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1. Introduction

In this paper we prove several theorems on the existence of ¥,-adapted, continuous
selections for ¥F,-adapted, set-valued stochastic processes, as well as a continuous time
version of Hess’ result on martingale selection [3]. Such results may be useful in the
theory of the set-valued stochastic integral.

2. Preliminaries

Let (Q2,F, P) be a probability space with a filtration (¥F,), 5 o (i-e., with a family of o-

fields ¥,), such that 0 <s <t implies that ¥, CF, CF. We assume that all P-null
sets are in F,. Let ¥,_ =o(U,>,F,) and F,, =), ;F, Obviously, F, _ C
F,CF - B

For a random variable :Q—R™ such that E(|¢|)= [qle|dP < 400, by
E(p|%F,) we denote the conditional ezpectation of ¢, (i.e., an F,-measurable
mapping) such that

/ E(p|F,)dP = / ¢dP
A A
for each A € ¥,.

We say that a set-valued mapping ®: Q—R" is a set-valued random variable iff ¢
is F-measurable (weakly measurable in the terminology of Himmelberg [5]), i.e.,
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{w:®(w)NU # 0} € F for each open set U C R™. Equivalently, ® is F-measurable iff
the real-valued function d(z, ®):Q2Q—R" defined by

2, ®)(w) = d(,B()) zjnf 2=,

where ||w|| is the Euclidean norm of w € R", is a random variable. Clearly, for a
mapping ¢: Q—R"™ identified with the set-valued mapping ® = {¢}, this is equivalent
to saying that ¢ is a random variable. Let (F,) = (F,), > o be a set-valued stochastic
process with closed values in R™ (i.e., a family of F-measurable set-valued mappings
F;:Q—R" t >0, with closed values) We say that (F,) is F,-adapted iff F, is F,-
measurable for each >0, and we denote an ¥F,-adapted process (F,) such that
E(d(0,F,)) < + oo for each t >0, by (F,,F,). A selection of the process (F,) is a
single-valued stochastic process (f,) such that for every ¢>0, there holds
fi(w) € Fy(w) for P-almost all w. Additionally, if (f,) is ¥,-adapted and satisfies
E(|f;|) < 4 oo for each t > 0, we will denote the process by (f,,¥F,).

Let us mention that for the unique o-field ¥, the result on convergence of measur-
able selections being extracted from the sequence of measurable set-valued mappings,
that converge in the distribution, has been investigated by Salinetti and Wets [9,
Theorem 5.1, Corollary 5.2]. On the other hand, Hess has proven the existence of
martingale selections for discrete time, set-valued martingales and discussed the con-
vergence of set-valued martingales.

3. Selection Theorem Results

Our first simple result concerns the case when almost all paths t—F,(w) are contin-
uous, and similar to the results of Salinetti and Wets, are based on the regularity of
metric projections. For z € R™ and the closed, convex set A C R", we denote by
Pr(z, A) the metric projection of z onto A with respect to Euclidean norm (i.e., a uni-
que element P r (z,A) € A such that ||Pr(z,A)—z|| =d(z,A4)). The Wijsman topo-
logy for the family CCI(R™) of all nonempty, closed convex subsets of R", is the
weakest topology such that for every y € R", the function A—d(y, A) is continuous
[10]. We will need the following lemma.

Lemma 1: The mapping A— Pr(z, A) of CCI(R™) into R™ is continuous with res-
pect to the Wijsman topology.

Proof: ~ For A,Ay€ CCI(R™) and z€ R", let us denote yy=Pr(yyA),
y = Pr(z, A). Clearly,

lv=voll < lly—Pr(yg, A) || + || Pr(yo, 4) —yo Il = 1y —Pr(ye, 4) | +d(ye, 4).
By the parallelogram equality, we have
y + Pr(yy, 4)
1y =Pr(yg, A) |2 =2 [y =2 1|2 + 21| Pr(yg, A) — 2 || 2= 4 | L5202 72
< 2| Pr(yg, 4) — z || 2 — 2d(z, A)%

But
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| Pr(yg, A) =z || < [ Pr(yo, A) = wo Il + 1190 — 2 || = d(yo, A) + d(2, Ap)-
Thus,
|y —Pr(yo,4) |2
< 2(d(ygy A) + d(z, Ag) — d(2, A))(d(yg, A) + d(2, Ag) + d(2, 4)).
Consequently,
ly—yoll <d(yo<A)

+ /24y, A) + d(z, Ag) — d(z, A))(d(yo, A) + d(z, Ag) + d(z, A)).-

From this it follows immediately that A—Pr(z, A) is continuous with respect to the
Wijsman topology.

Theorem 1: If the stochastic process (F,,¥F,) has closed conver values and for
every z € R", the functions t—d(z, F,)(w) is continuous for a.e. w € Q, then for any
y € R", the process (f,) defined by f,(w) = Pr(y, Fy(w)) is an F,-adapted selection of
F such that t—f,(w) is continuous for P-a.e. w € Q.

