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This study presents the analytic solution for an asymmetrical two-server
queueing model for arriving customers joining the shorter queue for the
case of Poisson arrivals and negative exponentially distributed service
times. The bivariate generating function of the stationary joint distribu-
tion of the queue lengths is explicitly determined.

The determination of this bivariate generating function requires a con-
struction of four generating functions. It is shown that each of these func-
tions is the sum of a polynomial and a meromorphic function. The poles
and residues at the poles of the meromorphic functions can be simply cal-
culated recursively; the coefficients of the polynomials are easily found, in
particular, if the asymmetry in the model parameters is not excessively
large. The starting point for the asymptotic analysis for the queue lengths
is obtained. The approach developed in the present study is applicable to
a larger class of random walks modeling asymmetrical two-dimensional
queueing processes.
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1. Introduction

The “two-server shortest queueing” model, also known as the “two queues in parallel”
model, has obtained quite some attention in Queueing Theory literature, the greater
part of it concerning the symmetrical model. For a short overview of the studies on
the symmetrical model, see [12]. The asymmetrical model presents an analytic pro-
blem which appeared inaccessible for quite a long time. In the present study, the solu-
tion of this problem will be given.

IThis work was supported in part by the European Grant BRA-QMIPS of CEC
DG XIII.
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The model concerns a two-server system with a Poisson arrival stream of custom-
ers with rate A. An arriving customer joins the shorter queue if the queues are un-
equal; if they are equal, he joins the queue in front of server i with probability =,
i =1,2. The server provides customers exponentially distributed service times with
service rate 1/8;, i =1,2. The symmetrical model refers to the case when m, =
7y =1/2, f; = By The analysis of the queueing model requires the investigation of
the stochastic process {x,(t),x,(t),t >0} with x,(t) being the number of customers
present with server ¢ at time ¢, 1 = 1,2. The analysis of this stochastic process can be
reduced to that of a random walk with state space being the set of lattice points in
R, with integer-valued, nonnegative coordinates.

In applications of the two-server, shortest queueing model, the stationary joint dis-
tribution of the queue lengths or its bivariate generating function usually contains all
the information required to calculate the various performance characteristics of the
model. Approximate techniques have been employed to obtain this information.
Usually, they yield the replacement of the infinite state space of the random walk by
a finite one. For the resulting process, the Kolmogorov equations for the stationary
probabilities are then solved numerically.

Blanc [4, 5], applies the power series algorithm. Here it is assumed that the sta-
tionary probabilities can be expressed as a power series made of powers of some suit-
able chosen function of the traffic load to be handled by the servers. Substitution of
these series into the Kolmogorov equations then leads to a set of equations, from
which the coefficients of these series can be recursively calculated. The results obtain-
ed by this approach are quite satisfactory when compared to those obtained by simu-
lation. Actually, this approach is also based on a special truncation of the state
space. Unfortunately, a sufficient mathematical justification of this approach is still
not available. Adan et al. [2], and Adan [3] present an iterative approach.

Random walks on the lattice in R, with integer valued, nonnegative coordinates
are instrumental in the analytical investigation of a large class of queueing models to
date. For such random walks and their application to Queueing Theory, quite some
information is presently available concerning a fairly general approach of their analy-
sis, cf. [7, 8]. For the subclass of semi-homogeneous, nearest neighbor random walks,
a more effective analytical approach came recently available, cf. [10, 14], and in parti-
cular for nearest-neighbor random walks with no one-step transition probabilities to
the north, the north-east and the east, cf. [9, 11-13]. For this latter case it appeared
that the bivariate generating function of the stationary joint distribution of the ran-
dom walk, if it exists, can be explicitly expressed in terms of meromorphic functions.
A meromorphic function is a function which is regular in the whole complex plane, ex-
cept for at most a finite number of poles in any finite domain.

The random walk to be used in the analysis of the asymmetrical shortest queue is
indeed a nearest-neighbor random walk. However, it is not semi-homogeneous, be-
cause the one-step transition probabilities at points above the diagonal of the first
quadrant differ from those below this diagonal. In fact, this random walk consists of
two semi-homogeneous random walks, one at the points above, the other at the
points below the diagonal, and they are coupled at the points of the diagonal. These
two random walks do not have one-step transition probabilities to the north, the
north-east and the east and so, it was conjectured that the bivariate generating func-
tion of its stationary distribution can be indeed described in terms of meromorphic
functions. This conjecture was the starting point of our analysis and it appeared to
be true.
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We continue this introduction with an overview of the sections of the present
study.

In Section 2 we establish functional equations for the bivariate generating function
of the stationary joint distribution of the queue length process, cf. (2.4). From these
equations, the following two equations are derived, cf. (2.9):

i p) 4 5ErB(r) + ky(p,T)0G(r) = 0,
for a zero-tuple (p,7) of hy(p,7), |p| <1, |7| <1
i Q) — —2B(t) + ky(r, () = O, (1.1)

for a zero-tuple (r,t) of hy(r,t), |r| <1, [t| <L
Here k,(-, ) is a first degree polynomial, and h;(-,-) a second degree polynomial
(they are given); the functions, B(-),®y(-),2,(-) and Q,(-) are all generating func-
tions which are regular inside the unit disk and continuous on the closure of the unit
disk. Next to these conditions, there is the norming condition, which is equivalent to

() + (D) =g-+7-— 1, a; = My, a3 = Ay, (1.2)

From the conditions mentioned so far, the functions B(-), ®q(-),,(-), i = 1,2, have
to be determined, cf. (2.10).

In Section 3, properties of the zeros of hy(p,7) =0 and of hy(r,t)} =0 are describ-
ed. These zeros are denoted by , cf. (3.9),

pﬂ:(r) or Ti(p) for hl(p,r)=0,

(1.3)
r¥(t) or ti(r) for hy(r,t) = 0.

The curve hy(p,7) = 0, when traced for real p and 7, is a hyperbola, which has one
of its branches into the first quadrant. A graph with successive vertical and horizon-
tal edges is inscribed into the branch in the first quadrant; see Figure 3.2. The corner
points of such a graph correspond to zeros of hy(p,7). Analogously, such a graph is
inscribed in the branch of hy(r,t) =0. Any point of h;(p,7) = 0 induces also such a
graph on hy(r,t) = 0 and vice versa. In Figure 3.4, a binary tree is traced, starting at

T(()O). Out from 1'(()0) a graph, as mentioned above, is constructed on hy(p,7) =0 and
on hy(r,t) =0. Each corner point of such a graph induces on the other hyperbola
again such a graph; only ascending graphs are used here. The set of corner points so

obtained constitutes the tree generated by 7'( ) see for details Section 3. Such a tree,

with a properly chosen top 7_80)’ is instrumental in the construction of the functions
B(-), ®o(-), (), i =1,2.

Section 4 starts with the formulation of a lemma. It states that the functions
B(s), ®y(s) and Q(s), i = 1,2, can all be continued meromorphically into |s| > 1.
For those meromorphic continuations a set of relations is derived, cf. (4.1-4.4). We
mention here two of those relations, viz.

e~ (1) + ( ) ~—=y B + ki (p 7 (7),7)8(r) =0 for hy(p™(7),7) =0,

Q,(r= (7)) — — (f)t B(1) + ky(r = (1), 008(1) = 0 for y(r = (7),7) = 0.

