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Abstract. We develop a methodology for evaluating a decision strategy generated by a stochas-

tic optimization model. The methodology is based on a pilot study in which we estimate the

distribution of performance associated with the strategy, and de�ne an appropriate strati�ed
sampling plan. An algorithm we call �ltered search allows us to implement this plan eÆciently.

We demonstrate the approach's advantages with a problem in asset / liability management for an
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1. Introduction and Background

Many signi�cant problems dictate the development of strategies for handling se-

quential decision-making under uncertainty, e.g., natural resource planning [25],

�nancial planning [3, 6], and telecommunications network expansion planning [27].

In such situations, there exists a planning horizon that consists of T stages. The be-

ginning of stage 1 represents the current time. During each stage the decision-maker

must select a course of action that a�ects the actions he/she can take in subsequent

stages. See �gure 1. The end of the planning horizon usually represents the point

at which some critical action must be taken or some critical goal achieved. The goal

of multi-stage stochastic optimization (MSO) is to develop a sequence of decisions

that maximizes the extent to which this goal is achieved. Estimating the expected

performance of a decision strategy returned by the MSO process is crucial to in-

creasing the technology's e�ectiveness. Proper evaluation allows decision-makers

to compare MSO-generated strategies with other alternatives available to them in

a statistically valid manner.

In this paper, we present a variance reduction technique called strati�ed �ltered

sampling (SFS) that greatly improves the computational eÆciency of this evalua-
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Figure 1. Depiction of sequential decision making under uncertainty.

(Heavy arcs represent the random variables for the uncertainty in each stage.)

tion process. Variance reduction methods attempt to reduce the standard error of

the estimate of expected performance without introducing bias into the estimation

process. The technique presented herein is based on research associated with the

Ph.D. dissertation of the �rst author [26].

1.1. The Multi-Stage Stochastic Optimization Process

We �rst introduce some notation. We let Xt, for t = 1; :::; T , be the set of fea-

sible decisions available at the start of period t, with X = (X1; :::; XT ). We let

xt, for t = 1; :::; T , be the decision(s) actually made at the start of period t,

with x = (x1; :::; xT ). Also, we let 
t, for t = 1; :::; T , be the vector of random

variables representing the uncertain components associated with period t, with


 = (
1; :::;
T ). 
 has associated with it a probability function �. Let !t be a

distinct realization of 
t, with ! = (!1; :::; !T ). We call ! a scenario. Finally, the

function z(x; !) measures the performance associated with x under scenario !; we

call z the performance function. (The vehicle employed to measure performance

varies from application to application. The measures we employ in our work incor-

porate the decision-maker's attitude towards risk, as Section 5 will demonstrate.)

An asset management example will clarify this notation further. Our goal in this

example is to maximize expected wealth at the end of a 10-year planning horizon.

We allow adjustments to our portfolio (buying and selling of assets) at the start of

each year. The set of possible buying and selling decisions at the start of each year

corresponds to Xt; the actual buying and selling we implement corresponds to xt.

Furthermore, 
t corresponds to the collection of possible returns on the assets in our

portfolio in year t, !t to the returns that actually manifest themselves. Therefore

z(x; !) represents the wealth we accumulate over the 10-year planning horizon via
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Figure 2. The MSO process

a progression of distinct buying and selling decisions (x) for a given sequence of

actual asset returns (!).

The MSO process has four principal components: selection of the performance

function, optimization, stochastic forecasting, and evaluation. See Figure 2. As

stated earlier, in our work the �rst component revolves around selection of an

appropriate vehicle for addressing the decision-maker's attitude towards risk, e.g.,

the von Neumann-Morganstern expected utility model [28] or the nonlinear penalty-

based method [7].

The optimization component recommends the best actions for each stage of the

planning horizon. A common form (CF) of the associated model is as follows:

Model CF: maxx

R


z(x; !)�(d!) (CF-obj)

s.t. At;!xt = bt;! (CF-a)

At;! = ut(!; xt�1) (CF-b)

bt;! = vt(!; xt�1) (CF-c)

Constraints (CF-a) de�ne the set of feasible decisions in stage t under scenario

!. (CF-b) and (CF-c) show, through the vector-valued functions ut and vt, that

(CF-a) depend on both the manifestation of uncertainty and the decisions made in

the previous period. We can readily adapt (CF) to handle the case in which periods

prior to the previous one have an impact.