Proof: By virtue of Lemma 1, from the assumption that the functions
t—d(z, Fy(w)),z € R", and a.e. w € Q are continuous, it follows that for every y € R",
a.e. w € Q, the mapping t—Pr(y, F,(w)) is continuous. To see that f, is F,-measur-
able note that

Graph f, = {(w,2): ||y — 2 || —d(y, F,(w)) = 0} N Graph F,

Hence, by virtue of [5, Theorem 3.5 and Corollary 6.3], f, is F,-measurable.

In the following theorems we dispense completely with the upper semicontinuity
assumption for the process (F,,¥,). We do not adopt any lower semicontinuity
assumption for the functions t—d(y,F,)(w); we assume only the stochastic upper
semicontinuity of these functions, which means the stochastic lower semicontinuity of
the process (F,,¥,). We utilize a well-known theorem on measurable selections due
to Kuratowski and Ryll-Nardzewski, as well as theorems on continuous selections of
lower semicontinuous, set-valued mappings due to Michael [7] and to Antosiewicz,
Cellina (see e.g., [1, Theorem 3]), respectively. We will need the following lemma.

Lemma 2: Assume that for the stochastic process (F,,F,), s>0 and every
z€ R", A€ 9%, the real-valued function t—E(x 4d(z,F,)) is right-hand (respectively:
left-hand) wusc at s. Then for any F,-measurable random wvariable ¢ with
E(l¢|) < + oo, the function t—E(d(p,F,)) is right-hand (respectively: left-hand)
usc at s.

Proof: Let € > 0. By assuming that for any constant function, ¢ = z, we have
E(d(p, F,)) < E(d(p, F,)) +5 whenever t € [s,s+6) (respectively, t € (s—6,s]) for
sufficiently small §. For a step random variable p = > 7 ,2z,x4,4; € F,, we have

m m ¢
E(d(e, F)) =) E(xp,d(z;, 1)) < > (E(xad(z; F)) +§) < E(d(e, Fy)) +e
i=1 1=1
whenever t € [s,5+6) (t € (s—0,s]) for sufficiently small §. For an arbitrary ¥
measurable ¢, first choose a sequence of ¥ -measurable step functions ¢, such that
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E(|¢—¢,|)—0. Then choose n such that E(|p—¢,|) <5 and let § >0 be such
that E(d(p,, F;)) < E(d(p,, F,))+5 for t € [s,5+6) (t € (s — 6,5]). Then,

E(d(p, F)) < B(19 = @, |) + E(d(pn Fy)) < B(d(0, F ) + 3¢
<SE(lpa=p 1)+ E(d(p, ) +3 < B(d(p, F,)) +¢,

whenever t € [s,s +§) (t € s —6,5]).

Theorem 2: Assume that a set-valued stochastic process (F,,F,) has closed
conver values and for every z€ R", s >0, and A€ F,, the real-valued function
trE(x 4d(2, F,)) is right-hand usc at s. Then (F,,%,) has a L*-right-hand contin-
uous selection (f,,F,).

Proof: Define a set-valued mapping G:[0, 4+ co)—L!(Q,F, R™) by

G(t) = {p € L} (Q,F, R™): ¢ is F,-measurable selection of F,}.

Based on the assumption E(d(z,F,)) < + oo for each t > 0, the mapping G has non-
empty values by virtue of the Kuratowski and Ryll-Nardzewski measurable selection
theorem (see e.g., [5, Theorem 5.1]). Moreover, the sets G(t) are closed and convex
because the set-valued random variables F', have closed, convex values. If we equip
[0, + c0) with the arrow topology 7_, (i.e., the topology generated by the intervals
[5,1),0 <'s < t), then it follows from the assumptions that G:[0, + c0)—L(2, F, R") is
a lower semicontinuous, set-valued mapping. Indeed, it suffices to show that
d(p,G(t)) = inf,, ¢ G(t)E( | o—1])—0 as t|s for any ¢ € G(s), s > 0. Since ¢ is F,-
measurable for ¢t > s, as a consequence of Kuratowski and Ryll-Nardzewski selection
theorem, we have that

d(p, G(1)) = E(d(p, Fy))

for t > s, (see Hiai and Umegaki [4, Theorem 2.2] and Rybinski [8, Lemma 6]). But
by virtue of Lemma 2 we have that E(d(p, F,))—0 as t|s. This shows that G is
lower semicontinuous on ([0, +00),7_,). Since ([0, +00),7_,) is a Lindeloff space,
hence paracompact (see Engelking [2]), we can then apply the Michael continuous
selection theorem to G ([7, Theorem 3.2"]), and get a continuous mapping
9:[0, + 00)—= L} (2, F, R™) such that g(t) € G(t) for all ¢t >0. Obviously, continuity
with respect to 7_, means the right-hand continuity of g. We can then define the
stochastic process (f,);>o by fy(w)=g(t)(w). Clearly, a selection (f,) is F,-
adapted. Since E(|f,—f,|)=E(|g(t)—g(s)|)—0 as t|s, then by the Chebyshev
inequality, P(|f,—f,| >¢)—0 as t—s. Thus, (f,,F,) is stochastically right-hand
continuous.

