can be reduced to a general linear programming problem
(Wager, 1969) and Wolfe (1959) hinted that his method can be applied to
regression but no analysis is done. Estimation and optimization problems
are formulated in two different ways: on one hand linear and quadratic
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programming problems are formulated and solved by statistical methods,
and on the other hand the solution of the linear regression model with
constraints makes use of the simplex methods of linear or quadratic pro-
gramming. Examples are given to show some practical applications of the
methods. It is our aim that students taking a linear or non-linear program-
ming (NLP) courses as well as a course in linear models will now realize
that there is a definite connection between these problems.

1.1. Regression models

Consider the linear regression (LR) model with nonnegative constraints

Y (β) = Xβ + ε (1)
subject to β ≥ 0,

where Y ∈ Rn represents the vector of responses, X is an n × p design
matrix, β ∈ Rp represents the unknown parameters of the model and
β ≥ 0 means that all the elements in the vector are non-negative, and ε
represents the random error term of the LR model.

A general linear regression model (1) with inequality constraints (LRWC)
and nonnegative variables is given as follows:

Y (β) = Xβ + ε

subject to Aβ ≥ C (2)
β ≥ 0,

where β ∈ Rp is the unknown vector; Xn×p (n ≥ p) and As×p (s ≤ p) are
constant matrices, Yn×1, Cs×1, and εn×1 are column vectors, ε ∼ N(0, σ2I)
; XT X ≥ 0 and rank(A) = s. The solution of LRWC is a subject of
the Karush-Kuhn-Tucker theorem. The subsequent algorithms for solving
LRWC are discussed in Lawson and Hanson (1974) and Whittle (1971).

1.2. Mathematical programming

Due to the fact that max{f(x)} = min{−f(x)}, we will focus our atten-
tion only on minimization problems. A primal linear programming (LP)
problem with nonnegative solution can be formulated as follows:

minimize L(β) = bT β

subject to Gβ ≥ f (3)
β ≥ 0,
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where β is the unknown vector, 0 6= bT ∈ Rp, fT ∈ Rm and Gm×p are
known constant vectors and a matrix, respectively.

A quadratic programming (QP) problem in which all the variables must
be nonnegative is formulated as follows:

minimize Z0(β) = bT β + βT Dβ

subject to Aβ ≥ C (4)
β ≥ 0,

where As×p, (s ≤ p), Dp×p are matrices; Cs×1, βp×1 and bp×1 are column
vectors, rank (A) = s ≤ p and D is symmetric and positive definite matrix.

In the next section, we further explore the relationships between the
above four models. The aim in this note is to provide a strong link and
algorithms between these concepts. In fact they are equivalent in some
cases. Parameter estimates of models (1) and (2) are obtained by the
simplex method and the Karush-Kuhn-Tucker theorem. The optimiza-
tion problems of models (3) and (4) are restated and solved by statistical
methods.

2. Solving Linear Regression Model by Using Mathematical Pro-
gramming

Consider given n observations {(xi, yi), i = 1, 2, ..., n}. The linear regres-
sion model (1) with p = 2, can be rewritten as Yi = β0 + β1xi + εi and
β = (β1, β2)T ≥ 0. Using the least squares method to estimate parameters
β0 and β1, we need to minimize g(β), i.e

minimize g(β) =
n∑

i=1

(yi − β0 − β1xi)2

subject to β ≥ 0.

The associated system of normal equations is given as follows:

nβ0 + β1

n∑
i=1

xi −
n∑

i=1

yi = 0,

β0

n∑
i=1

xi + β1

n∑
i=1

x2
i −

n∑
i=1

xiyi = 0.

Therefore, model (1) is equivalent to the following mathematical
programming problem:
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minimize g(β) =
n∑

i=1

(yi − β0 − β1xi)2

subject to nβ0 + β1

n∑
i=1

xi =
n∑

i=1

yi (5)

β0

n∑
i=1

xi + β1

n∑
i=1

x2
i =

n∑
i=1

xiyi

β ≥ 0.

We will use the phase I in the two-phase version of the simplex method to
solve (5). The problem to be solved by phase I is

maximize Y I
0 = −R1 −R2

subject to nβ0 + c1β1 + R1 = c2 (6)
c1β0 + b1β1 + R2 = b2

β ≥ 0 and R1, R2 ≥ 0;

where R1 and R2 are artificial variables. The optimization problem (6) can
be rewritten as

maximize Y I
0 = (n + c1)β0 + (b1 + c1)β1 − (b2 + c2)

subject to nβ0 + c1β1 + R1 = c2 (7)
c1β0 + b1β1 + R2 = b2

βi ≥ 0 and Ri ≥ 0, i = 1, 2;

where c1 =
∑

xi, c2 =
∑

yi, b1 =
∑

x2
i , and b2 =

∑
xiyi. The initial

values are summarized in the Table 1.