Unfortunately, there usually exists no closed form expression for the integration

in (CF-obj); this e�ectively precludes direct solution e�orts. To address this, we

employ the third component of the MSO process: a stochastic forecasting model.

We generate with this model a set of scenarios to serve as a proxy for the uncer-

tainty space 
; these scenarios comprise the solution generation set. Our goal is

to optimize over the solution generation set rather than 
. (Examples of stochas-

tic forecasting systems for asset / liability management include Russell's vector

autoregressive system [6], the Towers' Perrin CAP:Link system [20], and Wilkie's

investment model [29].)
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Figure 3. A 3-stage, 6-scenario tree

The nodes again represent decisions, but the arcs are now distinct realizations of

uncertainty.

By construction, any decision strategy developed by optimizing over a distinct

solution generation set performs well when applied to scenarios in the set. The

likelihood of the uncertainty manifesting itself as one of these scenarios, however,

is exceedingly small. Consequently, proper evaluation of the strategy (the �nal

phase of the process) is essential. Its goal is to assess the performance of a de-

cision strategy in scenarios outside the relevant solution generation set, or more

speci�cally, estimate to an acceptable accuracy the expected performance of the

generated strategy with respect to the universe of all possible scenarios.

The approach employed to generate the solution generation set and solve the

resulting optimization problem determines to a large extent our ability to conduct

this testing. We present two basic approaches. The �rst generates the scenarios

as a tree. See Figure 3. Each path through the tree de�nes a scenario, with each

arc representing a speci�c manifestation of uncertainty for a distinct stage of the

planning horizon. Just as a given arc appears in multiple paths, so too does the

associated manifestation of uncertainty appear in multiple scenarios.

To de�ne the relevant optimization problem (that we call the tree form), we

require some additional notation. Let TREE denote the solution generation set,

�! the probability of scenario ! occurring, and x!;t the decision made in scenario

! at stage t, with x! = (x!;t), for t = 1; :::; T . Finally, let N!(t) be the set of

all scenarios that are identical to scenario ! through stage t (recall the possible

\overlap" among scenarios described above). We have the following:
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Model TF: maxx:
P

!2TREE f�!z(x!; !)g (TF-obj)

s.t.: At;!xt = bt;! (TF-a)

At;! = ut(!; xt�1) (TF-b)

bt;! = vt(!; xt�1) (TF-c)

x~!;t = x _!;t for all ~!; _! in N!(t) (TF-d)

(TF) di�ers from (CF) in its objective function and in the presence of constraints

(TF-d). As mentioned earlier, (TF)'s objective function averages performance over

the members of the solution generation set rather than integrating over the space


. Constraints (TF-d) are called nonanticipativity constraints; they require that

all decisions made with the same information be identical.

(TF) is a deterministic program that maximizes a concave objective function

(usually) over a convex region (always). All the advantages of convex minimization

are therefore relevant. E�orts to �nd e�ective solution methodologies have given

rise to the �eld of multi-stage stochastic programming with recourse. Kall and

Wallace [15] and Birge [4] provide excellent introductions and guidance for further

reading.

Evaluating the solution generated by a (TF) model is diÆcult because it does

not generate a strategy that can address arbitrary realizations of uncertainty. Only

the decision returned for the �rst stage can handle any realization of uncertainty.

The remaining decisions - those for stages 2 or beyond - are de�ned (meaningful)

only for the speci�c scenarios on which they are based. This causes diÆculty when

applying Monte Carlo simulation to estimate the expected performance [12].

In the second approach, the scenarios in the solution generation set possess a

string structure. See Figure 4. Because independent sampling from the forecasting

model creates each scenario, there is no overlap among di�erent scenarios, as in a

scenario tree. Our goal in this approach is to �nd the best member of a particular

family of decision rules. A decision rule is a function r that maps 
t into Xt ;

it thereby dictates the actions to be taken at any stage in the planning period.

(Formally, we have r : 
t ! Xt) A family of decision rules is a set of functions

R = fr1; r2; : : :g, with each member of R representing a distinct instance of the

given family. The values assumed by a vector of parameters � = (�1; �2; : : : ; �K)

dictate the member of R that operates in a particular decision-making environment.

We refer to the optimization problem associated with this approach as the string

form (SF). Let r be an arbitrary member of decision rule family R, xr!;t the decision

made in scenario ! at stage t as dictated by rule r, and xr! = (xr!;t), for t = 1; : : : ; T .

