SELECTIONS OF SET-VALUED STOCHASTIC PROCESSES

MARIUSZ MICHTA and LONGIN E. RYBIŃSKI¹ Technical University, Institute of Mathematics Podgórna 50, 65-246 Zielona Góra, Poland

(Received May, 1996; Revised January, 1997)

We show that \mathfrak{F}_t -adapted, set-valued stochastic processes satisfying mild continuity conditions admit, \mathfrak{F}_t -adapted, stochastically continuous selections.

Key words: Set-valued Stochastic Process, Conditional Expectation, Martingale, Measurable and Continuous Selections.

AMS subject classifications: 60G20, 60G44, 54C60, 28B20.

1. Introduction

In this paper we prove several theorems on the existence of \mathfrak{F}_t -adapted, continuous selections for \mathfrak{T}_t -adapted, set-valued stochastic processes, as well as a continuous time version of Hess' result on martingale selection [3]. Such results may be useful in the theory of the set-valued stochastic integral.

2. Preliminaries

Let $(\Omega, \mathfrak{F}, P)$ be a probability space with a filtration $(\mathfrak{T}_t)_{t \geq 0}$ (i.e., with a family of σ -fields \mathfrak{F}_t), such that $0 \leq s \leq t$ implies that $\mathfrak{T}_s \subseteq \mathfrak{F}_t \subseteq \mathfrak{T}$. We assume that all *P*-null sets are in \mathfrak{F}_0 . Let $\mathfrak{F}_{t-} = \sigma(\bigcup_{s \geq t} \mathfrak{F}_s)$ and $\mathfrak{F}_{t+} = \bigcap_{s > t} \mathfrak{F}_s$. Obviously, $\mathfrak{F}_{t-} \subseteq \mathfrak{F}_t \subseteq \mathfrak{T}_{t+}$.

For a random variable $\varphi: \Omega \to \mathbb{R}^n$ such that $E(|\varphi|) = \int_{\Omega} |\varphi| dP < +\infty$, by $E(\varphi | \mathfrak{F}_t)$ we denote the *conditional expectation* of φ , (i.e., an \mathfrak{F}_t -measurable mapping) such that

$$\int_{A} E(\varphi \mid \mathfrak{F}_{t}) dP = \int_{A} \varphi dP$$

for each $A \in \mathfrak{F}_t$.

We say that a set-valued mapping $\Phi: \Omega \to \mathbb{R}^n$ is a set-valued random variable iff Φ is \mathfrak{F} -measurable (weakly measurable in the terminology of Himmelberg [5]), i.e.,

Printed in the U.S.A. ©1998 by North Atlantic Science Publishing Company

¹This work has been supported by KBN Grant Number 332069203.

 $\{\omega: \Phi(\omega) \cap U \neq \emptyset\} \in \mathfrak{F}$ for each open set $U \subseteq \mathbb{R}^n$. Equivalently, Φ is \mathfrak{F} -measurable iff the real-valued function $d(z, \Phi): \Omega \to \mathbb{R}^n$ defined by

$$d(z,\Phi)(\omega) = d(z,\Phi(\omega)) = \inf_{v \in \Phi(\omega)} ||z - v||,$$

where ||w|| is the Euclidean norm of $w \in \mathbb{R}^n$, is a random variable. Clearly, for a mapping $\varphi: \Omega \to \mathbb{R}^n$ identified with the set-valued mapping $\Phi = \{\varphi\}$, this is equivalent to saying that φ is a random variable. Let $(F_t) = (F_t)_{t \ge 0}$ be a set-valued stochastic process with closed values in \mathbb{R}^n (i.e., a family of \mathfrak{F} -measurable set-valued mappings $F_t: \Omega \to \mathbb{R}^n$, $t \ge 0$, with closed values). We say that (F_t) is \mathfrak{F}_t -adapted iff F_t is \mathfrak{F}_t -measurable for each $t \ge 0$, and we denote an \mathfrak{F}_t -adapted process (F_t) such that $E(d(0, F_t)) < +\infty$ for each $t \ge 0$, by (F_t, \mathfrak{T}_t) . A selection of the process (F_t) is a single-valued stochastic process (f_t) such that for every $t \ge 0$, there holds $f_t(\omega) \in F_t(\omega)$ for \mathcal{P} -almost all ω . Additionally, if (f_t) is \mathfrak{F}_t -adapted and satisfies $E(|f_t|) < +\infty$ for each $t \ge 0$, we will denote the process by (f_t, \mathfrak{T}_t) .

