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We show that 3t-adapted set-valued stochastic processes satisfying mild
continuity conditions admit, 3t-adapted stochastically continuous selec-
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1. Introduction

In this paper we prove several theorems on the existence of 3t-adapted continuous
selections for 3t-adapted set-valued stochastic processes, as well as a continuous time
version of Hess’ result on martingale selection [3]. Such results may be useful in the
theory of the set-valued stochastic integral.

2. Preliminaries

Let (f, 3, P) be a probability space with a filtration (3t) > 0 (i.e., with a family of

fields 3t) such that 0 _< s <_ t implies that 3s C_ 3 C_ 3. We assume that all P-null
sets are in 30 Let 3t_ -r([.Js>t3s) and 3t+ fs>t3s Obviously, 3t_ C_
t - t +.

For a random variable :---Rn such that E(II flaldP < +c, by
E(13t) we denote the conditional expectation of , (i.e., an 3t-measurable
mapping) such that

A A
for each A E 3t.

We say that a set-valued mapping (I): f--+Rn is a set-valued random variable iff (I)

is 3-measurable (weakly measurable in the terminology of Himmelberg [5]), i.e.,
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{w: (I)(w)gl U 5 0} E ff for each open set U C_ Rn.
the real-valued function d(z, (b):f2---,Rn defined by

Equivalently, (I) is q-measurable iff

d(z, )(co) d(z, (I)(co)) inf II z II,
()

where II 0 II is the Euclidean norm of w e Rn, is a random variable. Clearly, for a

mapping o" f--,R
n identified with the set-valued mapping ff- {o}, this is equivalent

to saying that is a random variable. Let (Ft)- (Ft) > 0 be a set-valued stochastic
process with closed values in /n (i.e., a family of 5-meaurable set-valued mappings
Ft:f---Rn, >_ O, with closed values). We say that (Ft) is t-adapted iff F is t-
measurable for each t >_ 0, and we denote an t-adapted process (Ft) such that
E(d(O, Ft) < + c for each t_> 0, by (Ft,Jt). A selection of the process (Ft) is a
single-valued stochastic process (ft) such that for every t_>0, there holds
It(co) e Ft(co for P-almost all co. Additionally, if (ft)is t-adapted and satisfies
E(Iftl) < + c for each t _> 0, we will denote the process by (ft, 5t)"

Let us mention that for the unique r-field 4, the result on convergence of measur-
able selections being extracted from the sequence of measurable set-valued mappings,
that converge in the distribution, has been investigated by Salinetti and Wets [9,
Theorem 5.1, Corollary 5.2]. On the other hand, Hess has proven the existence of
martingale selections for discrete time, set-valued martingales and discussed the con-
vergence of set-valued martingales.

3. Selection Theorem Results

Our first simple result concerns the case when almost all paths t--Ft(co are contin-
uous, and similar to the results of Salinetti and Wets, are based on the regularity of
metric projections. For z Rn and the closed, convex set A C Rn, we denote by
Pr(’z, A) the metric projection of z onto A with respect to Euclidean norm (i.e., a uni-
que element P r (z,A) A such that II P(z,A)- z II d(,A)). Th Wijma topo-
logy for the family CCl(Rn) of all nonempty, closed convex subsets of Rn, is the
weakest topology such that for every y Rn, the function A--d(y,A) is continuous
[10]. We will need the following lemma.

Lemma 1: The mapping A-,Pr(z,A) of CCl(Rn) into Rn is continuous with res-
pect to the Wijsman topology.

Proof: For A, AoECCI(Rn) and z Rn, let us denote yo=Pr(yo, A),
y Pr(z,A). Clearly,

II y yo II II y Pr(y0, A)1[ + II Pr(y0, A)- Yo II II y Pr(yo, A)II + d(Yo, A).

By the parallelogram equality, we have

II y- Pr(Y0, A)II 2 2 II y- z II 2 + 2 II Pr(Y0, A)- z I[ 2 -4 II
y + Pr(Y’2 A) -zll 2_

2 II Pr(y0, A)- z II 2 2d(z, A)2.

But
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I] Pr(Y0, A)- z ]] < ]] Pr(y0, A)- Yo II + II Yo- z II d(yo, A)+ d(z, Ao).

Thus,

II Y- Pr(Yo, A)II 2

<_ 2(d(Yo, A + d(z, Ao)-d(z,A))(d(yo, A + d(z, Ao) + d(z,A)).

Consequently,

II y- yo II _< d(yo < A)

+ V/v/(d(Yo, A) + d(z, Ao) d(z, A))(d(Yo, A) + d(z, Ao) + d(z, A)).

From this it follows immediately that AHPr(z,A) is continuous with respect to the
Wijsman topology.