Denoting the relevant solution generation set as STRINGS, we get the following:
Model SF: max�

P
!2STRINGSf�!z(xr!; !)g (SF-obj)

s.t.: xr!;t = r(!t) (SF-a)

r = g(�) (SF-b)

� 2 A (SF-c)

Here, constraints (SF-a) describe the dependence of the actions taken on the form

assumed by the decision rule. Constraints (SF-b) describe the dependence of the

actual rule to be implemented on �. Constraints (SF-c) establish limitations on the
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Figure 4. A solution generation set containing six 3-stage scenarios in string form
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set of possible rules. Solving model (SF) is diÆcult because its objective function

is often non-concave (recall it is a maximization problem).

O�setting this disadvantage is the model's capacity to support Monte Carlo-

based evaluation. An (SF) model returns a decision rule; this rule is by de�nition

a strategy that can address any realization of uncertainty throughout the planning

horizon. (Recall the mapping on which the rule is based.) Consequently, testing

on scenarios outside the solution generation set is much easier than with strategies

returned by (TF) models. In e�ect, model (SF) purchases increased testability

at the expense of the solution diÆculties caused by its non-concavity. For a more

detailed examination of the relative merits of the tree- and string-based approaches,

see Rush [26].

1.2. An Overview of Strati�ed Filtered Sampling

We speci�cally developed strati�ed �ltered sampling to address the evaluation of

rules generated by string-form MSO models. As its name implies, the methodol-

ogy is an extension of the well-known sampling technique called strati�ed sampling

(see Cochran [9], hereafter referred to as Cochran). Previous applications of strat-

i�ed sampling to Monte Carlo simulation have relied principally on strati�cation

of the n-dimensional hypercube of uniform random numbers that drive the simula-

tion (see, for example, Niederreiter [24]). SFS relies on direct strati�cation of the

distribution of performance associated with the MSO-generated strategy (hereafter

called the performance distribution); it selectively evaluates those scenarios that

contribute most to the variability of performance. The estimate it generates we

call the strati�ed performance estimate, or SPE. We note that other techniques for

variance reduction exist: correlation induction (which includes antithetic sampling

[8] and Latin hypercube sampling [18]), control variates [16], conditional expec-

tation [17], importance sampling [10], and the relatively new \quasi Monte-Carlo"

methods [14]. Although developed for use within an MSO context, strati�ed �ltered

sampling, like these other techniques, applies to other simulation environments as

well.

The SPE-generation process consists of two steps. In the �rst, we conduct a pilot

study to estimate the performance distribution, and design the strati�ed sampling

scheme. In the second step, we employ the �ltered search algorithm to eÆciently

implement the proposed scheme.

The rest of this paper is organized as follows. Section 2 introduces the \classical"

version of strati�ed sampling, motivating the advantages of our approach. Section

3 describes the components of the SPE-generation procedure. Section 4 shows that

SPE is unbiased. Section 5 discusses the application of SFS to asset / liability man-

agement for an insurance company, and demonstrates the computational savings

a�orded by �ltered search. Section 6 presents concluding remarks.
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2. Introduction to Strati�ed Sampling

Let P be a population with mean �P and standard deviation �P . Assume that P

has been divided into J mutually exclusive and collectively exhaustive subpopula-

tions, or strata: P1; : : : ; PJ . Let �j be the probability that a random draw from

P will yield an element of stratum Pj , for j = 1; : : : ; J . Let �j for j = 1; : : : ; J

be the standard deviation of stratum j. A strati�ed sampling plan de�nes, for a

given total sample size NSS, the size of the random sample to be drawn from each

stratum j , Nj . Let �yj be the sample mean associated with the sample drawn from

stratum j. The strati�ed sampling based estimate of �p is �ySS =
P

j(�j �yj). We

have the following results for \classical" strati�ed sampling:

Theorem 1 (Cochran, p. 91): Assume that �j for j = 1; : : : ; J is known with

certainty. Then �ySS is an unbiased estimate of �P .