Let us mention that for the unique σ -field \mathfrak{F} , the result on convergence of measurable selections being extracted from the sequence of measurable set-valued mappings, that converge in the distribution, has been investigated by Salinetti and Wets [9, Theorem 5.1, Corollary 5.2]. On the other hand, Hess has proven the existence of martingale selections for discrete time, set-valued martingales and discussed the convergence of set-valued martingales.

3. Selection Theorem Results

Our first simple result concerns the case when almost all paths $t \mapsto F_t(\omega)$ are continuous, and similar to the results of Salinetti and Wets, are based on the regularity of metric projections. For $z \in \mathbb{R}^n$ and the closed, convex set $A \subset \mathbb{R}^n$, we denote by $\Pr(z, A)$ the metric projection of z onto A with respect to Euclidean norm (i.e., a unique element $\Pr(z, A) \in A$ such that $||\Pr(z, A) - z|| = d(z, A)$). The Wijsman topology for the family $CCl(\mathbb{R}^n)$ of all nonempty, closed convex subsets of \mathbb{R}^n , is the weakest topology such that for every $y \in \mathbb{R}^n$, the function $A \mapsto d(y, A)$ is continuous [10]. We will need the following lemma.

Lemma 1: The mapping $A \mapsto Pr(z, A)$ of $CCl(\mathbb{R}^n)$ into \mathbb{R}^n is continuous with respect to the Wijsman topology.

Proof: For $A, A_0 \in CCl(\mathbb{R}^n)$ and $z \in \mathbb{R}^n$, let us denote $y_0 = \Pr(y_0, A)$, $y = \Pr(z, A)$. Clearly,

$$||y - y_0|| \le ||y - \Pr(y_0, A)|| + ||\Pr(y_0, A) - y_0|| = ||y - \Pr(y_0, A)|| + d(y_0, A).$$

By the parallelogram equality, we have

$$\| y - \Pr(y_0, A) \|^2 = 2 \| y - z \|^2 + 2 \| \Pr(y_0, A) - z \|^2 - 4 \| \frac{y + \Pr(y_0, A)}{2} - z \|^2$$

$$\le 2 \| \Pr(y_0, A) - z \|^2 - 2d(z, A)^2.$$

But

$$\|\Pr(y_0, A) - z\| \le \|\Pr(y_0, A) - y_0\| + \|y_0 - z\| = d(y_0, A) + d(z, A_0).$$

Thus,

$$\| y - \Pr(y_0, A) \|^2$$

 $\leq 2(d(y_0, A) + d(z, A_0) - d(z, A))(d(y_0, A) + d(z, A_0) + d(z, A)).$

Consequently,

$$\begin{aligned} \| y - y_0 \| &\leq d(y_0 < A) \\ &+ \sqrt{2} \sqrt{(d(y_0, A) + d(z, A_0) - d(z, A))(d(y_0, A) + d(z, A_0) + d(z, A))} \end{aligned}$$

From this it follows immediately that $A \mapsto \Pr(z, A)$ is continuous with respect to the Wijsman topology.

Theorem 1: If the stochastic process (F_t, \mathfrak{F}_t) has closed convex values and for every $z \in \mathbb{R}^n$, the functions $t \mapsto d(z, F_t)(\omega)$ is continuous for a.e. $\omega \in \Omega$, then for any $y \in \mathbb{R}^n$, the process (f_t) defined by $f_t(\omega) = \Pr(y, F_t(\omega))$ is an \mathfrak{F}_t -adapted selection of F such that $t \mapsto f_t(\omega)$ is continuous for P-a.e. $\omega \in \Omega$.