Table 1. The initial values of problem (7).

BV β0 β1 R1 R2 RHS

Y I
0 −n− c1 −b1 − c1 0 0 −b2 − c2

R1 n c1 1 0 c2

R2 c1 b1 0 1 b2

Bearing in mind that the solution of the LR problem is actually the
solution of the corresponding system of normal equations, it is now easy
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to see that problem (7) is equivalent to solving related the LR problem
(1). Hence we can obtain the optimal solution for model (1) by using the
simplex method for problem (7) with the initial values in Table 1. The
above approach can be applied for solving linear regression model (1) with
p > 2, i.e.,

Yi = β0 + β1x
(1)
i + β2x

(2)
i + ... + βpx

(p)
i + εi (8)

subject to β ≥ 0.

Next, we will illustrate the above ideas by an example.

Example 2.1: (Rencher, 2000, p113-114) The exam scores y and home-
work scores x (average value) for 18 students in a statistics class were as
follows

x 96 77 0 0 78 64 89 47 90
y 95 80 0 0 79 77 72 66 98

x 93 18 86 0 30 59 77 74 67
y 90 0 95 35 50 72 55 75 66

From the given data set, we obtain: c1 =
∑

xi = 1, 045, c2 =
∑

yi = 1, 105,
b2 =

∑
xiyi = 81, 195, b1 =

∑
x2

i = 80, 199 and n = 18. Hence, Table 1
becomes

BV β0 β1 R1 R2 RHS Ratio

Y I
0 -1063 -81244 0 0 -82300 –

R1 18 1045 1 0 1105 1.057

R2 1045 80199 0 1 81195 1.012

Using the simplex method, the optimal table is obtained in two iterations
as:

BV β0 β1 RHS Ratio

Y I
0 0 0 0 –

β0 1 0 10.727 –

β1 0 1 0.873 –

Therefore, β̂0 = 10.727, β̂1 = 0.873 and a fitted linear regression line is
given by ŷ = 10.727 + 0.873x.
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3. Solving the Least Squares Problem With Constraints Using
NLP Methods

Using the least squares method to model (2) we obtain a general regres-
sion problem:

min Z(β) = (Y −Xβ)T (Y −Xβ)
subject to Aβ ≥ C (9)

β ≥ 0.

Problem (9) is a simultaneous quadratic programming problem and thus
it can be solved by using Wolfe’s method based on Karush-Kuhn-Tucker
conditions. Rewriting problem (9) as a quadratic programming problem
leads to:

min Z0(β) = a + nβ2
0 + b1β

2
1 − 2c2β0 − 2b2β1 + 2c1β0β1

subject to Aβ ≥ C (10)
β ≥ 0,

where, as in the previous example, a =
∑

y2
i , c1 =

∑
xi, c2 =

∑
yi,

b2 =
∑

xiyi and b1 =
∑

x2
i .

Example 3.1: Use the given set of data to evaluate the parameters of a
simple linear regression model with additional restrictions imposed on the
parameters of the model, i.e.,

2β0 + β1 ≥ 650
−2β0 + β1 ≥ 500

βi ≥ 0 i = 1, 2.

x .055 .091 .138 .167 .182 .211 .232 .248 .284 .351
y 90 97 107 124 142 150 172 189 209 253

From the given data set,we can calculate the values of a = 259993, c1 =∑
xi = 1.959, c2 =

∑
yi = 1533, b2 =

∑
xiyi = 341.68 b1 =

∑
x2

i = .4551
and n = 10. Parameter estimates of the model obtained by the standard
regression technique are β0 = 39.6484 and β1 = 580.151.

Let us solve the same problem by employing nonlinear programming
ideas. Firstly, we have to rewrite the problem in the form of quadratic
programming by using the previously calculated values of b1, b2, c1 and c2.
We have:
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min Z0 = 259993 + 10β2
0 + .4551β2

1 − 3066β0 − 683.36β1 + 3.918β0β1

subject to 2β0 + β1 ≥ 650
−2β0 + β1 ≥ 500

βi ≥ 0 i = 1, 2.

Then, solving the above quadratic programming problem with Wolfe’s
method confirms the optimal values of β0 = 39.6484 and β1 = 580.151.

4. Solving QP Problem Using the Least Squares Method

The relationship between the quadratic programming (4) and the least
squares method (9) is studied by Wang, Chukova and Lai (2003),

Theorem 1: The relationship of QP (4) and LS (9) is given by

Z0(β) =
1
4
bT D−1b + Z(β),

where X is a real upper triangular matrix with positive diagonal elements
satisfying XT X = D and Y = − 1

2 (XT )−1b.
Hence, minimizing Z0 is equivalent to minimizing Z(β). Moreover, when

b = 0, we have

Z0(β) = Z(β) = (Y −Xβ)T (Y −Xβ).