Theorem 2 (Neyman [23]): The variance of �ySS is minimized for a total sample

of size NSS if

Nj = NSS

 
�j�jP
j(�j�j)

!
; for j = 1; : : : ; J:

Theorem 3 Theorem 3 (Cochran, p. 115): LetN�

j be the optimal size of the ran-

dom sample drawn from stratum j (as de�ned in Theorem 2). Assume that this

optimal allocation plan is not implemented, and that instead we draw a sample of

size Nj from each stratum j, such that
P

j(N j) = NSS . Then the proportional

increase in the variance of �ySSresulting from these deviations from the optimal

strati�ed sampling plan is

1

NSS

X
j

 
(N j �N�

j )
2

N�

j

!
:

Two critical issues are the de�nition of the strata boundaries and the determina-

tion of the appropriate number of strata. Cochran provides some basic theory, as

well as references for further reading. For the present discussion, we note that the

principal goal underlying both questions is the maximization of both intra-stratum

homogeneity and inter-stratum heterogeneity (Mulvey [21]). In other words, a good

strati�cation identi�es those regions of the population that contribute most to vari-

ability and isolates them as strata. Sampling thus is focused on those regions for

which uncertainty is greatest. Figure 5 presents a form the performance distribu-

tion might assume. Clearly, the right tail contributes most to overall variability.

The pilot study will yield enough information about the distribution's shape to

allow us to isolate this tail as a distinct stratum.
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Figure 5. Possible form of fr

3. Generating the Strati�ed Performance Estimate

We �rst review and/or introduce the following notation:

� r := the decision rule being evaluated.

� u := an appropriately-sized vector of uniform (0; 1) random numbers, with U

the space of all such vectors.

� ! := a scenario.

� fr := the density function of the performance distribution for rule r, with mean

�r.

� z(xr!; !) := the value of the performance function associated with rule r under

scenario !. When ! is generated randomly, z(xr!; !) is a tantamount to a

random draw from fr. For the sake of notational convenience, we abbreviate

z(xr!; !) as z(x
r; !).

� G := the (continuous) function which maps U into 
 . G is the scenario gener-

ator function.

In terms of this notation, we generate SPE via strati�cation of the set of per-

formance values for which fr is the density. The description of strati�ed sampling

in section 2 reveals three problems we must address in order to accomplish this.

Problem 1 is that we usually have no knowledge of the structure of fr. This infor-

mation is vital for identifying the collections of scenarios for which performance is

extreme - a key to the e�ectiveness of strati�ed sampling. Problem 2 also is due to

lack of knowledge of fr - the �'s are not known with certainty. Thus, we cannot

directly invoke Theorem 1 to prove that SPE is unbiased. (Section 4 shows that

SPE is in fact an unbiased estimator of �r). The third problem is that we have no

ready means of separating the scenario space into a collection of regions that we

can map in a well-de�ned fashion into the strata on which our strati�ed sampling
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Figure 6. The SPE Generation Process

plan is based. Consequently, the implementation of the strati�ed sampling plan is

computationally very diÆcult.

We address problems 1 and 3 by employing a two-phase procedure to generate

SPE. In the �rst phase (phase A), we randomly sample from fr to obtain adequate

knowledge of its structure. This provides the blueprint for the strati�ed sampling

plan. The second phase (phase B) implements the strati�ed sampling plan. We

have identi�ed two possible implementation schemes. The �rst, the \na�ive" imple-

mentation, is guaranteed to work, but may require great computational e�ort. The

second is a much less computationally intensive scheme we call \�ltered search".

Figure 6 displays the SPE generation process.

The \Preliminaries" - de�nition of the relevant strategy and selection of the ac-

ceptable standard error - require no explanation. We provide the details of Phases

A and B below.

Phase A: Devise Strati�ed Sampling Plan via Pilot Study

A.1: Estimate fr. Randomly sample from fr to construct an adequate representa-

tion of its structure, to wit:

� Draw a sample of size N from U .

� De�ne the corresponding N scenarios: ! = G(u), for each u generated.

� Calculate z(xr; !) for each ! generated.

A.2: De�ne strata for fr.

Separate fr into J mutually exclusive and collectively exhaustive regions. (Recall

that it is not our primary purpose in this paper to describe how to construct these
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strata. For our tests, however, 10-15 strata have worked very well.) Let SAMPj , for

j = 1; : : : ; J be the set of random draws from fr contained in each stratum j. Let

nj = jSAMPj j, the cardinality of SAMPj . Let �̂j be the sample standard deviation of

SAMPj .

A.3: Insure precision of estimates of relevant strata parameters.