For the proof of the next selection theorem, we will need also the following con-
sequence of Levy’s martingale convergence theorem.

Proposition 1: ¥, =%, _ if and only if the function s—E(p|%F,) is P-almost
everywhere left-hand continuous at t for each F,-measurable ¢ such that E(|¢|) <
+o00. Analogously, F,=F, , if and only if the function s—E(p|%F,) is P-almost
everywhere right-hand continuous at t for each F-measurable ¢ such that
E(]¢]) < +oo.

Proof: If ¥, =%, _, then by Levy’s theorem (see Liptser and Shiraev [6, p. 24])
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we have that E(p|%F, )—E(¢|%F,) whenever s, 1t. Conversely, observe that for
A€eF, E(xy|F, )»E(x4|F,_) by Levy’s theorem whenever s_1t. On the other
n

hand, by assumption E(x4|%F, )=E(x4| %) = x4 thus x4 =E(x4|%,_) P-
almost everywhere.  Therefore,” for B = (By [F_)" Y1)eF,_, P((A\B)U
(B\A)) =0. Since all P-null sets are in ?ft_,Awe conclude that A€ ¥, _. The
analogous statement regarding ¥, = ¥, , can be verified in the same way.

Theorem 3: Let F, =%, _ for each t > 0. Assume that a set-valued stochastic
process (F,,F,) has closed values and for every z € R", s >0, A € ¥, the real-valued
function t—E(x 4d(z,F,)) is usc at s. Assume also that P is nonatomic or (F,,%F,)
has convez values. Then (F,,F,) has an L'-continuous selection (f,,F,).

Proof: We consider [0, +oc0) with the usual topology and will show that G
(defined in the proof of Theorem 2) is lower semicontinuous. The right-hand lower
semicontinuity can be proved exactly in the same way as in Theorem 2, so it suffices
to show that for fixed s >0, ¢ € G(s), we have d(p,G(t))—0 as t]s. But for t <s,
we have

dp, G(1) S E(lp—E(p|F,) 1) +d(E(p| %), G(1))
=E(le—E(p|%F) 1)+ EW(E(@| %), F)
SE(le—E(e|F) )+ E(E(p|F) ¢ )+ E(d(p, Fy))-

By Proposition 1 we have E(|o — E(¢|%,)|)—0 as ts, and by Lemma 2 we have
E(d(p,F,))—0 as tls. Therefore G is a lower semicontinuous set-valued mapping
with closed values. Suppose now that P is nonatomic. Clearly, the sets G(t) are
decomposable (i.e., x4+ YXa\a € G(t) whenever ¢,9 € G(t) and A € F,). We can

apply the Antosiewicz-Cellina continuous selection theorem (see Bressan and
Colombo [1, Theorem 3]) to G, and get a continuous mapping g:[0, + c0)—
L}(Q,F, R™) such that g(t) € G(t) for all t>0. If (F,,%,) has convex values, as in
the proof of Theorem 2, we get a continuous selection g applying Michael’s theorem.
Thus, the stochastic process (f,) defined by f,(w) = g(t)(w) has desired properties.

If we assure the continuity of the conditional expectation operator t—E(p |F,),
then we can extend Hess’ result [3, Theorem 3.2] on the martingale selection of
discrete time set-valued martingale and obtain a continuous martingale selection
result. A set-valued process (F,,¥F,) is a set-valued martingale if

{p € L}, F,P): v is F,-measurable selection of F}
=cl{E(p|F,): ¢ is F,-measurable selection of F,}

for any 0 < s <'t, (see Hiai and Umegaki [4], Hess [3]). We propose the following con-
tinuous time version of Hess’ theorem.

Proposition 2: Let (F',,F,) be a set-valued martingale. If for every t > 0 we have
F, =9F,_, then (F,,¥F,) admits a martingale selection (f,,F,) with P-almost all paths
left-hand continuous. If for every t >0 we have F, =%, , then (F,F,) admits a
martingale selection (f,,¥,) with P-almost all paths right-hand continuous.

Proof: Consider the discrete time set-valued martingale (F',), — .. obtained
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from (F,,%¥,) by taking ¢t =0,1,.... By the Hess result, (F',) has a martingale selec-
tion (f,) (i.e., there exists a sequence of ¥ -measurable mappings f,:Q—R™ such
that f, is a selection of F, and f,=E(f,,,|%,) for n=0,1,...). For te
[0, +0)\{0,1,2,...} we define f,:Q—R" by f,=E(f,|%,) where n—1<t<n.
Clearly, (f,) is a martingale selection of F. By Proposition 1, (f,) has P-almost all
paths left-hand (respectively, right-hand) continuous.
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