Let us consider the least squares problem similar to (9) where all the
constraints are in the form of equality, i.e Aβ = C. Using the Lagrangian
method, we obtain the corresponding normal equation:

Aβ = C

AT λ + XT Xβ = XT Y. (11)

Theorem 2: Let β̂∗ be the solution of (11) and β̂0 be the solution of
linear regression model with no constraints. Then, the relationship between
β̂∗ and β̂0 is:

β̂∗ = [I − (XX)−1AT H−1A]β̂0 + (XT X)−1AT H−1C

where H = A(XT X)−1AT is a hat matrix (Sen 1990).
Based on Theorem 1 and Theorem 2, Wang, Chukova and Lai (2003)

developed a stepwise algorithm for reducing and solving QP problem (4)
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with regression analysis. The following example illustrates the algorithm.
Example 4.1: Consider

min Z0 = −2x1 − 3x2 + x2
1 + x2

2 + x1x2

subject to 2x1 + 2x2 ≤ 2
3x1 − 2x2 ≥ 1

xi ≥ 0 i = 1, 2.

The solution to this QP by using Wolfe’s method is found to be ZT =
(x1, x2) = ( 3

4 , 5
8 ). Let us apply our algorithm for reducing the above QP

to LS. We have

min Z0 = (−2 − 3)
(

x1

x2

)
+ (x1 x2)

(
1 1

2
1
2 1

) (
x1

x2

)

subject to

(
−1 −2

3 −2

) (
x1

x2

)
≥

(
−2

1

)

and xi ≥ 0, i = 1, 2.

The above is a matrix representation of model (4). Let

A =
(
−1 −2

3 −2

)
=

(
aT
1

aT
2

)
, C =

(
−2

1

)
,

and

D =
(

1 1
2

1
2 1

)
, b =

(
−2
−3

)
.

1. Find the matrices X and Y and convert a QP problem to a LS problem.

X = Choleski(D) =
(

1 1
2

0 .866

)
and

Y = −1
2
(XT )−1b =

(
1, 1.1547

)T
.

2. Solve LS min Q(β) = (Y −Xβ)T (Y −Xβ) over R2
+.

The solution is β∗ =
(

1
3 , 4

3

)T
.
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3. Verify whether Aβ∗ ≥ C. In this case both conditions in model (4) are
not satisfied. Thus we have to solve the following two problems:

• First, we solve

min Q(β(1)) = (Y −Xβ(1))T (Y −Xβ(1))

subject to −β
(1)
1 − 2β

(1)
2 = −2

β
(1)
i ≥ 0, i = 1, 2.

and obtain

β(1) =
(

1
3 , 5

6

)T
.

• Then solve

min Q(β(2)) = (Y −Xβ(2))T (Y −Xβ(2))

subject to 3β
(2)
1 − 2β

(2)
2 = 1

β
(2)
i ≥ 0, i = 1, 2.

and obtain

β(2) =
(

.894739, .8421085
)T

.

4. Verify whether Aβ(1) ≥ C or Aβ(2) ≥ C.
It is easy to check that the constraint Aβ(i) ≥ C , for i = 1, 2 is not
satisfied. Hence, we solve for

min Q(β(1,2)) = (Y −Xβ(1,2))T (Y −Xβ(1,2))

subject to −β
(1,2)
1 − 2β

(1,2)
2 = −2

3β
(1,2)
1 − 2β

(1,2)
2 = 1

β
(1,2)
i ≥ 0, i = 1, 2,

which gives

β(1,2) =
(

3
4 , 5

8

)T
.

5. Verify whether Aβ(1,2) ≥ C.
The constraint Aβ(1,2) ≥ C is satisfied. Thus, the the optimal solution
is

β̂ = β(1,2) =
(

3
4 , 5

8

)T
.

The above solution confirms the previous result obtained by Wolfe’s method.
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5. Conclusions

A linear regression model is solved by two-phase version of the simplex
method. A statistical algorithm to solve the quadratic programming prob-
lem is proposed. In comparison with the nonlinear programming methods
for solving QP, our algorithm has the following advantages:

(a) Statistical courses often form the core portion for most degree pro-
grams at bachelor level. The algorithm based on basic statistical concepts
is easy to understand, learn and apply.

(b) Some of the steps of the algorithm are included as built-in functions or
procedures in many of the commonly used software packages like MAPLE,
MATHEMATICA and so on.

(c) The algorithm avoids the usage of slack and artificial variables.
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