The relevant parameters here are �j and �j . Recall that �j is the probability

that a random draw from fr will fall in stratum j, �j the true standard deviation

of stratum j, �̂j =
nj

N
the sample estimate of �j , and �̂j the sample estimate of �j

. Theorem 3 clearly reveals the importance of estimating the �j 's and �j 's well. To

address this issue, we implement the following procedure:

� Calculate cvj =

p
�̂(1��̂)=N

�̂j
, for j = 1; : : : ; J .

� Let max = maxj(cvj).

� Adequate Precision Check: Is max � Æ ? (We suggest Æ = :20.)

if YES: Stop. (Precision of estimates is acceptable.)

if NO: Go to CORRECT N.

CORRECT N

� Determine, based on the current values of the �j 's, the number of additional

draws from fr needed to satisfy the Adequate Precision Check; call this number

B.

� Draw from fr B times.

� Place each draw from fr into the appropriate stratum as de�ned in A.2.

� Update �̂j ; �̂j ; nj , and cvj for j = 1; : : : ; J .

� Recompute max.

� Return to Adequate Precision Check.

Note that cvj is the estimated coeÆcient of variation for �̂j . The Adequate

Precision Check therefore insures that the error in estimating �j is small relative

to the magnitude of the estimate itself. Furthermore, the procedure indirectly

improves the precision with which �̂j estimates by �j increasing the cardinality of

the SAMPj 's.

A.4: De�ne size of sample required from each stratum.

Let NSPE be the size of the entire sample needed for the SPE-generation process;

NSPE will be a function of the desired standard error. Let NSPE(j) be the required

size of the random sample from stratum j. As in section 2, let �yj be the sample

mean associated with the sample from stratum j. Then the strati�ed performance

estimator of �r is
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SPE =
X
j

�̂j �yj

SPE is identical to �ySS from section 2 except that we have replaced �j with its

estimate, �̂j . The Adequate Precision Check certi�es the quality with which we

estimate the �j 's. We estimate SPE's standard error as:sX
j

n
�̂2 (�̂2=NSPE(j))

o

We compute NSPE(j) using the optimal allocation scheme laid out in Theorem 2:

NSPE(j) = NSPE

0
@ �̂j �̂jP

j

�
�̂j �̂j

�
1
A

Calculating the appropriate value for NSPE is straightforward; we simply increase

it until the desired value of standard error is indicated. Once this step is complete,

the strati�ed sampling plan is complete.

Phase B: Implement Strati�ed Sampling Scheme

The speci�cation of the strati�ed sampling scheme in A.4 de�nes the size of the

random sample, NSPE(j), needed from each stratum. Recall, however, that upon

leaving A.3 we already have a sample of size nj from each stratum j. We therefore

require an additional sample of size Mj = max[NSPE(j)�nj ; 0] from each stratum j

in order to satisfy the requirements of the strati�ed scheme.

B.1: The Na�ive Implementation.

This implementation scheme draws randomly from fr until the required number

of additional draws from each stratum have been obtained (�gure 7). Because we

cannot control the value of these draws, the procedure will almost certainly draw

more than necessary from some of the strata.

This implementation scheme can be ineÆcient. To explain the reason for this, we

require the following de�nitions:

De�nition 1 The diÆculty ratio for each stratum j = DRj =
Mj

�j
.

De�nition 2 The critical stratum is that stratum for which the diÆculty ratio is

largest.

We thus can state:

Lemma 1 The expected number of draws from fr required to satisfy the sample size

requirement for each stratum j is equal to DRj .

Proof: Immediate.

Lemma 1 shows that on average more simulation runs will be necessary to sat-

isfy the sample size requirement for the critical stratum (hereafter referred to as
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Figure 7. The na�ive implementation
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Figure 8. Filtered search implementation

CS) than for any other stratum. It therefore constitutes the chief computational

obstacle associated with the na�ive implementation. This computational diÆculty

can potentially negate the original bene�t of the strati�ed sampling approach.

B.2: \Filtered Search" implementation.

We address the problems caused by the CS. The basis for the computational

bene�ts of the �ltered search approach is that the e�ort required to generate ! is

usually very small relative to that required to calculate z(xr; !), i.e., generation

is cheaper than evaluation. Consequently, the majority of the e�ort required to

generate SPE usually lies not in the generation of the scenarios, but rather in the

subsequent evaluation of the performance function for all scenarios generated.