(1.4)
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It is assumed, cf. assumption 4.2, that all poles of B(s), ®((s), 2,(s), i =1,2, in
| s| >1 are simple; at a pole of B(-) its residue is indicated by b(:);éq(:),w;(-),
stand for residues of ®y(-), Q;(+), i = 1,2, respectively. Note that b(s) =0 implies
that s is not a pole of B(-). From the set of relations (4.1-4.4), a set of relations for
the residues is obtained; e.g., if 7 is a pole of B(-) and also of ®y( ), then it is seen
from (1.4) that in general p ~(7) is a pole of Q,(-) and r ~ (7) is that of Q,(-). The
essential point of the analysis is to construct from the set of equations for the residues
a nonnull solution such that B(-), ®; Q.(-), ¢ =1,2, are true meromorphic func-
tions, i.e. the pole set of each of these functions has not a finite accumulation point.
It turns out that there is a nontrivial solution to this problem. The solution of this
problem is discussed in Sections 5, 6 and 7.

In Section 5, it is shown that there exists a unique 7" in T > 1 such that the equa-

tions a,T
)+ (™ (1), )(T) =0, Iy(p™(T),T) =0,
(T) -
(1.5)
—a,T
)T
for the residues b(T') and ¢y(T') of B(-) and ®( - ) possess a nonnull solution. Actual-
ly, T is then determined by that zero in T > 1, for which the main determinant of
the set of equations (1.5) is zero. Note that (1.4) and (1.5) imply that p = (T') is not
a pole of Qy(+) and r 7 (T) not a pole of Q(-).

In Section 6, it is shown that the set of nodes of the tree generated by T( )=Tis
the pole set of B(-) as well as of ®(-). The poles of Q,(-), i =1,2, can be deduced
from those of B(-) and ®((-). Further, a recursive set of equations is derived for the
residues at these poles; see Lemmas 6.1 and 6.2. In order to decide whether the pole
set of B(-) can be used to define a meromorphic function information is required con-
cerning the asymptotic behavior of the poles of B(-) and their residues b(-). This
asymptotic behavior is studied in Section 7. It is shown that this asymptotic behav-
ior is such that for the pole set of B(-), a class of meromorphic functions can be con-
structed, similarly for ®(-), 2;(-), i =1,2. The elements of these classes of mero-
morphic functions are Earametrlzed by nonnegative integers my, my,m;,i=1,2,
bounded from below by M — 1, where M is defined by the asymptotic behavmr of the
residues, cf. (8.6).

In Section 8, the meromorphic functions B( ) <I>0( )s Q( ), ¢ = 1,2, are intro-
duced by using the pole sets obtained in Section 6 for the functions B( )y @o(),
Q,(+), i =1,2; they contain the parameters my, mg,m;,i = 1,2, cf. (8.2). Further,
polynomlals B(s) <I>0(s), it = 1,2 are introduced; their degrees are indicated by N by
N o Nip1=1,2. With the functxons so introduced, the functions

B(-)=B(-)+B(-), &(-)=3(-)+%(-),

b(T) + ka(r = (T), T)¢o(T) = 0, hy(r = (T),T) =0,

. N (1.6)
Qi('):Q(')+Qi(')v i=12,

are considered, cf. (8.7). These functions are substituted into equations (1.4), cf.
(8.9). The asymptotic behavior at infinity of the relations so obtained is investigat-
ed. It leads to relations between m  and the degrees N of the polynomials.
Given M appropriate choices of m_ determines the degrees N . With the degrees
S0 determlned the functions (1.6) are again substituted in the equations (1.4). By
considering the resulting equations for properly chosen zero-tuples of h (p,7) and of
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hy(r,t), a system of linear, nonhomogeneous equations in unknown coefficients of the
polynomials B(-), <I>0( ), (), i = 1,2 is obtained. It is shown that this system has
a unique solution, and so, the functions of (1.6) are all known and satisfy the equa-
tions; moreover, they are all regular in the closed unit disk centered at zero. Theor-
em 8.1 states that for M > 1, a; # a,, the functions so constructed, whenever taking
into account the norming condltlon, determine the blvarlate generating functions of
the stationary distribution uniquely if and only if Z- L + a > 1. The case M =1 is an

important practical case. Then the construction of the solution for the case M = 2 is
discussed, whereas that for M >3 is exposed. In Remark 8.2, the meaning of T for
the asymptotic behavior of the constructed solution is discussed.

In Section 9, the case a; =ay, m; #m,, is discussed. For this case, the
construction of the solution of (1.4) is essentially simpler, because here the pole sets
do not have a tree structure. In Section 10, relations are derived for some
characteristic probabilities and moments of the model.

The approach developed in the present study is applicable to a larger class of asym-
metrical two-server models, e.g., the asymmetrical variant of the model in [9]. This
class is characterized by zero one-step transition probabilities to the north, north-east
and east in the upper as well as in the lower triangle of the first quadrant [15].

2. The Functional Equation

The functional equations for the bivariate generating function of the joint distribution
of the queue lengths x,,X,, of the asymmetrical shortest queue model have been deriv-
ed in [1]; see Section III.1.2, p. 245. Below we recall these functional equations using
mainly the same notation as in [1].

Denote for |[r| <1,

(4) Qy(r): = E{Txl(xl =x,)},

(i) Qy(r): = E{r2(x, = 0)},

(i) Q(r): = E{r'1(x, = 0)}, (2.1)
(i) B(r): = @o(r) (a +m1 )~ a;26(0) ~(1+a}r ) B{r(x = x; + 1))

= _<1>(r)( +7r2)+ <I>o(0)+(1+ )E{r”2(x2 =x)k

1(7'1,7"2). = 7'1 +T1+'@_2'—a1a2, (2'2)

b
KZ(rl’r2) =T +tar al 1 +ar a2 2 a1a2;
with
a; >0, a, >0, b: = a; + ay + aa,, (2.3)

1>7,>0,1>my>0, 71y +my+1,
T, # 7y if a; = a,, cf. Remark 2.3 below.
The functional equations read: for |r;| <1, |r,| <1,
(6)  B{ri'ry?(xy > x)}K(ry,my) + Qz(’"z)al1 1- F”IT)
+ Oy (ryry)[myry + al_lrf - al—l— my] — B(ryry) =0,
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() B{riry2(x > x)} Ky(ryra) + 2(r)a 1 7)) (2.4)
+ Py(ryry)[myry + a'21r—2 - '615— ™3]+ B(ryry) = 0.

From these equations it follows, by using the norming condition, i.e.,
Pr{x; > 0,x, > 0} = 1, that cf. [1], p. 242,

aLllpr{x1 =0} + G%Pr{x2 =0} = ail + 7}; -1 (2.5)
It follows that
T+E>1, (2.6)

is a necessary condition for the existence of a stationary distribution.

Remark 2.1: It will be shown, cf. Theorem 8.1, that (2.6) is also a sufficient condi-
tion.

Assumption 2.1: In the present analysis it will be assumed that

1 1
a_1+a—2> 1.

For a zero-tuple (7y,7,) of K,(ry,r9), |7y | <1, |ry| <1, we have
0 < |E{ff172(xy > %)) | <1,
and so it follows from (2.4) (7),

92(?2)(1—12' (1 —’%') + (71 7)[ oy + EIT - alf —ml=B(fyFy) = 0. (2.7)
1 1'1
Set
hy(pyT): = aya,m? + (a; — bp)T + ayp?,
hy(ry1): = ayayt® + (ay — br)t + ayr?,
(2.8)
ki(p,7): = — 14 aymy(a; 7 — p),
ko(ryt): = —1+4a;m(agt —r).
By using the properties of the zeros of K,(ry,ry) when simplifying the expression in

square brackets in (2.7) and taking p =7,, 7 = 7,7, it is readily verified that (2.7) is
equivalent to

() Qulp) +7E7B(T) + by (o, 7)B(r) = 0,
for a zero-tuple (p,7) of hy(p,7); |p| <1, |7| <1;
.. ayt
(i) )= 2B + ko, 00(0) = (29)
for a zero-tuple (r,t) of hy(r,t); |r| <1, |t]| <1;

note that the derivation of (2.9) (i7) is analogous to that of (2.9)().

From the above, it is seen that the determination of the bivariate generating func-
tion E{rflrgz} of the stationary joint distribution of the queue lengths requires the
construction of functions €;(p),Q,(p), ®o(p) and B(p), which should satisfy the
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following conditions:

(1)  they are regular for |p| <1 and the sum of the coefficients in their series
expansions in powers of p™ converges absolutely; (2.10)

(it)  they satisfy relations (2.1) (iv), (2.5), (2.9) (¢),(é¢) and, cf. (2.1), Q,(0) =
B,(0), i =1,2.

Remark 2.2: Once functions B(-), ®,(-), 2;(-) and Qy(-) have been constructed,

which are not identically zero and satisfy conditions (2.10), so that E{r?lr;"},
|7y ] €1, |ry| <1, is then determined via (2.4), then it follows that the Kolmogo-
rov equations for the stationary probabilities possess an absolute convergent nonnull
solution. By applying the well known Foster criterion, cf. [3], p. 25, it follows that
the queue length process (x,(t),x,(t)), of which the state space is irreducible, is posi-
tive recurrent and further that there is only one solution, which satisfies (2.10) and
the norming condition. Hence it suffices to construct functions B(-), Q;(-) and
Q,(+), which satisfy (2.10).

Remark 2.3: The analysis of the problem formulated in (2.10) for the case a; =
aq, Ty # Ty, differs from that for the case a; # a,. The analysis in Sections 6, 7 and 8
concerns the case a; # a,. In Section 9, the case a; = a,, 7 # 7, is discussed. For
the case a; = a,, m; = 7y, see [12].

3. On the Zeros of hy(p,T) and ho(r,t)

In this section we shall describe several properties of the zeros of hy(p,7) and hy(r,t)
and introduce several functions of these zeros; these functions are needed to describe
the functions Q,(r), Qy(p), ®o(7) and B(r). Because of the symmetry between
hy(p,7) and hy(r,t), we mainly restrict the discussion to h,(p,7); those for hy(r,t)
follow by interchanging a; and a,.

From (2.8) we have

() hylpym) = 0=7(p) = gl — oy + b /(0 — bp)* —4aya3p?],

(1) hy(p,7) =0=p(7) = -2—(1';[b7' + \/b27'2 — 4ayay(T + ay7%)). (3.1)

Lemma 3.1: For every p with |p| >1, p#1, the two zeros = (p) of hy(pyT)
may be defined so that

7= ) < Il <17 ()1, (3:2)
and, similarly, for the two zeros p(t) with |7| > 1, 7 #1, i.e.,
lp= () < |l <lpT(n)].
Analogously, for hy(r,t) =0,
[t~ ()| < [r] < [tF(r)| for |r| 21, r#]1,

(3.3)
lr= (@) < [t] < |rF@)]| for |t] 21, t#1.

For the proof of Lemma 3.1, see Appendix A.
From (3.1), it is seen that 7(p) has two branch points p = and p+ and that p(7)
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has also two branch points 7~ and 7. It is readily verified that

a _ -
p:t =[1+a_f(1i\/a1)2] 1’ 0<p <p+ <1, (3.4)
4
7 =0, 0< Y% 2=‘r+ <1
b° —4a,a;

analogous relations hold for the branch points r * and t* of the zeros of hy(r,t).

For real p and 7, the curve hy(p,7) =0 is a hyperbola with center (p,,,¥,,) given

by 2a,a,

.o apd _
Pm mp2 4a1a%

=5———>0, 7
b2—-4a1a§ ’

>0, (3.5)
and asymptotes given by
p—bmzé—%[b:&m] (r—%,) (3.6)
Some special zeros of h(p, ) are listed below:
rHO) = -g, TT0)=0, pE(0)=0,
(1) =min(1,a—11-), (1) :max(1,ail), .
p= () =min(lay +52), o+ (1) = max(l,a; +52), oo

dp(T) _ ay(ay —1)
dr — aay+a; —ay

for (p(r,7)=(1,1) and aya; +a;, —1 #0.

In Figure 3.1, we depicted the hyperbola h,(p,7) =0 and 7 =0 being its tangent
line at p =0, 7 =0.

Figure 3.1

Let (p,,7,) be a zero-tuple of hy(p,7) with p, =p~(7,), 7,=7 + (p,), and
T, > 1; see Figure 3.2.



Analysis of the Asymmetrical Shortest Two-Server Queueing Model 123

hl(p, T)'—‘-O - hg(‘f‘, i):O

Y

a1l

)
[}
:
0 Pn-1 P, Pn+tl p 0 Tn-1 Tn Tntl

Figure 3.2

Starting from (p,,,7,,), we construct a series of zero-tuples of h,(p,7), cf. (3.2) and
(3.3):
PusTu)se e (P 13T — 1) (Ps Ty (P 4 19T g 1) (3.8)
They are recursively defined by:
Th-17= T—(pn)’ pn+1 = p+(Tn)’
(3.9)
Pp—1= p_(Tn—l)’ 7"n—i-l = 7'+(pn-{-1)'

The sequence in (3.8) will be called the ladder generated by T, on the hyperbola
hy(p,T). Its “up-ladder” is unbounded, while its “down-ladder” is finite and stopped
at that index v, for which 0 <7, <1 or p, < 1.

Whenever a; # a,, cf. Remark 2.1, the zero-tuple (p,,,7,) of hy(p,) induces also a
ladder viz.

e (?:n -b o 1)’ (?:n’ tn)’ ('Fn + 1”7\:n + 1)’ ) (310)
on the hyperbola hy(r,t) =0, and ?n Fi FT, it # 0. It is recursively defined by
tn =T ?:n = ’"_Gn)»
fao1=t" (%), Tupr=rT() (3.11)
?n—l = T_Gn—l)’ tn+1 = t+(?!n+1);

again the “down-ladder” is stopped at that u for which 0 <7# <lor0< '?“ <1.
Remark 3.1: Note that for a; # ay, i.e., hy(p,t) # hy(p,t),

tn—lrléTn—l’ tn+17l:rn+1’

?n-ﬁér -1 ’Fn+1:lérn+1'

Analogously, a zero-tuple of hy(r,t) with r, = (¢,), t,=tT(r,) and t, > 1 or
r, > 1 generates a ladder on hy(r,t) =0 and induces & ladder on k 17, 7 )_ 0; see
Flgure 3.3.
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Tn-1 ™n Tn+1 r Pn-1 Pn Pn+1

A~

Figure 3.3

These ladders are defined analogously to those in Figure 3.2. Actually, inter-
change in (3.9) and (3.11) p and r and also 7 and t. It should be noted that the
ladder in (3.8) with top (p,,7,) is identical to the ladder generated on hy(p,7) =0
with top (pp, 4 13T 4 1) 70 4y =T+(Pn+1)’ Pn 41 =pt(ry)-

However, the ladder on hy(r,t) induced by (p,,7,) generally differs from that
induced on hy(r,t) by (p, 4 1,7 4 1)-

We shall denote by

(%) I(r,) with hy(p,,,7,,) =0, the ladder generated by (p,,,7,) on hy(p,7) T 0; )
3.12
(it) 1 (r,,) the ladder induced by (p,,,7,,) on hy(7 ,1) =0 with hy(ppyTn) = 0.

Analogously, we define the ladders I(2,) and T (t,)-
Remark 3.2: Note that every point of h,(p,7) with p > 1 or 7 > 1 induces a ladder

on hy(r,t) and visa versa.
Further, it is readily seen from (3.9) and (3.10) that, cf. Figure 3.2 and 3.3:

7'n+1:T+(P+(7'n)), Pn+1:P+(T+(T+(Pn)),

tn+1=t+(r+(tn))’ 7°n+1:7'+(t+(7'n)),

—00, T4 00,

(3.13)
Tn+m_')oo’ pn+m—'oo’ tn+m
for m—ocoand 7, >1, t > 1.
Next we introduce a notation to describe all the ladder points on the up-ladders on
hy(p,t) = 0 as well as on hy(r,t) = 0 generated by a point
(po’ TO) of h’l(p’ T) =0.
Define for m = 0,1,2,..., the binary numbers

bt = 8100« By With 6,5 € {0,1}, 7=1,...,m,
(3.14)
B = {6:86=6,,7=0,.,2" 1} = {6:6 € {0,1,2,...,2™ — 1}}.
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The tree generated by (7, py) is defined as follows:
its nodes at the nth level, n = 0,1,..., are

(i) rg'(‘,{) with 6 < 6(1) 6l 60 em =027,

i (n+1) . _ o+, + (0 (n+1) _ 5g(n)
(41) ngn+1)' =77 (p (T6§n))) for 6} = 265",
n n+1 n
: = t+(r+(r(($§r)l))) for 6& +1) = 262 )+1.
('LZZ) TE)O) =Ty=T + (pO)

125

(3.15)

In Figure 3.4, we depicted the nodes at levels 0,1,2 and 3 for the tree generated by

(T0s Po)-
%
W
1) PPt TS~
Té’ - RN "'1“)
* K
pid ~ - S
// \\\ /// \\\
@ .77 SSol @ @ N
Too -7 . Tor Tio /// N Tfl
* * »
RN VIR s\ A
/’/ \\ /// \\\ /// \\\ /// \\

(3) N 3 (3) / o (3) (3) - s 3) (3) /
7000 \ Too1 To10/ \To11 71007 \ Tiot T,/

* » » » » *

/
/
7/

Figure 3.4

\
N A(3)

T

From the definitions above it is readily seen that the tree so constructed contains
all the ladder points on hy(p,7)=0 and hy(r,t)=0 generated by 7, with
hq(pgy7p) = 0; note that I(7,) is the set of nodes on the left branch of the tree and

I (1) is the set of nodes on the right branch of the tree.

The tree generated by (fy,r,) is defined analogously, interchange the symbols 7

and t and also p and r.

We conclude this section with the derivation of some asymptotic results.

(3.1), it is seen that

. pE(r
Rif: = lim, : ):Eég(bidl)’
+
£, _ o T _ 1
Ry =i = gq 0 £ 4
+
. _ To(P)_ 1
T =fim—— =95 5,0+ dv)
7 =l =g (b £ dy),

with

From

(3.16)



126 J.W. COHEN

dy: = \/b2 —4a1a%, dy: = \/b2 —4a%a2.

Note that, cf. Lemma 3.1, for j = 1,2,
+ + £ F
R7>1, T;”>1, RFT; =1,
ayay(TEV =0T E +a, =0, ay(RE)?—bRE 4 aya, =0, (3.17)
ay(RE —1)? = (b—2a,)(RE —1)—a, = 0.
Further, from (2.4) by using (3.16) and (3.17),

dr* T E —2a _
(P)_ 1 2 :[quz] 1’

im =
poc0 dp g, TFE —b
Lo dpE(r) _2aj0,—bRE o (3.18)
= - + — 1 -
roco dr b—2a,R;
Because
R <1<R;t and R Ryt =aq,,
we have
. R{” < min(1,a,), R1+ > max(1,a,), (3.19)
an +
a R
a, - RE =0 - ;{i. (3.20)
-

4. Meromorphic Continuation

In this section we shall consider the meromorphic continuation of the functions ©,(s),
Q,(s), B(s) and ®(s) out from |s| <1linto |s| >1.

Lemma 4.1: The functions Q,(s), Qy(s), B(s) and ®y(s) can be continued mero-
morphically out from |s| <1 into |s| > 1.

For the proof of this lemma, see Appendix B.

Remark 4.1: The lemma does not imply that these continuations are meromorphic
functions, i.e., have only a finite number of poles in every finite domain, but it im-
plies that their only singularities are poles or accumulation points of poles.

Assumption 4.1: Henceforth it will be assumed that the meromorphic continua-
tions of B(-), ®y(-), () and Q,( ) are all meromorphic functions.

Remark 4.2: Whenever Assumption 4.1 leads to the construction of functions
B(+), ®y(+), ,(+) and Q,( ), which satisfy conditions (2.10), our problem is solved,
because there exists only one set of such functions, cf. Remark 2.2.

The meromorphic continuations of B(-), ®y(-), () and Q,( ) will be indicated
by the same symbols, respectively.

It is further shown in Appendix B that the functional equations (2.9) can be ex-
tended into the domains |7| >1, |p| >1, |¢t| >1 and |r| >1. Actually it is
shown that the following relations hold for all those 7, p,r,t for which B(-), ®4(-),
Q(+), Qy(+) are finite:

alri(p)

Q
2(pHp—Ti(p)

B(r % (p)) + ky(p, 7 (p))Bo(r £ (p)) = 0
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for hy(p, 7% (p)) = 0, (4.1)

at®(r) o4 + +
B(t*(r)) + ky(r, t = (7)) @(t = (r)) = 0

Q1(7") —r—:_t_f@

for hy(r,tE(r)) =0, (4.2)

Ul (M) + g 5 B) + byl * (1), 7)2(r) =0

for hy(p * (1),7) =0, (4.3)
Q(r* (t))“‘—(—)——B(t)+k2(r (), 1)®,(t) = 0
for hy(r £ (t),t) = 0. (4.4)

Remark 4.3: From the analysis in Appendix B it is seen that the relations (4.1)-
(4.4), are independent of Assumption 4.1. Note that (4.2) and (4.4), and similarly,
(4.1) and (4.3), are not independent.

Assumption 4.2: Henceforth, it will be assumed that the poles of B(:), ®,(-),
Q,(+), Qy( ) are all simple.

Remark 4.4: Concerning the introduction of the latter assumption, it is noted that
Remark 4.2 also applies here.

Put for finite t and p:

b(t): = 181_13(3 —t)B(s), ¢o(t): = lLrI%(s —1)®y(s),

w;(p): :}i_r_}})(r —p)(r), i=1,2.

(4.5)

Assumption 4.2 implies that these limits exist. Obviously, cf. Assumption 4.2,
|b(t)| #0 <t is a pole of B(-),
| ¢o(t)] #0 <t is a pole of ®y(-), (4.6)
|w;(p)] #0 <pisapoleof Q-), i=1,2.
Note that (2.10) implies that

b(t) =0 and ¢y(t) =0 for |2] <1,
(4.7)
wi(p)=0for |p| <1,i=1,2.

From (4.1)-(4.6), it readily follows that, cf. (3.4),
for |p| #p¥* and hl(p,ri(p)) =0,

aT:i: T (o2
w2<p>+[p1 Oy () 4 1,7 *(p»qso(r*(p))}[d (] A

=) @
for |r| # 7% and hf (r,t % (r)) =0,

(),
ti()

+ ]
«q(r){ B (7)) + Ryl ()l (r))}[‘“ (a1 A
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for || #7% and hl(pi(r),r)_—.O,

nlp® <r>)["”da("’], ) R (), 7)) = (4.10)

for |t| #t% and hy(r % (),1) =0,

w,(rE (t))[ da(”)}o —,t Tb(t) + ky(r £ (1), 1)g(t) = 0. (4.11)

In Sections 6, 7, 8 and 9, relations (4.8)-(4.11) will be used to calculate the resi-
dues of B(-), ®y(-), 2;(+), Qy(-) at their various poles. Note that relations (4.10)
and (4.11) on the one hand and (4.8) and (4.9) on the other hand are dependent on
each other.

5. The Equation for the Top of the Tree

In this section, we derive a relation for the smallest in absolute value pole of B(-)
and of ().

From (4.3) and (4.4) we have that for |7| >1, hy(p~(7),7)=0,
hy(r = (1),7) =0:

- ( ) B(T)+k1(p (1), T)®p(7) = = Qy(p ™ (7)), (5.1)
;—-_(TB(T)HC?('" (1), T)®(7) = =y (r ~ (1)) (5.2)
Put
AT ky(p(r)7)
D(p(r), (7)) = P(_T)a;; ! . (5.3)
=7 falr(m)7)

A simple calculation using (2.3), (2.8) and (5.3) shows that

Yo~ (r)=m)(r = (1) =1)D(p~ (r),r~ (r),7)

(5.4)
= [b—ayay(myr (1) + 7 T (7)) —ayr T (1) —app T (7).
Because p = (1) =7 #0,r " (r)—7 #0for | 7| > 1, it follows that
D(p= (v)yr = (r)7) = sy = a7 () ¥ azp” (7) (5.5)

b—ajay[myr = (1) +mep ™ ()]

From (2.3) and (3.7), it is seen that

%—wlr“(l)——wzp"(l) > 0. (5.6)
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Lemma 5.1:
i The equation
) (), e (1)

ala2 {7l'1 (T) + 7l'2p - (T)}

T =

has in 7 > 1 a unique root T =T, of multiplicity one,
(%) fora%+al—2 > 1, it is given by

1,1\
T=(a;+a;)s
furthermore,
p~(T)=r—(T) =%+a%-

Proof: It is readily seen that the above equation is equivalent to
1+4 1—’—#—))+ 12 @)

1 —wl(l —’_,(’))— 7r2(1 —"—,(L))

Because (cf. Lemma 3.1 and (3.16)),
1<y g

(5.7)

<1 for 7 >1,

(T)lRZ , p_T(T)lRl‘l for 7:1—00,

and because the right-hand side of (5.7) is readily seen to be larger than 1 for 7 >1
and it is continuous and increasing in 7 with a finite limit for 7—o0, the first state-
ment of the lemma follows. It is simply verified that 7 =T, p~(r)=p~(T),
r (1) =7~ (T) satisfy (5.7). It remains to show that, cf. (3.1) (4) and Lemma 3.1,

©) p (IY<T, r—(T)<T,

(i) hy(p™(T),T) =0, hy(r ~(T),T) = 0.
Because q+ﬁi > 1, (5.8) (i) follows. Further by noticing that 7' =[p~ (T)]% it is

readily seen that (5.8) (i¢) holds. a
Assumption 5.1: Henceforth, it will be assumed that, cf. also Assumption 6.1.

190~ (TN | <00, [, (T)] < o

Remark 5.1: Concerning the introduction of the latter assumption it is noted that
Remark 4.2 also applies here.

(5.8)

Since 7 =T is a simple zero of the determinant of (5.3), it follows from (5.2), and
Assumption 5.1 that

=T is a simple pole of B(t) and also of Oy(T). (5.9)

In Section 8, Remark 8.2, it will be shown that T is the smallest pole of B(-) and
also of ®( ).
From (4.6), (5.2) and Assumption 5.1, we obtain,
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a,T _ _

—:—(—mb(T) +ko(r = (T),T)¢o(T) = 05
note that these relations are linearly dependent.
Remark 5.2: A simple calculation shows that for 7 > 1 the determinant

el AMCRY
b i # 0 with hy(p £ (r),7) = 0. (5.11)
;‘:(%)—‘_—; ky(p~(7),7)

Similarly,

—ayt
r_+—(7)2—_t ka(r ¥ (2),1)
) # 0 with hy(r % (r),7) =0, (5.12)

e O AR

and, by using (5.7),
—-a,T
pH(T)-T
—a,T
rH(T)-T

ky(p*(T),T)
£0
ko(r +(T), T)

with hy(p % (T),T) =0, hy(r T (T),T) = 0. (5.13)

Remark 5.3: From Lemma 5.1, it 1s seen that T is independent of the value of =,
and that it depends only on the sum z- + 02

6. Poles and Residues for the Case a; # a,

In this section we determine the poles of B(-), ®(-), @;(-), i=1,2, and derive
equations for the residues at these poles. From these equations, it will be seen that
these residues can be calculated recursively and that they all contain the factor ¢y(T).
With
0 0 —/.(0 0 -/ (0
7'8 ) = T, pg ), = p (1'(() )), r(() - (T(() )), (6.1)

and T, as defined in Lemma 5.1, we have

s b(r) + &y (o0, 7)o+ () = 0,

©) EON- 62)
(i) g")z il 20 () 4 by (r 8, 7o (r ) = 0.
with 0 ©

= pt (), =t (), (6.3)
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we obtain from (4.10) and (4.11) that,

“18

—1
Ol i Ol )y 40, )l + ) ) } =0

~ayrf)

) -0

(6.4)
drt (o)

]lgr”

From (2.8) and (3.4), it is readily verified that the derivative in (6.4) (¢) is finite
and nonzero Furthermore, the determinant, formed by the coefficients of b(r(() ) and
¢0(TO ) in (6 2) () and (6. 42 (1), is nonzero; cf. (5.11). Hence, from (6.2) (2) and
(6.4) (i) it is seen that w,(py’) is nonzero and finite and proportional to ¢0(1'0 ),
analogously for w,(rj"’). Consequently,

(7) pgl) =p*t (T(()O)) is a simple pole of Qy( ),
€)) rgl) =rt (7'(()0)) is a simple pole of (), (6.5)

) 4 ko, ) 4 ) 2

(741) wz(pél)) and wl(rgl)) contain ¢0(T80)) as a factor.

0/ h(p, 1) =0

1 2) (1) (3
Po Po) Pf)o) P(xo) Pgo) —f

Figure 6.1

In Figure 6.1, several nodes of the tree generated by T(O) =T are shown and
o0 = ot (), = T ), ) =t ) Y =t D) (6)
Note that
(r~ (7‘81)),7'(()1)) and (r(z) 7'(()1)) are zero-tuples of hy(r,t) = 0 induced by T(()l),
(r (7' ) is not shown in Figure 6.1), (6.7)
(p~ (T(l)) Tgl)) and (p(})) ] )) are zero-tuples of h;(p,7) = 0 induced by 7'( )
(p~ (Tl )) is not shown in Figure 6.1).

Next, we consider (4.11) for the zero—tuple (r~ (T(l)) 70 )) of hy(r,t)=0 and
(4.10) for the zero-tuple (p ~ (1'1 ) *rg ) of hy(p,7) =0, i.e.,
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. - ]! — ayr)
I e s e R0

+ky(r = (r8D), §)ge(r() = 0, (6.8)

1 a, T 1)
G) o™ (2] 5”*“_“‘“,,—(,{1})_,51) b(r{l))

+ky(p = (v, 7)o (r ) = 0. (6.8)

Below we introduce Assumption 6.1, which implies that for the case a; # a,,

wy(r~ (78N = 0, wy(p~ (+M)) = 0. (6.9)
Hence, from (4.10) and (6. 8) (), we have

d )
o227 o)+ e =0

(6.10)

ayr(V
0y e ) kel el =0
Here w2(p( )) is glven by (6. 42 (7). The main determmant of the two equations (6 10)
with unknowns b(r(() )) qSO(T0 )1s D(p (T(l) T ( TS ),TO ), cf. (5.3). The unique
zero of determmant (5 )) inr>list=T= 7o ), cf. Lemma 5.1, so that it is non-
zero, because 7' The derivative in gﬁ .10) is also ﬁmte and nonzero;
hence, (6.10) has a nonzero and finite solution b(TO ), ¢0(Tg ).
Analogously, the equatlons

(1)
d
L (")] _ o= Tt + ke e ) =0,
- 1 71

JEY (6.11)
11 N 1 b(Tgl)) + kl(p - (Tgl))’ Tgl))(ﬁo("'gl)) = 0,
p (1) -7V
have a nonzero and finite solution b(Tgl)),¢(()1)(Tgl)). Consequently,
(1) T(()l) and T(l) are simple poles of B(-) and also ®,(-),
(6.12)

(74) b(r(l)) b(73 1)) ¢0(T )) éo(T3 l)) all contain ¢0(1'01)) as a factor.

With b(rgl)) ¢0(T(1)) defined above as the solution of equations (6.10) and b(7'1 ))
gbo(rg )) as the solution of equatlons (6.11), we obtain from (4.4) and (4.11),

(1)
. d
) “’2(”(2))[ pdo(a)]a _ 4}) * ‘z%”—mb(ro") + k(o8 T o(r§) =,
(6.13)

} (@) dr (ff) —azré” ) (g (1)
(@) (o) —g5— 0—181 (1)b 6 +k2(7'01,7'o )éo(75 ") =0,

ol s

O wale = 51)+’W( ) + by (19, 1) go(r{)) =
= Pio —Ti

(6.14)
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ey
(Zl) wl(ru )|: (0’):| _ (1) +;(—5——:——b(7'(1)) + ]‘72(7°11 ,7'11))450(7'9)) =0.
o = Tl 11 —
From (6.13) and (6.14), it is seen that

/’g)o)» p%) and réﬁ),rgzl) are simple poles of ,(-) and (), respectively,
(6.15)
for which the residues follow from (6.13) and (6.14).

Relations (6.4) and (6.8) represent the relations for the poles and residues at the zero-
level of the tree, cf. also (6.3); the relations (6.10), (6.11), (6.13) and (6.14) describe
the relations for the poles and residues at the first level of the tree generated by 7'00
To obtain those relations at the nth level of the tree, we introduce, cf. (6.9), the fol-
lowing.

Assumption 6.1: For the case a; # ay, let 7 ") §€{0,1,...,2" — 1} be an element
of the tree generated by T( ) = T; see Figure 3.4. Henceforth, it will be assumed, cf.
Remark 2.1, that

(i)  for 6 even:

wy(r™ (r%"))) =0 with hy( (Tgn )’Tgn = (6.16)
(#¢)  for 6 odd: |

wy(p ™ (Tg"))) =0 with hy(p~ (Tg")), Tg")) =0

Remark 6.1: Concerning the latter assumption, it is noted that Remark 4.2 also
applies here.

Consider Figure 6.2,

hi(p, 7) =0 ha(r,t) =0

Figure 6.2

with the symbols defined by
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iV = p= (r§M), r{M: == (),
Pt = p+ (1), D = (7)),

§€40,...,2" -1}

and
written as a binary number, cf. (3.14).
Suppose for the present that
for 6 even: pg") is a simple pole of Q,( ),
for 6 odd: r{™ is a simple pole of ().

We consider first the case of
6 being even.

(6.17)

(6.18)

(6.19)

Because Assumption 6.1 implies wl(rg")) =0, for which, we have from (4.10) and

(4.11),

O i) R L o) A ) =

g,‘ff 2 e S+ Ry () = o,

(n+ 1))[01/) (0)] ayr§")

(1) walpas + )
2 a—‘rg n) pg’61+1)_7-$")

+ kl(/’zn 1) ’Tgn))%(rgn)) =0,

-1 n
CORPACY: i%))[drda( )L_Tgn) ﬁzs—g—gn—)b('fgn))

+ky(r$5 TP m§go(r8) = 0.
Next consider the case that

6 is odd.

Then, analogously, because wz(pg")) =0, we have:
. dr~ (o
GG S) ol

gff; gg b(r§™) + ky (o), 7§ () = 0,

@ et e

(6.20)

(6.21)

[ ooy el ey =o,

(6.22)
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+hy(rS3 £ D, 78§ = 0,

o a,r§m
(i) ol ) ﬁml«r&"))

o = rgn
+ kl(P(n 1), Tgn))‘ﬁo(Tgn)) =0.

(6.20) (¢) are two equations for b(rgn)), ¢0(7'g")) and § being even. Again, it is
readily verified that the main determinant is nonzero and that the derivative in
(6.20) (2) is finite and nonzero; see below (6.10). From (4.6) and (6.18) it is seen that
wz(pgn)) is finite and nonzero. Then (6.17) (¢) has a nonnull solution b(r ),

¢0(Tgn))a i.e., (cf. (4.6)), for § even:
Tg") is a simple pole of B(-) and also of ®(-). (6.23)

From the solution of (6.20) (2), it follows from (6.22) (¢7) and (i7%) that, cf. (4.6), for
6 even:

(n+1)

(n+1)
P25 and r95 13

are simple poles of Q,(-) and Q,( ), respectively, (6.24)

and their residues are calculated from (6.20) (i¢) and (6.20) (i77). Further, from
(4.6) and (6.18), it follows that for § odd:

*rg") is a simple pole of B(-) and ®,(-),

(6.25)

pg}’“) (n+1)

and ryg 1 7’ are simple poles of Q,( ) and ©,( - ), respectively,
and their residues are calculated from (6.22) (i¢) and (6.22) (iiz).
It remalns to consider the hypothesis, cf. (6.18), that wz(pg ) for 6 even and
(rg ) for 6 odd are both finite and nonzero. By induction, it is seen from (6.20)
and from (6.22) for n = 1,2,..., and (6.10), (6.11), (6.13), and (6.14) that these hypo-
theses are indeed valid. Note that these relations show that all residues are zero or
no one is zero; the first case is impossible, see the penultimate paragraph of Appendix
B.
Lemma 6.1: For the case a; # a, and with T, as defined in Lemma 5.1,
(%) every element Tg"), n=0,1,2,...; § € {0,1,...,2" — 1}, of the tree generated
by 7'00 =T is a simple pole of B(-) and also of ®y(-),
(49) pg") =p~ (Tgn)) is for § even a simple pole of Qy( ),
(7it) rgn) = r_(rgn)) is for § odd a simple pole of Qy(-),
(iv)  the residucs b(rgn)), qbo(rg")) of B(+) and ®y(-) are obtained by solving for
each 73", two linear equations, viz. (6. 2) for n=0, (6.10) and (6.11) for
n =1, and (6.20) and (6.22) orn_2 3,.

v for & even, the residues w,(p and w r("+1) are determined by (6.8
2 26 1\"26 +1
forn=0, by (6.13) forn=1, by (6 20) (i1), (it) forn=2,3,...,

vi)  for 8 odd, the residues w p( DY and w, (X2 T DY are determined by (6.14
2\F26 1\1286 +1
for n =1, and by (6.22) (i), (iit) forn =2,3,...,
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(vit) these residues can be calculated recursively, except for ¢0(7'80)) which is a
factor of every residue.

Proof: The proof follows immediately from the above analysis in this section. a
Lemma 6.1 describes the equations for the residues at all nodes of the tree generat-
ed by ‘r = T. But, as we have seen in Section 3, every node 7}/, with 6 even, in-

duces on hy(r,t) = 0 a ladder, and analogously for é odd, a ladder on h;(p,7) =0, see
Figures 3.2 and 3.3. So we have to consider also the equations (4.9)-(4.12) for the
residues at the points of the down-ladders of such induced ladders; see below (3.9).
Lemma 6.2: For the case ay # ay, the only poles of B(-), ®y(+), Q;(r) and Qy(p)
are those described in Lemma 6.1.
Proof: Let (7,,p,,) be a zero-tuple of hy(p,7) and consider the down-ladder in-
duced by 7,, on hy(r,t) = 0; see Figure 3.2.

With N N
= tn’ ’;{n = T—Gn)’ tn—l = t_(’Fn)’ an—l = T—Gn—l)""’
it follows from (4.10) that

—wy (7, )_|:7' az nb(w )+k2(rnat )¢0( ):I[ (U)} =%,

' (6.26)
[ az?_l}(n—l)"‘k(rmtn 1)¢0(v _1)[dt (a)] v
and
+(]7 !
—wl(r)—[r, Z50() + b, 7 Tl [d—ta—a(—)]”%
(6.27)
_ -—a27,~_1~ _dt'(cr)]_lN
T tz—lbai—l)+k2(?ivti_1)¢0(?,'_1)L do o=Ti_1

for it =n-1, n—2,...,v, with v being the index at which the down-ladder is stopped
(cf. below (3.9)), i.e., the index, for which

0<7,<lor0<7, <1
so that; cf. (4.8),
b(r,) =0, ¢o(r,) =0 0r —w,(¥,) =0, (6.28)

and, cf. Assumption 6.1,
wy(7,) = 0. (6.29)

The set of relations (6.27), (6.28) and (6.29) is insufficient to determine the
unknown residues w,(7;), b(\‘ t;) and ¢y(t;). However, Assumption 4.1 leads to the con-
clusion that the only solution of this set of relations is the zero-solution, i.e.,

at all induced down-ladders, the residues at the elements of these down-ladders are
zero, so that these elements cannot be poles of B(-), ®y(-), ,(+) and Qy(-).
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To see this, first note that every element of the tree generated by 1'(()0) = T induces
down-ladders on hy(p,7) =0 or on hy(r,t) =0, and elements of down-ladders again
induce down-ladders. Since the tree generated by 7'00 consists of an infinite but
countable number of nodes, it follows that the finite part of hy(p,7) =0 with p €
[p~(1),p*(1)] contains an infinitely countable set of elements (p,7) stemming from
the induced down-ladders, similarly for h,(r,t) =0. Hence, Assumption 4.1 requires
that the residues at these elements are all zero, because of a meromorphic function
can have at most a finite number of poles in a finite domain. It is readily seen (cf.
(6.27), (6.28)) from Assumption 6.1 together with the relations (4.8)-(4.11), that all
residues at points of the down-ladders induced by any point of the tree are indeed
zero. Consequently, for the various assumptions so far introduced, cf. Assumptions
4.1, 4.2, 5.1 and 6.1, the only poles of B(-), ®y(-), Q,(-), i =1,2, are those mention-
ed in Lemma 6.1. 8]

7. Asymptotic Behavior of the Residue, a; # ay

For further analysis of the functions B(-), ®y(-), ©,(+) and 2,(-), we require the
asymptotic behavior for n—oo of the residues of these functions at their poles; see the
preceding section.

First we consider the ladder generated by TSO) =T on hy(p,7) =0, i.e., the set of
nodes Tfs'('r)l),éj") =0, n=0,1,2,..., which is the extreme left branch of the tree

J

generated by (T, p ~ (T)).

Put, cf. Figure 3.2, for n =0,1,2,...,

Tp = T(()n),T(()O) =T,
Pri =P (Tp)Pnyr = pH(ra)=p" (T4 1) Mlppy 7o) =0, (7.1)

T =7 (p,), Tn41 ="'+(Pn+1)’ hi(Pny13Tn 1) =0

From (4.8), we obtain

YTh 41 k
wz(Pn+1)+ D1 —To g7 b(Tn+1)+ l(pn+1’Tn+l)¢)0(Tn+1)
n+1 n+1
-1
dT+(a)]
x{ Iz "=”n+1~0’ (7.2)

a, T
WPy 4 1)+ [ﬁlﬁb(%) +k1(Pr 41> Tn)¢0(7'n)]

x[dT - (")]- l =0. (7.3)

do "= Ppn41

Elimination of wy(p,, , 1) yields

-1
YTht1 ki(Png1Trg1) dr * (o)
= lb(Tn+1)+"_’%Tn+1¢o(7n+1) —dz le=»

Pn+1 " Tn4 n+1
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a k(P g 17n) dr (a) (74)
pn+1—-7'b( )+ Tn ¢0( ) o =Pp41
Further, with
’Fn+l = r—l(Tn+1)’ hZ("F‘n+l’Tn+1) =0,
from (6.15),
—0Th 41 k2(7n+1’7n+1)
~ b —_— =0. 7.5
7‘n+1—Tn+1(T"+1)+ A CSEERY (7.5)
For n—oo we have, cf. (2.8), (3.16)-(3.19), since 7,—o0 implies p,—o0 and 7, —o0:
9T +1 ay k1(Pr19Tn41) _p-
Prtil Tnt1 R7_{ Tntl — agmy(a; — By,
a7 aq ky(p +17 )
Pn +1 2 Tn - R1+ — 1, nTn - - (127('2((11 - Rl+ )’ (7'6)
BTnt1 | % kZ(?"“’T"“)—»aW(a -R;)
171\"2 2N

~ - _1 T
Pnt1 ™ Tng1 2 —1 n+l

dr* (o) L - lei — 2a,
do =Pn +1 2a1a2T1i - b’

Tn+1 — T+(p+(7'n)) p+(1'n)_—)R1+ — T1+ =RITH
o p¥(ry)  Tno BT TT T

Lemma 7.1: For the elements (p,,,7,) of the extreme left ladder of the tree gener-
ated by (T, po(T)), cf. (7.1), holds: for n =0,1,2,...,

(2 nigloob(—rm)— =B

1 Tm+n®0(Tmtn n v Po(Tm41)
It SRR A &

.. ( m+n n . ¢ m n) n
(i) m!&%‘z:ﬂv ) (;E(,-Jr) = (#A)",

with
I R Tt o
(vi) Jim T:;f)?:i) = R alR_l)\ﬂ'lR2 +m,R) <0;

for the elements (r,t.) of the right-most ladder of the tree generated by (T,r ~ (T))
holds; for n =0,1,2,...,
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. . b(tm + n) n
(3) olim _b—(tT— = Mg,

(Zl) lim m + n¢0( m + n) n li ¢O(tm + 1) _

O I R )
. u"I(T'm + n) . n . ¢0(trn + n) _ n
(i) lim or,y MY rrp—”noo_%'(t_m)__( 222)"
with
Ry Ry —1 myR +m R}
v)  0< Ay ==2-<1, Ay 12 L1t g,
(i) 2 R+ H2=% pF Ty m,Ry R,
: b(t,) -
W)l g gy = "R
. wy(r,) ayRy
(vi) Jim - ff’lo( ") = R2_ 2 1\ TR +7 Ry ) <0.

Proof: From (7.5) and (7.6), it follows that the following limit exists and is given
by, cf. (3.20),
. b(Tn+l) a - — —
A, ERT X C a,M1(By =)= Ry ) = —m Ry,
so that (7.7) (v) has been proved.
From (7.4), (7.6) and (7.7) (v), it is seen that the first limit in (7.7) (i) exists for
n =1 and from this result, the relation for the second limit in (7.7) (i) follows by
using the definition of A;, cf. (7.7) (iv), and the last relation of (7.6). The second
relation in (7.7) (4i7) follows immediately from the first one in (7.7) (i7).
Next, we let n—oo in (7.4). We then obtain by using (3.16), (3.18), (7.1) and
(1.7) () )
[R' (=™ Ry ) +aymy(a; — Ry )] Ry m

a -
= [R ¥ 1_ 1( —m Ry ) +aymy(a; — Ry )]R1+ :
1

By usmg (3.20), the second relation in (7.7) (iv) is readily obtained, since 0 < R <
1, Rl > 1. The inequality on the left of the first relation of (7. 7) (iv) follows from
R" >R[ >0.

From (7 7) (i7), (v) and from

Mrng1) b(r,)  mpdo(rn)
—m R =1i n+1 n nPo\"n
T2 Tl () Ta¢o(Th) Thn190(Th 1)
(7 1)
_ -1 . n+1
= —mbBy gy Jim, b(r,)
the relation (7.7) (7) readily follows.

From (7.2), we obtain for n—oo,

wz(Pn+1) a - —\p—
- —-7m R, )+ a,m(a, — Ry )R =0.
=00 Tn+l¢0(Tn+l) Rl —1\ 1742 ) 2 2( 1 1 ) 1
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So, by using (3.20), we obtain (7.7) (vi). From
wa(Pr +1) _ WaPr 1) wy(pn) Tnfo(Tn)
Tn+ 190(Tn +1) wo(Pr) Tndo(Ty) Th + 1%0(75, + 1)

it follows, because the first and third quotient have the same limit, cf. (7.7), whereas
that of the last quotient is equal to p; , that

‘”2(Pn+1) _
n=%0 wy(pyp,) v
Consequently, the first relation in (7.7) (4i¢) follows. Hence, (7.7) is proved, and
(7.8) follows by symmetry. O

The lemma above describes only the asymptotic behavior of the various residues at
those nodes of the tree generated by (T,p ™ (T)), which belong to the left- or right-
most branch of that tree, i.e., at the nodes

M+ 1) and Tg") with § = 2" — 1.

To consider the asymptotics for n—oo of the residues at a generic point

#mEn) seo,1,..,2m -1},

we write
b=e2"+d,,
(7.9)
e, €{0,..,2m—1}, d_e{0,1,...,2" —1}.
Hence, Tgm'*'"), n=0,1,2,..., is the tree generated by ‘rgm), and it is a subtree of

that generated by T. Now, write d,, as a binary number and in this binary represen-
tation denote by
dg") the number of zeros, (7.10)

dg") the number of ones,
so that
d{™ 4 d{™ = n. (7.11)

It readily follows from (7.6), (7.9) and (7.10) that for every finite n: for m—oo,

m+n) n n n n
Tg — T} R} }dg ){T2+ R2+ }dg )= A dg ))\2“ dg )

> 1. (7.12)

Tgm)

Lemma 7.2: Let ‘rgm“i""), m=0,1,2,...;, n=0,1,2,..., be a generic element of
the tree generated by (T, p ~ (T)), then: forn =0,1,2,...,

m +n) n n
(@) lim brs™ ) )= ufg )“gQ ),

m—00 b(T((am))

. . 7—"‘+")¢ Tm+m) dn) dn)
() Jlim, gfgmwz((fgm)) )=ﬂ15 uﬁ , (7.13)
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wip§" ) g™ )

(i) lim D N e Bt
wi(pem )

with e,,d,,d{™,d{™), for given 6€{0,1,..,2m "1}, as defined in (7.9) and
(7.10), and, cf. (6.17),
pgm o) - (rgm+")) for § even,
= r'(r&m-"")) for & odd.
Proof: For 6 =e,,2" 4+ d consider, the tree generated by rgm), which is a subtree

of the tree generated by T(()O) =T. Apply for this subtree Letnma 7.1 with n = 1.
Next, apply again this lemma with n = 1 for the elements

r{m+1) with 6 = 2 +d,,d; € {0,1}; (7.14)
then, (7.13) (%), for n =1, follows from (7.7) (¢) and (7.8) (7). Apply Lemma 7.1
again with n = 1 for the subtree generated by 7§™ *!) as given in (7.14), then (7.13)

(%) follows for
™+ with § = 2%, +dy, dy €{0,1,2,3}.

Repeating this procedure leads to (7.13) (¢). The statements (7.13) (i) and (ii2) are
similarly proved. 0
8. The Solution for the Case a; # a,,

We introduce the following meromorphic functions.

For rg”), 6€(0,1,2,..,2"-1), n=0,1,2,..., a node of the nth level of the tree
generated by 1'00 =T, cf. Section 3, and with

p n) = p- (Tg")), hy(p~ (Tg")),rgn)) =0, 6 even,

(8.1)
r&") =r" (Tgn)), hy(r~ (Tg")),r “)) =0, éodd,
set for nonnegative integers m,, Mgy My, My
) ~ 00 b(n) m
@) Berr=%2 ¥ (—(—-)) ’
n=05€‘an7'—-Tg T§
~ 0 ") m
@ = x Ay (82)
n=0 5€€Bn'r—7'g Tg

~ 00 w(") m
@) Gypr=y ