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Abstract. In this paper we apply a statistical model combining a random coefficient
regression model and a latent class regression model. The EM-algorithm is used for max-
imum likelihood estimation of the unknown parameters in the model and it is pointed out
how this leads to a straightforward handling of a number of different variance/covariance
restrictions. Finally, the model is used to analyze how consumers’ preferences for eight
coffee samples relate to sensory characteristics of the coffees. Within this application
the analysis corresponds to a model-based version of the so-called external preference
mapping.
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1. Introduction

Most statistical models are based on some homogeneity assumptions about
the parameters of interest, one important example being the traditional
regression model, where regression coefficients are assumed constant across
observations.

If observations are on several subjects, a random coefficient regression
(RCR) model, Longford [13], is frequently used to account for correlation
between observations on the same subject, the target being an average
regression relation over the population rather than individual relations.
The assumption is then that subjects are drawn randomly from the same
homogeneous population.

In the present paper the emphasis is on estimating regression parameters
of a heterogeneous population. This may be done within the framework of
normal linear models if a partitioning of the subjects, into a priori known
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homogeneous groups, is available, and the analysis is carried out condition-
ally on the variable defining the groups. If no such variable is known, we
may take it into our model as a latent (unobserved) random variable, i.e.
assume the existence of a finite (fixed) number of latent classes/segments,
yielding a family of mixture distributions, which is denoted a latent class
regression (LCR) model, Wedel and Desarbo [23], or a switching regression
model, Kiefer [11], in the literature.

We use a latent class random coefficient regression model, which is a
combination of a random coefficient regression and a latent class regression
model, to be used in a regression setup with repeated measurements on sub-
jects from a heterogeneous population. Maximum likelihood estimates are
obtained iteratively using the expectation-maximization (EM)-algorithm
of Dempster et al. [5]. The latent class mixed effects model is presented
by Verbeke and Lesaffre [22] and they also mention the EM algorithm,
so the present work can be seen as a model specific implementation and
application of the more general setting of Verbeke and Lesaffre [22].

We apply the model to empirical data from a tasting experiment consist-
ing of a sensory study and a consumer survey with coffee. In the sensory
study different coffee products were evaluated by trained assessors with
respect to a number of sensory attributes, each assessor assigning scores to
each product. The consumer survey was conducted with the same coffee
products and each consumer was asked to give a preference score to each
product. The aim is to explain the consumer preferences by the sensory
attributes in a regression type setup with preference as the response and
sensory variables as predictors, dividing consumers into segments according
to which sensory profiles they prefer.

2. Specification of the Model

The LCRCR model outlined in the introduction is specified as a mixture of
mixed linear models, the mixed part stemming from random subject effects.
Further restrictions on the variance/covariance parameters are discussed.

2.1. The latent class random coefficient regression model

Let y;; denote the j'th observation of subject ¢ on a single scalar response
and z;; the corresponding p x 1 design/covariate matrix for ¢ = 1, ..., I and
j =1,...,n; Further z; denotes the random variable taking the value s if
subject i belongs to segment s, s = 1,...,S.

The LCRCR~model is now specified by the statements (1)-(5) below:
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Yij = .’E;]Bz + €ij (1)
Bilzi =5 ~ Np(Bs, L) (2)
eijlzi =5 ~ N(0, o3) (3)

together with the assumption of mutual independence of z1, ..., z; and con-
ditional mutual independence of all the variables B; and €;; given the z;’s.
We have used the notation B;|z; = s to indicate the conditional distri-
bution of B; given that z; = s and N,(3,%) to denote the p-dimensional
normal distribution with mean 8 and covariance matrix X.

The z;’s are assumed to arise from the same distribution with proportions

P(zi=s)=ms, s=1,...,8 4)

The unknown parameters of the model are 8; = (75, ©s), s = 1,...,.5,
where 15 = (85, X5, 02), and the parameter space is given by

S
Bs €RP, 07 >0, T, is positive definite, 0<m, <1, > my=1 (5)

s=1

Note that the LCR-model corresponds to the case of X3 = 0.
If we collect all responses of subject ¢ in y; = (Yi1, ..., Yin;) and let X;

denote the n; x p-matrix with rows x},,...,2}, , the conditional density,

s in; o
fils(-, 1bs), of y; given z; = s, is an n;-dimensional multivariate normal

density with mean X;3; and covariance matrix X;s, where

Eis = XZESXZI + U?-In; (6)

and I, is the n;-dimensional identity matrix.
The unconditional mean and covariance matrix of y; are given by

S
s=1
and
S
Var(y;) = Y m [{XiZ, X} + 021, } + AA'] (8)
s=1
where

S
A= Xlﬂs - Zﬂinﬂsa
s=1
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but the distribution of y; is not normal if the subjects divide into at least
two different segments.