Figure 8 presents the modi�ed implementation. The central idea is that once

we have obtained the requisite draws from all strata except the CS, we no longer

blindly draw from fr. Instead, we predict for each subsequently generated scenario

! whether or not z(xr; !) will fall within the CS or not. (We construct the predictor

function with the information obtained during the pilot study, as explained below.)

Only if we predict that z(xr; !) will fall within the CS do we actually conduct the

relevant simulation run. Thus, we incur the computational burden of calculating

z(xr; !) only if it seems likely that doing so will serve our purpose.
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The key to the success of the Filtered Search scheme is the quality of the predic-

tor mechanism. As in all 0-1 classi�cation problems, two errors are possible (See

Table 1). The quality of the predictor mechanism is primarily dependent on the

minimization of Prob (Type I error). There are two reasons for this. The �rst

concerns computational eÆciency. Because elements of the CS occur by de�nition

with extremely low frequency, we must minimize the possibility that we miss one.

The second reason concerns the avoidance of bias in the estimation of the mean

of the CS. (As section 4 will show, this is essential if SPE is to be unbiased.) To

see how bias can occur, refer again to Figure 5. Assume that the critical stratum

there is de�ned as [T;1). Ambiguity over how to classify a given scenario ! will

occur most frequently when z(xr; !) is \close" to T. Therefore, a predictor mecha-

nism with high Type I error rate will tend to correctly classify scenarios for which

z(xr; !) is \far away" from T, and misclassify scenarios for which z(xr; !) is \close"

to T. The result can be a biased sample mean.

Table 1. Possible errors for predicting membership in critical stratum

Many techniques are available for 0-1, or binary, classi�cation, such as logistic

regression [13], discriminant analysis [19], CART [5], neural networks [11], and

bilinear separation via mathematical programming [2], all of which can be adapted

to emphasize the minimization of the Type I error rate. Because the example

application in section 5 employs logistic regression, we close this section with a

brief introduction to the methodology.

Binary logistic regression is a form of regression in which entities of interest can

belong to one of two possible groups, say 0 and 1; our goal is to predict membership.

(In our situation, the entities of interest are distinct scenarios ! ; we want to predict

whether will z(xr; !) fall in the critical stratum or not.) Let p = probability that

the entity of interest is a member of group 1. The technique predicts membership

by employing as its dependent variable the log-likelihood ratio that the entity of

interest is a member of group 1, or the logit of p:

L = ln(
p

1� p
)

and �tting the following model:
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L = �0 + �1X1 + �2X2 + � � �+ �nXn + error

Maximum-likelihood, not least squares, is the basis of the �tting process. We

estimate p as follows:

p̂ =
exp(L̂)

1 + exp(L̂)

where

L̂ = �̂0 + �̂1X1 + �̂2X2 + � � �+ �̂nXn

As one would expect, the default for assigning the value 1 to the entity of interest

is a value for p̂ greater than .5. Changing this threshold allows us to control Type

I and II error rates.

4. Showing that SPE is Unbiased

Recall that SPE =
P

j �̂j �yj . We need to show that E(SPE) = �r. We have the

following:

Lemma 2 Let P be an arbitrary population, with (true) mean �P . Let P1; : : : ; PJ
be a set of mutually exclusive and collectively exhaustive strata for P . For each

stratum j; j = 1; : : : ; J , de�ne the following: �j = (true) mean of stratum j and

�j = (true) probability that an arbitrary member of P is an element of stratum j.

Then �P =
P

j �j�j

Proof: See Cochran, p. 91.

Lemma 3 For any j, let �̂j and �yj be, respectively, the estimated probability that a

random draw from fr will come from stratum j and the sample mean of the NSPE(j)

draws from stratum j required by the strati�ed sampling scheme. Assume that our

control of the Type I error rate is suÆcient for E(�yj) = �j . Then E(�̂j �yj) = �j�j .

Proof: We condition on the random variable �̂j , to wit:

E(�̂j �yj) = E

n
E

n
�̂j �yj j�̂j

oo
=
X
l

�
E

h
�̂j �yj j�̂j = l

i
� Pr(�̂j = l)

�

=
X
l

�
E [l�yj ] � Pr(�̂j = l)

�

=
X
l

�
lE [�yj ] � Pr(�̂j = l)

�
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=
X
l

�
l�j � Pr(�̂j = l)

�
; because we assumed our control

of the Type I error rate allows �yj
to be unbiased

= �j
X
l

�
l � Pr(�̂j = l)

�

= �jE(�̂j)

= �j�j

Theorem 4 Under the conditions of Lemma 3, SPE is an unbiased estimator of

�r.