Proof: By virtue of Lemma 1, from the assumption that the functions $t \mapsto d(z, F_t(\omega)), z \in \mathbb{R}^n$, and a.e. $\omega \in \Omega$ are continuous, it follows that for every $y \in \mathbb{R}^n$, a.e. $\omega \in \Omega$, the mapping $t \mapsto \Pr(y, F_t(\omega))$ is continuous. To see that f_t is \mathfrak{F}_t -measurable note that

$$\operatorname{Graph} f_t = \{(\omega, z) \colon || y - z || - d(y, F_t(\omega)) = 0\} \cap \operatorname{Graph} F_t.$$

Hence, by virtue of [5, Theorem 3.5 and Corollary 6.3], f_t is \mathfrak{F}_t -measurable.

In the following theorems we dispense completely with the upper semicontinuity assumption for the process (F_t, \mathfrak{F}_t) . We do not adopt any lower semicontinuity assumption for the functions $t \mapsto d(y, F_t)(\omega)$; we assume only the stochastic upper semicontinuity of these functions, which means the stochastic lower semicontinuity of the process (F_t, \mathfrak{F}_t) . We utilize a well-known theorem on measurable selections due to Kuratowski and Ryll-Nardzewski, as well as theorems on continuous selections of lower semicontinuous, set-valued mappings due to Michael [7] and to Antosiewicz, Cellina (see e.g., [1, Theorem 3]), respectively. We will need the following lemma.

Lemma 2: Assume that for the stochastic process (F_t, \mathfrak{T}_t) , $s \ge 0$ and every $z \in \mathbb{R}^n$, $A \in \mathfrak{F}_s$, the real-valued function $t \mapsto E(\chi_A d(z, F_t))$ is right-hand (respectively: left-hand) usc at s. Then for any \mathfrak{F}_s -measurable random variable φ with $E(|\varphi|) < +\infty$, the function $t \mapsto E(d(\varphi, F_t))$ is right-hand (respectively: left-hand) usc at s.

Proof: Let $\epsilon > 0$. By assuming that for any constant function, $\varphi \equiv z$, we have $E(d(\varphi, F_t)) < E(d(\varphi, F_s)) + \frac{\epsilon}{2}$ whenever $t \in [s, s + \delta)$ (respectively, $t \in (s - \delta, s]$) for sufficiently small δ . For a step random variable $\varphi = \sum_{i=1}^{m} z_i \chi_{A_i}, A_i \in \mathfrak{F}_s$, we have

$$E(d(\varphi, F_t)) = \sum_{i=1}^m E(\chi_{A_i} d(z_i, F_t)) \leq \sum_{i=1}^m (E(\chi_{A_i} d(z_i, F_s)) + \frac{\epsilon}{2^i}) \leq E(d(\varphi, F_s)) + \epsilon,$$

whenever $t \in [s, s + \delta)$ $(t \in (s - \delta, s])$ for sufficiently small δ . For an arbitrary \mathfrak{F}_s -measurable φ , first choose a sequence of \mathfrak{F}_s -measurable step functions φ_n such that

$$\begin{split} E(\mid \varphi - \varphi_n \mid) \to 0. \quad \text{Then choose n such that $E(\mid \varphi - \varphi_n \mid) < \frac{\epsilon}{3}$ and let $\delta > 0$ be such that $E(d(\varphi_n, F_t)) < E(d(\varphi_n, F_s)) + \frac{\epsilon}{3}$ for $t \in [s, s + \delta)$ ($t \in (s - \delta, s]$). Then, $t \in [s, s + \delta]$ (t \in (s - \delta, s]). Then, $t \in [s, s + \delta]$ (t \in (s - \delta, s]). Then, $t \in [s, s + \delta]$ (t \in (s - \delta, s]). Then, $t \in [s, s + \delta]$ (t \in (s - \delta, s]). Then, $t \in [s, s + \delta]$ (t \in [s, s + \delta]$ (t \in [s, s + \delta]) (t \in [s, s + \delta]$ (t \in [s, s + \delta]) (t \in [s, s$$

$$\begin{split} E(d(\varphi, F_t)) &\leq E(\mid \varphi - \varphi_n \mid) + E(d(\varphi_n, F_t)) < E(d(\varphi_n, F_s)) + \frac{2}{3}\epsilon \\ &\leq E(\mid \varphi_n - \varphi \mid) + E(d(\varphi, F_s)) + \frac{2}{3}\epsilon < E(d(\varphi, F_s)) + \epsilon, \end{split}$$

whenever $t \in [s, s + \delta)$ $(t \in s - \delta, s]$).

Theorem 2: Assume that a set-valued stochastic process (F_t, \mathfrak{F}_t) has closed convex values and for every $z \in \mathbb{R}^n$, $s \ge 0$, and $A \in \mathfrak{F}_s$, the real-valued function $t \mapsto E(\chi_A d(z, F_t))$ is right-hand usc at s. Then (F_t, \mathfrak{F}_t) has a L^1 -right-hand continuous selection (f_t, \mathfrak{F}_t) .

Proof: Define a set-valued mapping $G:[0, +\infty) \rightarrow L^1(\Omega, \mathfrak{F}, \mathbb{R}^n)$ by

$$G(t) = \{ \varphi \in L^1(\Omega, \mathfrak{F}, \mathbb{R}^n) : \varphi \text{ is } \mathfrak{F}_t \text{-measurable selection of } F_t \}.$$

Based on the assumption $E(d(z, F_t)) < +\infty$ for each $t \ge 0$, the mapping G has nonempty values by virtue of the Kuratowski and Ryll-Nardzewski measurable selection theorem (see e.g., [5, Theorem 5.1]). Moreover, the sets G(t) are closed and convex because the set-valued random variables F_t have closed, convex values. If we equip $[0, +\infty)$ with the arrow topology τ_{\rightarrow} (i.e., the topology generated by the intervals $[s,t), 0 \le s < t$), then it follows from the assumptions that $G:[0, +\infty) \rightarrow L(\Omega, \mathfrak{F}, \mathbb{R}^n)$ is a lower semicontinuous, set-valued mapping. Indeed, it suffices to show that $d(\varphi, G(t)) = \inf_{\psi \in G(t)} E(|\varphi - \psi|) \rightarrow 0$ as $t \downarrow s$ for any $\varphi \in G(s), s \ge 0$. Since φ is \mathfrak{F}_t measurable for $t \ge s$, as a consequence of Kuratowski and Ryll-Nardzewski selection theorem, we have that

$$d(\varphi, G(t)) = E(d(\varphi, F_t))$$

for $t \geq s$, (see Hiai and Umegaki [4, Theorem 2.2] and Rybiński [8, Lemma 6]). But by virtue of Lemma 2 we have that $E(d(\varphi, F_t)) \rightarrow 0$ as $t \downarrow s$. This shows that G is lower semicontinuous on $([0, +\infty), \tau_{\rightarrow})$. Since $([0, +\infty), \tau_{\rightarrow})$ is a Lindelöff space, hence paracompact (see Engelking [2]), we can then apply the Michael continuous selection theorem to G ([7, Theorem 3.2"]), and get a continuous mapping $g:[0, +\infty) \rightarrow L^1(\Omega, \mathfrak{F}, \mathbb{R}^n)$ such that $g(t) \in G(t)$ for all $t \geq 0$. Obviously, continuity with respect to τ_{\rightarrow} means the right-hand continuity of g. We can then define the stochastic process $(f_t)_{t \geq 0}$ by $f_t(\omega) = g(t)(\omega)$. Clearly, a selection (f_t) is \mathfrak{T}_t adapted. Since $E(|f_t - f_s|) = E(|g(t) - g(s)|) \rightarrow 0$ as $t \downarrow s$, then by the Chebyshev inequality, $P(|f_t - f_s| > \epsilon) \rightarrow 0$ as $t \rightarrow s$. Thus, (f_t, \mathfrak{F}_t) is stochastically right-hand continuous.

For the proof of the next selection theorem, we will need also the following consequence of Levy's martingale convergence theorem.

Proposition 1: $\mathfrak{F}_t = \mathfrak{F}_{t-}$ if and only if the function $\mathfrak{s}\mapsto E(\varphi \mid \mathfrak{F}_s)$ is *P*-almost everywhere left-hand continuous at t for each \mathfrak{F}_t -measurable φ such that $E(\mid \varphi \mid) < +\infty$. Analogously, $\mathfrak{F}_t = \mathfrak{F}_{t+}$ if and only if the function $\mathfrak{s}\mapsto E(\varphi \mid \mathfrak{F}_s)$ is *P*-almost everywhere right-hand continuous at t for each \mathfrak{F} -measurable φ such that $E(\mid \varphi \mid) < +\infty$.

Proof: If $\mathfrak{F}_t = \mathfrak{F}_t$, then by Levy's theorem (see Liptser and Shiraev [6, p. 24])

we have that $E(\varphi \mid \mathfrak{T}_{s_n}) \rightarrow E(\varphi \mid \mathfrak{T}_t)$ whenever $s_n \uparrow t$. Conversely, observe that for $A \in \mathfrak{T}_t$, $E(\chi_A \mid \mathfrak{T}_{s_n}) \rightarrow E(\chi_A \mid \mathfrak{T}_{t_-})$ by Levy's theorem whenever $s_n \uparrow t$. On the other hand, by assumption $E(\chi_A \mid \mathfrak{T}_{s_n}) \rightarrow E(\chi_A \mid \mathfrak{T}_t) = \chi_A$, thus $\chi_A = E(\chi_A \mid \mathfrak{T}_{t_-})$ *P*-almost everywhere. Therefore, for $B = (E_{\chi_A} \mid \mathfrak{T}_{t_-})^{-1}(1) \in F_{t_-}$, $P((A \setminus B) \cup (B \setminus A)) = 0$. Since all *P*-null sets are in \mathfrak{T}_{t_-} , we conclude that $A \in \mathfrak{T}_{t_-}$. The analogous statement regarding $\mathfrak{T}_t = \mathfrak{T}_{t_+}$ can be verified in the same way. **Theorem 3:** Let $\mathfrak{T}_t = \mathfrak{T}_{t_-}$ for each t > 0. Assume that a set-valued stochastic

Theorem 3: Let $\mathfrak{F}_t = \mathfrak{F}_t$ for each t > 0. Assume that a set-valued stochastic process (F_t, \mathfrak{T}_t) has closed values and for every $z \in \mathbb{R}^n$, $s \ge 0$, $A \in \mathfrak{T}_s$, the real-valued function $t \mapsto E(\chi_A d(z, F_t))$ is use at s. Assume also that P is nonatomic or (F_t, \mathfrak{T}_t) has convex values. Then (F_t, \mathfrak{T}_t) has an L^1 -continuous selection (f_t, \mathfrak{T}_t) .

Proof: We consider $[0, +\infty)$ with the usual topology and will show that G (defined in the proof of Theorem 2) is lower semicontinuous. The right-hand lower semicontinuity can be proved exactly in the same way as in Theorem 2, so it suffices to show that for fixed s > 0, $\varphi \in G(s)$, we have $d(\varphi, G(t)) \rightarrow 0$ as $t \uparrow s$. But for t < s, we have

$$\begin{split} d(\varphi, G(t)) &\leq E(\mid \varphi - E(\varphi \mid \mathfrak{F}_t) \mid) + d(E(\varphi \mid \mathfrak{F}_t), G(t)) \\ &= E(\mid \varphi - E(\varphi \mid \mathfrak{F}_t) \mid) + E(d(E(\varphi \mid \mathfrak{F}_t), F_t))) \\ &\leq E(\mid \varphi - E(\varphi \mid \mathfrak{F}_t) \mid) + E(\mid E(\varphi \mid \mathfrak{F}_t) - \varphi \mid) + E(d(\varphi, F_t)). \end{split}$$

<

By Proposition 1 we have $E(|\varphi - E(\varphi | \mathfrak{F}_t)|) \to 0$ as $t \uparrow s$, and by Lemma 2 we have $E(d(\varphi, F_t)) \to 0$ as $t \uparrow s$. Therefore G is a lower semicontinuous set-valued mapping with closed values. Suppose now that P is nonatomic. Clearly, the sets G(t) are decomposable (i.e., $\varphi \chi_A + \psi \chi_{\Omega \setminus A} \in G(t)$ whenever $\varphi, \psi \in G(t)$ and $A \in \mathfrak{F}_t$). We can apply the Antosiewicz-Cellina continuous selection theorem (see Bressan and Colombo [1, Theorem 3]) to G, and get a continuous mapping $g:[0, +\infty) \to L^1(\Omega, \mathfrak{F}, \mathbb{R}^n)$ such that $g(t) \in G(t)$ for all $t \ge 0$. If (F_t, \mathfrak{F}_t) has convex values, as in the proof of Theorem 2, we get a continuous selection g applying Michael's theorem. Thus, the stochastic process (f_t) defined by $f_t(\omega) = g(t)(\omega)$ has desired properties.

If we assure the continuity of the conditional expectation operator $t \mapsto E(\varphi | \mathfrak{F}_t)$, then we can extend Hess' result [3, Theorem 3.2] on the martingale selection of discrete time set-valued martingale and obtain a continuous martingale selection result. A set-valued process (F_t, \mathfrak{F}_t) is a set-valued martingale if

- $\{\varphi \in L^1(\Omega, \mathfrak{F}, \mathfrak{P}): \varphi \text{ is } \mathfrak{F}_{\mathfrak{s}}\text{-measurable selection of } F_{\mathfrak{s}}\}$
 - $= \operatorname{cl} \{ E(\varphi \mid \mathfrak{F}_s) : \varphi \text{ is } \mathfrak{F}_t \text{-measurable selection of } \mathfrak{F}_t \}$

for any $0 \le s \le t$, (see Hiai and Umegaki [4], Hess [3]). We propose the following continuous time version of Hess' theorem.

Proposition 2: Let (F_t, \mathfrak{F}_t) be a set-valued martingale. If for every $t \ge 0$ we have $\mathfrak{T}_t = \mathfrak{T}_{t-}$, then (F_t, \mathfrak{T}_t) admits a martingale selection (f_t, \mathfrak{T}_t) with P-almost all paths left-hand continuous. If for every $t \ge 0$ we have $\mathfrak{T}_t = \mathfrak{T}_{t+}$, then (F_t, \mathfrak{T}_t) admits a martingale selection (f_t, \mathfrak{T}_t) with P-almost all paths ratios a martingale selection (f_t, \mathfrak{T}_t) with P-almost all paths right-hand continuous.

Proof: Consider the discrete time set-valued martingale $(F_n)_{n=0,\ldots}$ obtained

from (F_t, \mathfrak{F}_t) by taking $t = 0, 1, \ldots$ By the Hess result, (F_n) has a martingale selection (f_n) (i.e., there exists a sequence of \mathfrak{F}_n -measurable mappings $f_n: \Omega \to \mathbb{R}^n$ such that f_n is a selection of F_n and $f_n = E(f_{n+1} | \mathfrak{F}_n)$ for $n = 0, 1, \ldots)$. For $t \in [0, +\infty) \setminus \{0, 1, 2, \ldots\}$ we define $f_t: \Omega \to \mathbb{R}^n$ by $f_t = E(f_n | \mathfrak{F}_t)$ where n-1 < t < n. Clearly, (f_t) is a martingale selection of F. By Proposition 1, (f_t) has P-almost all paths left-hand (respectively, right-hand) continuous.

References

- [1] Bressan, A. and Colombo, G., Extensions and selections of maps with decomposable values, *Studia Math* **90** (1988), 69-85.
- [2] Engelking, R., General Topology, Monografie Matematyczne, PWN Warszawa, Poland 1976.
- [3] Hess, C., On multivalued martingales whose values may be unbounded: Martingale selectors and Mosco convergence, J. Multivar. Anal. **39** (1991), 175-201.
- [4] Hiai, F. and Umegaki, H., Integrals, conditional expectations, and martingales of multivalued functions, J. Multivar. Anal. 7 (1977), 149-182.
- [5] Himmelberg, C.J., Measurable relations, Fund. Math. 87 (1975), 53-72.
- [6] Liptser, R.Sh. and Shiraev, A.N., Stochastics of Random Processes, Springer-Verlag, Berlin 1976.
- [7] Michael, E., Continuous selections I, Ann. of Math. 63 (1956), 361-382.
- [8] Rybiński, L.E., Random fixed points and viable random solutions of functionaldifferential inclusions, J. Math. Anal. Appl. 142 (1989), 53-61.
- [9] Salinetti, G. and Wets, R.J.-B., On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima, *Math. Oper. Res.* 11 (1986), 385-419.
- [10] Wijsman, R.A., Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc. 70 (1964), 186-188.