Theorem 1: If the stochastic process (Ft,Yt) has closed .convex values and for
every z Rn, the functions t--,d(z, Ft)(w is continuous for a.e. w , then for any
y Rn, the process (ft) defined by ft(w)= Pr(y, Ft(w)) is an t-adapted selection of
F such that tft(w is continuous for P-a.e. w .

Proof: By virtue of Lemma 1, from the assumption that the functions
td(z, Ft(w)) z R’, and a.e. w G are continuous, it follows that for every y G R,
a.e. w 2, the mapping tHPr(y, Ft(w))is continuous. To see that ft is Yt-measur-
able note that

Graphft {(w,z)" II Y- z II -d(y, rt(w)) 0) ffl GraphFt.

Hence, by virtue of [5, Theorem 3.5 and Corollary 6.3], ft is fit-measurable.
In the following theorems we dispense completely with the upper semicontinuity

assumption for the process (Ft,t). We do not adopt any lower semicontinuity
assumption for the functions td(y, Ft)(w); we assume only the stochastic upper
semicontinuity of these functions, which means the stochastic lower semicontinuity of
the process (Ft,Yt). We utilize a well-known theorem on measurable selections due
to Kuratowski and Ryll-Nardzewski, as well as theorems on continuous selections of
lower semicontinuous, set-valued mappings due to Michael [7] and to Antosiewicz,
Cellina (see e.g., [1, Theorem 3]), respectively. We will need the following lemma.

Lemma 2: Assume lhat for the stochastic process (Ft,t) s >_ 0 and every
z Rn, a ffs, the real-valued function tw-E(XAd(z, Ft) is right-hand (respectively:
left-hand) usc at s. Then for any s-measurable random variable o with

z(l l)< fu.ctio. (   V ctiv tu"
usc at s.

Proof: Let e > 0. By assuming that for any constant function, - z, we have

E(d(,Ft) < E(d(,Fs))+ whenever t G[s,s+6) (respectively, t G (s-6, s]) for
sufficiently small 5. For a step random variable n= lziXAi, A G Js, we have

m m

E(d(7, rt) E E(XAid(zi’ Ft)) < E (E(XAid(zi’ Fs)) +) < E(d(7’ Fs)) + ’i=1 i=1

whenever e [s,s +) (t e (s-5, s]) for sufficiently small . For an arbitrary 5s-
measurable 9, first choose a sequence of s-measurable step functions r such that
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E(lP-n[)--0" Then choose n such that E(19-pnl)< and let 6>0 be such
that E(d(n, Ft) < E(d(n, Fs))+ for t e [s,s +6) (t e (s- 5, s]). Then,

E(d(,Ft)) <- E( n l) + E(d(99n, Ft)) < E(d(n, Fs)) ---< E(I 99n T + E(d(, Fs) + < E(d(, Fs) + ,
whenever t e Is, s -t-5) (t E s- 5, s]).

Theorem 2: Assume that a set-valued stochastic process (Ft,t) has closed
convex values and for every z Rn, s >_ O, and A s, the real-valued function
t--E(XAd(z, Ft)) is right-hand usc at s. Then (Ft,t) has a Ll-right-hand contin-
uous selection (ft, t)"

Proof: Define a set-valued mapping G: [0, + oe)--,Ll(f, z5, Rn) by

a(t)- { Ll(a, ff,/n): 9 is fit-measurable selection of Ft}.

Based on the assumption E(d(z, Ft) < + c for each t>_ 0, the mapping a has non-

empty values by virtue of the Kuratowski and Ryll-Nardzewski measurable selection
theorem (see e.g., [5, Theorem 5.1]). Moreover, the sets G(t) are closed and convex
because the set-valued random variables F have closed, convex valucs. If we equip
[0, +oe) with the arrow topology r__, (i.e., the topology generated by the intervals
[s, t), 0 <_ s < t), then it follows from the assumptions that G" [0, + c)L(f,,Rn) is
a lower semicontinuous, set-valued mapping. Indeed, it suffices to show that
d(, G(t))- inf E G(t)E(] -- )-*0 as ts for any G(s), s >_ O. Since is 5t-
measurable for >_ s, as a consequence of Kuratowski and Ryll-Nardzewski selection
theorem, we have that

a(t))

for >_ s, (see HiM and Umegaki [4, Theorem 2.2] and Rybifiski [8, Lemma 6]). But
by virtue of Lemma 2 we have that E(d(,Ft))O as ts. This shows that G is
lower semicontinuous on ([0, + c),’_,). Since ([0, + c),7__,) is a Lindelhff space,
hence paracompact (see Engelking [2]), we can then apply the Michael continuous
selection theorem to G ([7, Theorem 3.2"]), and get a continuous mapping
g’[0, + )L(,,R) such that g(t) (t) for all 0. Obviously, continuity
with respect to means the right-hand continuity of g. We can then define the
stochastic process (ft)t>o by ft(w)-g(t)(w). Clearly, a selection (ft)is t-
adapted. Since E( f fs E( g(t) g(s) )+O as ts, then by the Chebyshev
inequality, P(ft- fs > e)+0 as t+s. Thus, (ft,t) is stochastically right-hand
continuous.