Proof:

E(SPE) = E

0
@X

j

�̂j �yj

1
A

=
X
j

n
E

�
�̂j �yj

�o

=
X
j

�j�j , by Lemma 3.

= �r, by Lemma 2.

Although we have now proven the desired result, we also state the following for

the sake of completeness:

Lemma 4 Under the conditions of Lemma 3, Cov(�̂j ; �yj) = 0.

Proof:

Cov(�̂j ; �yj) = E(�̂j �yj)� E(�̂j)E(�yj) = �j�j � �j�j = 0:

5. Example Application

We describe the manner in which multi-stage stochastic optimization allowed us to

address issues in multi-year asset / liability management faced by a major reinsur-

ance �rm, focusing particularly on the role played by strati�ed �ltered sampling

and the e�ectiveness of �ltered search. The �rm had a strategy for deciding both

the extent of its underwriting and the amount of its capital it would make available

for investment. Its problem was to decide how to allocate this available capital

among �ve di�erent investment instruments (A, B, C, D, and E) over a �ve year

planning horizon.

Our �rst task was to select a performance function. In consultation with the �rm,

we decided to employ the utility of the �rm's net asset position (NAP) at the end

of the planning horizon as our measure of performance. (Recall the importance

we assign to consideration of the decision-maker's attitude towards risk.) The �rm
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calculated its net asset position at the end of the planning horizon via: NAP =
wp5�wp0

wp0
, where wp5 represents wealth position at the end of year 5, and wp0 initial

wealth. (Thus, even though the �rm chose a �ve-year (period) planning horizon,

i.e., T = 5, we needed to track the �rm's wealth position at six di�erent times.)

The utility model we adopted is due to Bell [1]: util(y) = y �B exp(�C � y).
There were 30 di�erent sources of uncertainty, i.e., 
 in this instance is a 30-

vector: the annual returns for each of the investment instruments (reti;t, for i =

A; : : : ; E and t = 1; : : : ; 5), and the dollar value of the claims paid out at the end

of each year (ct, for t = 1; : : : ; 5). We employed two di�erent stochastic forecasting

systems to deal with this uncertainty. The CAP:Link system developed by the �rst

author [20] addressed investment return uncertainty. (In other words, CAP:Link

serves as the scenario generation function for investment returns. As such, its core

engine is a numerical approximation of the probability function � - recall section

1.1 - associated with the multivariate return distribution.) A proprietary system

developed by the �rm addressed claim uncertainty.

Optimization to �nd an acceptable asset allocation strategy was next. Discussion

with the �rm resulted in reducing the set of eligible instruments to A, B, and E.

Our recommendation (to which the �rm agreed) was to �nd a suitable instance of

the \�xed-mix" family of decision rules; we thus opted for the string approach to

MSO described in the Introduction. A �xed-mix rule speci�es the relative propor-

tion that each investment instrument should occupy in an asset portfolio at the

beginning of each stage of the relevant planning period. Only when the returns

on all available instruments are identical will these relative proportions continue to

satisfy the \�xed-mix". The rule therefore speci�es the speci�c buying and selling

necessary to rebalance the portfolio at the start of each year (stage) of the plan-

ning horizon. Thus, (xr; !) in this situation corresponds to the sequence of buying

and selling decisions dictated by �xed-mix rule r under scenario !. With a �xed-

mix rule, wealth position changes over the course of the planning horizon in the

following manner:

wpt+1 =
X
i

f(1 + reti;t) (�iwpt)g � ct;

where �i is the proportion of wealth to be placed in instrument i per the buying and

selling dictated by the relevant \�xed-mix" rule. With NAP[r; !] representing the

�nal net asset position achieved by �xed-mix rule r under scenario !, we formally

de�ned the performance function as:

z(xr; !) = NAP[r; !]�B � exp(�C � NAP[r; !]);
with B = 10 and C = 4. Creating a solution generation set with 1000 scenarios

and letting � = (�A; �B ; �E), we constructed the following string model:

max
�

1

1000

X
!

z(xr; !)

s.t.: �A + �B + �E = 1
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� � 0

Solving this model yielded a strategy we labeled r1: 40% of available capital in

investment A, 40% in investment B, and 20% in investment E.