2.2. Covariance structure

One may wish to restrict the variance/covariance parameters in order to
make estimation feasible in cases with sparse data or to avoid segmentation
on the basis of variance parameters when the mean parameters are the
target.

The restrictions are divided into two essentially different sets of restric-
tions, the first concerning the distribution of the random coefficients within
segments, the second concerning assumptions of variance/covariance homo-
geneity across segments.

For the random coefficient distribution the following three cases are
considered:

1. X; positive definite (unrestricted).
2. %, =diag(o},,...,0%,).
3. %, =0,

The different variance/covariance homogeneity assumptions yield four
levels of restrictions:

A No restrictions across segments.

BU%:...:U§,:U2_
CElZZES:E
Dg%:---:ggzazandzl:"':ES:E-

2.3. Nuisance parameters

So far, we have included all mean parameters in the segmentation of the
subjects. However, there may be parameters that are considered nuisance
parameters and therefore are not a target for the segmentation. One exam-
ple of nuisance parameters would be parameters describing subject specific
levels in cases where we are interested in how changes of covariates affect
the response.

We consider the modification of (1)
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yi = Di&i + XiB; + € 9)

where D; is a known injective design matrix and & € R% is a nuisance
parameter.

3. Estimation of the Parameters

In the following sections we discuss identifiability and maximum likelihood
estimation of the parameters.

3.1. Identifiability

The LCRCR model is only identifiable up to permutation of the segment
labels 1,...,S, but this problem may be overcome by imposing the
restrictions

m <my < < Tg (10)

on the mixing proportions (see Aitken and Rubin [1]). In practice the
estimation may be carried out without this restriction, doing the reordering
post hoc. Of course any ordering of the segment labels is as good as any
other and we follow McLachlan and Basford [16], reporting the parameter
estimates of one of the S! permutations.

Yakowitz and Spragins [25] show that a mixture of unrestricted multivari-
ate normal distributions is identifiable. Identifiability in the LCRCR case
is thus ensured if the parameters of the normal components are identified.
In the balanced case with all X; = X, the means and covariance matrices
are X3, and XX, X’ + 021 respectively, and the model is identifiable if
and only if X is injective and n = n; > p. If n = p the mean parameters
of the normal components are still identifiable, but this is not the case for
the variance parameters o2 unless further restrictions are imposed on Y.
In the unbalanced case the identifiability problem is more complicated but
identifiability is ensured if the above conditions hold true for at least one
subject, though this is no longer a necessary requirement in general.

Titterington et al. [21] give an introduction to identifiability of mixtures
and references to further literature on the subject.

3.2. The likelihood function

By the independence assumptions we obtain the following likelihood func-
tion for all observations:
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I s
Ly(8) = H Zﬂ'sfﬂs(yia ¥s) (11)
i=1 s=1

Maximum likelihood estimation may now be carried out by direct max-
imization of (11), e.g. using the Newton-Raphson algorithm or Fisher’s
scoring method. This requires the calculation of the first and second order
derivatives of the log likelihood function and we will not go through with
this, but use the more easily implemented EM-algorithm instead.

It is well known that mixture distributions may have unbounded likeli-
hood functions, see e.g. Day [4]. For a subject with y; = X, the likelihood
function increases unboundedly as the determinant of the covariance ma-
trix in segment s tends to 0. Thus maximum likelihood estimation in the
usual sense breaks down. In many cases, however, a local maximum point
of the likelihood function provides a consistent estimate of the parame-
ters. Hathaway [10] discusses regularity conditions under which a local
maximum likelihood estimator exists and is consistent, while Kiefer [11]
considers the special case of the switching regression model.

