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1. Introduction

Variational inequalities and complementarity problems play equally important roles
in applied mathematics, physics, control theory and optimization, equilibrium theory
of transportation and economics, mechanics, and engineering sciences. These pro-
blems, especially variational inequality problems, are studied in convex sets, while
complementarity problems are approached in convex cone settings leading to equiva-
lences. The complementarity problem in mathematical programming is based on a

special type of variational inequality in finite dimensions that has been central to the
development of important algorithms. General variational inequalities can be re-

duced to this special type by an application of discretization and the introduction of
Lagrange multipliers leading to a computational approach. There are situations
where computational methods for variational inequalities have an edge over the com-

plementarity. For more details on variational inequalities, we advise the reader to
refer to [1, 3-5, 14-16].
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2. Prehminaries

Let H be a real Hilbert space and H* its dual with the inner product (u, v) and norm

]1 u II for u,v in H. Let [w,u] denote the duality pairing between the element w in
H* and the element u in H. Let f: H*---H be a canonical isomorphism from H* onto
H defined by

[w,x] (f(w),x) for all x in H and all w in H*.

Thus, II f II II f-111 1.
Let T, U: HP(H*) be multivalued mappings from H into the powerset P(H*)

of H*. Let K be a nonempty, closed, convex subset of H. Then the problem of deter-
mining the elements z in K, u in T(z) and v in U(z), such that

[u- v, y- x] > 0 for all y in K,

is called the generalized nonlinear variational inequality (GNVI) problem.
The following presents a class of generalized nonlinear complementarity (GNC)

problems corresponding to the GNVI problem (2.2). Find an element z in K, an ele-
ment u in T(z) and an element v in U(z)such that

u- v is in K* and [u- v,x] 0,

where K* {w in H*:[w,z] > 0 for all z in K}.
For T:K---,H single-valued and U--0, the GNVI problem (2.2) reduces to the

variational inequality problem considered by Yao [13]: find an element x in K such
that

(x- Tx, y- x) > 0 for all y in g. (2.4)

To this end, let us recall some definitions crucial to the work at hand.
Definition 2.1: An operator T: HP(H*) from a Hilbert space H into the power-

set P(H*) of its dual is said to be strongly monotone if, for a constant r > 0 and for
all x, y in H,

[u- v,- y] >_ II - y II 2 for all u in T(x) and v in T(y).

Let (X, d) be a metric space and P(X) be the powerset of X. Then for any A, B
in P(X), we define

c3(A,B) sup{d(x,y):x is in A, and y is in B}. (2.6)

A mapping F: X-P(X) is said to be an s-contraction if

O(Fx, Fy) s(d(x, y)) for all x, y in X. (2.7)

Definition 2.2: An operator T:HP(H*) is said to be Lipschitz continuous if
there is a constant s > 0 such that for all x, y in H,

O(T, Ty) < II - Y II for s > O.



Nonlinear Variational Inequality Problems 291

Definition 2.3: An operator U:HP(H*) is said to be strongly Lipschitz if, for
x,y in H and u in U(x) and v in U(y),

(2.9)

where k > 0 is arbitrary.
Definition 2.4: An operator T: H---+H is hemicontinuous if the real function

+ z)

is continuous on [0, 1] for all z, y, z in H.
Let us consider an example of a strongly Lipschitz operator where the constant k

is slightly relaxed [13].
Example 2.5: Let K be a nonempty, closed, convex subset of a real Hilbert space

H. Let U:K---+K be hemicontinuous and, for all x,y in K and for a real number
k> -1,

(Ux Uy, x y) _< -kllx-yll2. (2.10)

If we define an operator V"KK by V(z) -(I- U)z for all z in K, then V is hemi-
continuous and strongly monotone with the strong monotonicity constant 1 + k, and
as a result, U has a unique fixed point in K.

3. Auxiliary and Main Results

Before we consider our main result, we need some auxiliary results.
Lemma 3.1" ([5]) Let K be a nonempty, closed, convex subset of a real Hilbert

space H. Then, for a given element z in H, x-PKz

(x- z,y- x) >_ O for all y G K. (3.1)

Lemma 3.2: Let K be a nonempty, closed, convex subset of H. Then the GNVI
problem (2.2) has a solution iff, for a constant t> O, the mapping F:H---P(H) de-
fined by

r(x) U U [PK(x- tf(u-- v))], (3.2)
T()

has a fixed point.
Proof: The proof is based on [2, Theorem 3.2]. If Xl, uI and vI form a solution

of the GNVI problem (2.2), then x1 is in K, uI is in T(Xl) and vI is in U(Xl) such
that

[uI -vi, y- Xl] >_ 0 for all y in K. (3.3)

This, in turn, implies that for a constant t > 0,

(X1 (X1 tf(u v)),y Xl) >_ 0 for all y in K. (3.4)

It follows from Lemma 3.1 that
xI Pk(Xl tf(u1 Vl)), (3.5)
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which is in

U U [PK(xl tf(ul- Vl))]- F(Xl)"
ulT(x1) v1 U(x1)

(3.6)

That is, X1 is a fixed point of F.
Conversely, if xI is a fixed point of F, then there exist u1 in T(Xl) and v1 in

U(x1) such that
x1 Pk(Xl tf(uI Vl) ). (3.7)

This implies that x1 is in K, and by Lemma 3.1, we find

(x1 (x1 tf(u1 vl)),y xl) >_ 0 for all y in K. (3.8)

Since t > 0, it follows that

[U1 Vl, y- Xl]

_
0 for all y in K. (3.9)