The SFS process - particularly the �ltered search component - proved very suc-

cessful in evaluating this strategy. Implementation of steps A.1 through A.3 of the

SPE-generation procedure required 10,000 draws from fr1. We de�ned 13 strata

(see Table 2).

Table 2. Core information obtained through pilot study

In consultation with the company's management, we set the desired standard

error = .035. Application of (2) and (3) of SPE-generation step A.4 dictated that

that NSPE be 1335. (Note that the sample standard deviation of the 10,000 draws

from fr1 was 14.772. We thus would require 178,000 simple random samples from

fr1 to achieve what the strati�ed approach achieves in 1335.) Table 3 presents the

strati�ed sampling scheme for NSPE = 1335, as well as the diÆculty ratio for each

stratum. Clearly, stratum 1 is the critical stratum. This makes sense, given that its

estimated standard deviation is at least two orders of magnitude larger than that

of any other stratum.

Next, we constructed the logistic regression predictor function required for �ltered

search. The original 10,000 draws from fr1 served as the model building data

set. There were initially twenty independent variables available for the model: the

returns for instruments A, B, and E, and the claim payouts. We reduced this to

eight by aggregating the �ve annual returns for each instrument into a joint measure

of return for the whole planning horizon, in the following manner:

aggregate return for instrument i = agreti =
Q5
t=1 (1 + reti;t)� 1:
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Stratum 1 is the critical stratum due to its diÆculty ratio.

Table 3. Summary of strati�ed sampling plan

The model �tting process included six of these into the �nal model:

L̂ = �10:236� 8:650c1 � 7:595c2 � 6:476c3 � 5:857c4 � 1:863c5 � 1:016agretE :

Testing of the resulting predictor function yielded the following error rates: Prob

(Type II error) = :007581, Prob (Type I error) � 0. Clearly, the magnitude of

the claims is the most signi�cant factor in predicting membership in the critical

stratum. To understand this, recall from Table 2 that the threshold for the critical

stratum is util(NAP) = �85, and note that util(NAP) � �85 occurs only when

NAP �� :56, i.e., when at least 56% of the initial asset position is lost during the

planning period.

Table 2 shows that the only strata for which Mj > 0 are strata 1 (M1 = 668),

2 (M2 = 15), and 3 (M3 = 38), with stratum 1 the critical stratum. We applied

�ltered search to \�nd" these �nal 668 + 15 + 38 = 721 draws. We obtained the

required number of draws from strata 2 and 3 (plus 7 additional draws from the

critical stratum) after 2768 simulation runs. The �ltering process began at this

point. An additional 213,880 scenarios were generated with 3324 actually evalu-

ated to �nd the remaining 661 draws from the critical stratum. Compare this with

the corresponding results of the na�ive implementation in �nding the remaining 721:
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216,648 scenarios generated, with 216,648 scenarios evaluated. Filtered search re-

quired 98% fewer evaluations than na�ive search. Also, the total number of scenarios

generated by �ltered search was 2768 + 213,880 = 216,648, the same number gen-

erated by the na�ive implementation. The equality of these numbers shows that the

logistic regression predictor function did not commit a single Type I error.

We close this discussion by noting the success of our e�orts; the �rm eventually

adopted an asset allocation strategy very similar to r1.

6. Conclusions

We have motivated the need for rigorous evaluation of strategies generated by

multi-stage stochastic optimization models, and presented a methodology called

strati�ed �ltered sampling that both ful�lls this need and has value as a general

tool for variance reduction. The methodology is based on strati�cation of the

distribution of performance associated with the generated strategy. The principal

obstacle to implementing such an approach is the inability to sample eÆciently

from a given region of this distribution. We presented a robust methodology called

�ltered search that overcomes this obstacle, insuring the computational tractability

of the methodology.

We are currently investigating techniques to adapt algorithms for solving multi-

stage stochastic optimization models to account for the \sampled" nature of the

scenarios on which they are based. As we have discussed herein, many current

algorithms treat the scenarios as the collectively exhaustive set of ways in which

the relevant uncertainty might manifest itself. Of course, the scenarios are samples

from the in�nite set of possible manifestations. One particular solution strategy

we �nd promising calls for the direction of search in the optimization process to be

de�ned by statistical signi�cance.
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