3.3. The EM-algorithm

The EM-algorithm is an iterative optimization algorithm and was formally
developed by Dempster et al. [5] with the purpose of optimizing likelihood
functions in incomplete data situations. Incomplete data was to be un-
derstood in a broad sense including missing observations and unobservable
random variables. Hence, the EM-algorithm is commonly used for mix-
ture models, see e.g. Redner and Walker [19] and Desarbo and Cron [6].
The details of the algorithm for the specific model of the present paper are
therefore omitted.

The fitting of the models using the various variance/covariance restric-
tions of section 2.2 can be seen to be simple modifications of the M-step of
the algorithm.

Regarding the handling of nuisance parameters, instead of estimating &;
in each step of the algorithm, transformation of the data beforehand can
be done to eliminate the nuisance parameters: if @; is an n; X (n; — ¢;)-
matrix with orthonormal columns and Q}D; = 0, the distribution of the
transformed data, Q}y;, does not depend on the nuisance parameters and
the original EM-algorithm may be used with y; replaced by Qly; and X;
by Q}X;. This saves computation time, since the modification is done only
once.
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4. Application to Coffee Data

The present data is part of a larger data set from a tasting experiment
with coffee, described in more detail in ESN [9]. This part of the data set
was used for a workshop at the Second Pangborn sensory science sympo-
sium, Davis, USA, 1995 and workshop contributions are published, see e.g.
Brockhoff [3].

In a sensory study 45 trained assessors evaluated 8 different coffee prod-
ucts with respect to 16 sensory properties on the scale 0, 10,..., 100, a high
score indicating a high level of the given sensory attribute. Each assessor
tasted the same product three times, giving a total of 3 x 45 x 8 = 1080
observations for each sensory property. The sensory properties were acid
taste, bitter taste, burnt flavor, caramel flavor, wood flavor, chemical fla-
vor, earth flavor, astringent mouth feel, floral flavor, fruity flavor, grass
flavor, malty flavor, rancid flavor, salty taste, sweet taste, and sour taste.

In addition to the sensory study, data from a consumer survey with the
same eight products were available. In this survey consumers were asked
to assign a preference score on the scale 1, 2.....9 to each product, a high
score indicating a high preference of the given product.

The sensory evaluations were conducted by the International coffee orga-
nization in England and the consumer survey involved 369 consumers from
the five countries: Denmark (51), France (80), Germany (73), Poland (80),
and the UK (85).

The sensory variables were standardized to have error variance one, where
the error variance was estimated from the residuals in a two-way analysis
of variance, using assessor and product as factors (including interaction)
and the seven principal components of the standardized sensory variables
were used as predictors in a regression setup with consumer preferences as
responses. The standardization of the sensory variables was done in order
to avoid principal directions based on random error variation.

We fitted the LCRCR-model with restrictions 2 D (see section 2.2) to the
data, after eliminating the consumer levels according to section 2.3. The
results of testing the effects of the PC-scores in the presence of 1, 2 and 3
segments, respectively, are seen in Table 1 and tests of the number of seg-
ments being 1 or 2 against the alternatives 2 and 3 segments, respectively,
are given in Table 2. The latter two tests were carried out by bootstrap-
ping (see McLachlan [15]) since a hypothesis of having one segment less
corresponds to a segment proportion equal to 0, which is a boundary value
of the parameter space, and the usual asymptotic theory for the likelihood
ratio statistic does not apply (see McLachlan and Basford [16], pp. 21).
In each case 100 bootstrap samples were generated by simulation, using
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Figure 1. Centered preferences and estimates - no segmentation.

the parameter estimates under the hypothesis to be tested. The likelihood
ratio statistic was calculated for each of the 100 bootstrap samples and the
fifth largest used as an estimate, go.g5, of the 95 % quantile in the distri-
bution of the statistic. Several different starting values for the parameters
were used in each case to be as sure as possible that a maximum of the
likelihood function was obtained.

Summarizing the test results, only the fourth principal component is
insignificant in the cases with 1, 2 or 3 segments. A test of the significance
of the fourth principal component was done against the full model whereas
the other tests reported in Table 1 are tests against the alternative model
with the fourth component removed. From the test results in Table 2, we
conclude that the 1-segment model describes the data inadequately whereas
the 2-segment model is accepted when tested against the 3-segment model.
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Table 1. Likelihood ratio tests for exclusion of each principal component within a model
with one, two and three segments respectively.

cov 1 segment 2 segments 3 segments
2logQ df P (%) -2logQ df P (%) -2logQ df P (%)
pcl 825 1 0.0 145.8 2 0.0 160.5 3 0.0
pc2 17.8 1 0.0 889 2 0.0 96.8 3 0.0
pc3 286 1 0.0 29.7 2 0.0 344 3 0.0
pcd 04 1 52.7 26 2 27.3 48 3 18.7
pcd 176.5 1 0.0 239.8 2 0.0 2545 3 0.0
pc6 41.0 1 0.0 480 2 0.0 55.7 3 0.0
pc7 123 1 0.0 132 2 0.1 16.8 3 0.1

segment=1 segment=2

Preference

reference
| | i i
e W m e o N W e ;o

-4 -3 -2 -1 0 1 2 3 4 5 6 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Estimated Preference Estimated Preference

Figure 2. Centered preferences and estimates - 2 segments.

Table 2. Tests of the number of segments by bootstrapping. The second column is the
95% quantile of the statistic in 100 bootstrap samples.

#segments -2logQ do.95

1 63.2 21.7
2 14.7 19.7
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Figure 3. Regression coefficients of sensory attributes.

Plots of the centered preferences against the estimated means for the
1- and 2-segment models are shown in Figures 1 and 2. From these it is
evident that the signal to noise ratio is low. However the 2-segment model
fits the data noticeably better than the 1-segment model. The estimates
of the segment proportions yield a second segment with a little more than
80% of the consumers.

The characteristics of the two segments in terms of the original (scaled)
sensory variables are illustrated in Figure 3. We see that bitter taste and
burnt flavor seem to be well liked in segment 1 but disliked in segment 2
whereas acid taste seems to be disliked by consumers from both segments.

If a consumer is assigned to the segment with the highest posterior, con-
sumer specific segmentation probability, we can look at the empirical dis-
tribution of these probability estimates to get an idea of how well the
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Figure 4. Empirical distribution of segmentation probabilities.

segmentation has worked. The histogram in Figure 4 shows the number of
consumers with segmentation probabilities in intervals of length 0.1. From
this it seems that the segmentation into segment 2 is more certain than
the segmentation into segment 1 in general. A larger proportion of the
consumers in segment 1 seem to be genuine mixtures of the two segments
than is the case in segment 2. Overall around 80% of the consumers were
assigned to a segment with probability greater than 0.9.

Finally, Figure 5 shows the distribution of the consumers on the segments
for each country and we see that the three countries Denmark, France
and Germany appear to be more homogeneous with respect to the coffee
preferences than the populations in Poland and the UK. In all five countries,
however, the majority of the consumers are assigned to the second segment.
The population in segment 1 is largely constituted by a group of Poles and
UK consumers, who apparently have a different preference for coffee than
the rest of the consumers.

5. Discussion

The EM algorithm has previously been used for maximum likelihood esti-
mation in linear mixed models, Laird et al. [12], and in latent class regres-
sion, Desarbo and Cron [6], and we have shown that the algorithm may
be applied to a model, which combines the latent class regression and the
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Arminger et al. [2] consider mixtures of multivariate normal distributions.
In cases where the covariance matrix is restricted, they suggest estimating
the parameters of the corresponding unrestricted model and then estimate
the parameters in the restricted case by minimizing some measure of dis-
tance between the two sets of covariance parameters.

Besides the likelihood approach, Bayesian analyses of mixture densities
are widely used in the literature, see e.g. Diebolt and Robert [7], Escobar
and West [8] and Richardson and Green [20]. Markov chains are used, to-
gether with a priori distributions for the number of mixture components
as well as for the mixture component parameters, to deal with the prob-
lem of having an unknown number of segments, enabling inference about
this number. However, the choice of prior distributions is somewhat con-
troversial and has an impact on the final inference about the number of
segments.

An application of a restricted version (D3) of the LCRCR model is given
in Poulsen et al. [18] to model the relation between consumer preferences
and sensory characteristics of frozen peas. In Poulsen et al. [18] it is also
outlined how the model can be seen as a model based so-called "External
preference mapping’, see McEwan [14].
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