Hence Xl, U1 and v1 form a solution of the GNVI problem (2.2).
Lemma 3.3: ([2]) Let (X,d) be a complete, metrically convex metric space and

let F: X--P(X) be a contraction mapping. Then F has a fixed point; and for any xo
in X, the sequence {Xn} defined so that xn is in F(xn_ 1) for n >_ 1, converges to a

fixed point of F in X.
Theorem 3.4: Let H be a real Hilbert space and K be a nonempty, closed, con-

vex subset of H. Let T’H--,P(H*) be strongly monotone and Lipschitz continuous
with respective constants r > 0 and s > O. Let U’H---P(H*) be strongly Lipschitz
and Lipschitz continuous with respective constants k >_ 0 and m >_ 1. Then the GNVI
problem (2.2) has a solution for an arbitrary constant t such that 0 < t <

+ +
Proof: If we define an operator F: K--,P(K) by

r(x)- U U PK(x-ts(u-v)) fr all x in K,
e T() . e v()

(3.10)

then (by Lemma 3.2) it would suffice to show that F has a fixed point. PK is non-
expanding, T is strongly monotone and Lipschitz continuous, and U is strongly Lip-
schitz and Lipschitz continuous. Therefore, we find that, for all x, y in K, uI in T(x),
U2 in T(y), V1 in U(x) and v2 in U(y),

and

II P[K[x tf(ul vl)]- Pk[Y- tf(u2- v2)] I[- II x y -(tf(u1 u2)- tf(vI v2) II,

II x- y-(tf(uI u2)- f(v1 v2) II 2

(3.11)

II - y II 2t( y, f(uI u2)- f(vI v2) -b t2 II f(ul u2)- f(vl v2)[I 2

I1 - y II 2t) - y, f(uI u2) -[- 2t(x- y, f(v v2)

-t- t2 II f(ul u2)- f(vl v2)II 2
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+ t2 I] f(ul u2)- f(vl v2)II u- ]1 x y II 2 2tr II x y II 2 2tk II x y [I 2 "4- t2[ II f(ul u2)I! / II f(vl v2)II ]2

II y ]l 2t( +  )II y ]] 2 + t2[O(Tx, Ty) + (9(Ux, Uy)]2 by [6]

= { 1 2t(r + k) + t2(s + m)2) ]] x- y II 2. (3.12)

From (3.11) and (3.12), it follows that

c9(Fx, Fy)

_
L II x- y II for all x, y in K, (3.13)

1

where L (1 2t(r + k) + t2(s + m)2). Now, under the assumptions, 0 < L < 1 for
all t such that 0 < t < 2(r + k)/(s + m)2. Since each Hilbert space is a metrically
convex metric space, it follows from Lemma 3.3 that F has a fixed point x1 in K,
and hence xl, uI and v1 form a solution to the GNVI problem (2.2).

Theorem 3.5: Let K be a nonempty, closed, convex subset of a real Hilbert space
h. Let T:H--P(H*) be strongly monotone and Lipschitz continuous with the strong
monotonicity constant r > 0 and Lipschitz continuity constant s > O. Also, let U"
H---P(H*) be strongly Lipschitz and Lipschitz continuous with strong Lipschitzity con-

slant k >_ 0 and Lipschitz continuity constant m >_ 1. Consider the sequences {xn}
{un} and {vn} as generated by the iterative algorithm defined by

Xn -t- 1 (1 an)xn + anPk(xn tf(un vn) for any xo in K (3.14)

and for all t such that O<t<2(r+ k)/(s-{-m)2, where un is in T(Xn) vn is in

U(xn) O_an< 1, and the series aO+al+a2+... is divergent. Then {Xn} {Un}
and {Vn} converge to in K, -fi in H* and in H*, respectively, and 5, and

form a solution of the GNVI problem (2.2).
When f,T:H---,H are the identities, U’H---,H is single-valued and an -a > O,

then Theorem 3.5 reduces to [13, Theorem 3.6].
Corollary 3.6: Let U:H---H be strongly Lipschitz and Lipschitz continuous with

respective constants k >_ 0 and m >_ 1. Let the sequence {Xn} be generated by an

iterative scheme"

xn + 1 PK(( 1 a)xn q- aU(xn)) for any xo in K

and 0 < a < 2(1 + k)/(1 + 2k + m2). Then {xn} converges to the unique fixed point
of U.

Proof of Theorem 3.5: Under the assumptions, it follows from Theorem 3.4 that
5 in K, in T(5) and V in U(5) form a solution of the GNVI problem (2.2). Since
Pk is nonexpansive, we have

]] Xn + 1 5 (1 an)]1 xn - I[ -- an II tf(un + ft(vn - )11.
(3.16)
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Using the strong monotonicity and Lipschitz continuity of T and applying the strong
Lipschitzity and Lipschitz continuity of U, we find that

II :, tf(Un -t- tf(vn - )112

II , II = 2t<, , f(un )> -t- 2t<xn ", f(vn )>

+ t II f(Un f(Vn - )11

-t- t2 [I f(Un f(Vn - )11 2

II :. II 2 2t(r + k) II . !12 + t2(0(T,,T + 0(U.,U ))2

< (1 2t(r + k))II Zn II 2 + ,2(, + m)2 II , II 2

(3.17)

Now applying (3.17) to (3.16), we have that

II a:, + 1 - II
1

<_ (1 an)II ,, II + an[1 2t(r + k) + t2(s + m)2]7 II , II
= (1 -(1 M)an)II . II
n

< H [1 -(1 M)aj] II o- II, (3.18)
j=0

1
where 0<M-(1-2t(r+k)+(s+rn))g<l for all such that 0<t<
2(r + k)/(s + m). Since the series a0 + a1 + a2 -t-... diverges and M < 1, this implies

that nlirn I-I (1- (1- M)aj)- 0 and, consequently, {n} converges sgrongly to .
j=0

The Lipschit continuity of T and U implies that {un} and {vn} converge to res-
pectively. This completes the proof.
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