For the proof of the next selection theorem, we will need also the following con-
sequence of Levy’s martingale convergence theorem.

Proposition 1" t- t- if and only if the function sE( s) is P-almost
everywhere left-hand continuous art for each t-measurable such that E(II)<
+. Analogously, t t + ff and only ff the function sE(p s) is P-almost
everywhere right-hand continuous at for each -measurable such that

Proof: If t- t-, then by Levy’s theorem (see Liptser and Shiraev [6, p. 24])
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we have that E(9lJsn)E(9lt) whenever snTt. Conversely, observe that for

A E t, F’(XA]s,)--E(XA]t -) by Levy’s theorem whenever sTt. On the other

hand,, by assumption E(XA s ).E(XA t) XA, thus XA E(XA t- P-
Mmost everywhere. Therefore,n for B (ExA t- )- 1(1) Ft- P((AB)
(BA))-O. Since all P-null sets are in t-, we conclude that A t-" The
analogous statement regarding t t + can be verified in the same way.

Theorem 3: Let t-t- for each t > O. Assume that a set-valued stochastic
process (Ft,t) has closed values and for every z Rn, s O, A s, the. real-valued
function tE(XAd(Z, rt)) is use at s. Assume also that P is nonatomic or (Ft, t)
has convex values. Then (Ft, t) has an .L-continuous selection (ft, t)"

Proofi We consider [0, +) with the usual topology and will show that G
(defined in the proof of Theorem 2) is lower semicontinuous. The right-hand lower
semicontinuity can be proved exactly in the same way as in Theorem 2, so it suffices
to show that for fixed s > 0, G G(s), we have d(,G(t))O as tTs. But for t< s,
W hv

E(I - E(plffit) l)+ E(d(E(lt),Ft)))

<_ E( - E( t) + E( E( t)-1) + E(d(, Ft) ).

By Proposition 1 we have E(19-E(I ) 1)0 as tTs, and by Lemma 2 we have
E(d(99, Ft))---,O as tTs. Therefore G is a lower semicontinuous set-valued mapping
with closed values. Suppose now that P is nonatomic. Clearly, the sets G(t) are

decomposable (i.e., 9XA + CXf\A G(t) whenever 9, G(t) and A ff 5t). We can

apply the Antosiewicz-Cellina continuous selection theorem (see Bressan and
Colombo [1, Theorem 3]) to G, and get a continuous mapping g:[0, +cx)--,
LI(f,f,Rn) such that g(t) G(t) for all t>_ 0. If (Ft, ft) has convex values, as in
the proof of Theorem 2, we get a continuous selection g applying Michael’s theorem.
Thus, the stochastic process (ft) defined by ft(a;)= g(t)(w) has desired properties.

If we assure the continuity of the conditional expectation operator tv--E(9]t)
then we can extend Hess’ result [3, Theorem 3.2] on the martingale selection of
discrete time set-valued martingale and obtain a continuous martingale selection
result. A set-valued process (Ft, fit) is a set-valued martingale if

{99 G LI(, 3, )’9 is ffs-measurable selection of Fs}

cl{E(9 ffs)" p is 5t-measurable selection of 5t}

for any 0 _< s _< t, (see Hiai and Umegaki [4], Hess [3]). We propose the following con-
tinuous time version of Hess’ theorem.

Proposition 2: Let (Ft,Jt) be a set-valued martingale. If for every >_ 0 we have

5t- t-, then (rt, t) admits a martingale selection (ft, Jt) with P-almost all paths
left-hand continuous. If for every >_ 0 we have t- 5t+, then (Ft,t) admits a

martingale selection (ft, fit) with P-almost all paths right-hand continuous.
Proof: Consider the discrete time set-valued martingale (Fn)n_o obtained
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from (Ft, t) by taking t= O, 1, By the Hess result, (Fn) has a martingale selec-
tion (fn) (i.e., there exists a sequence of 5n-measurable mappings fn:f2--+Rn such
that fn is a selection of Fn and In E(fn+llJn) for n 0,1,...). For t e
[0, +oo)\{0,1,2,...} we define f,:a--,R by ft E(fnlJt) where n-1 < t < n.

Clearly, (ft) is a martingale selection of F. By Proposition 1, (ft) has P-almost all
paths left-hand (respectively, right-hand) continuous.
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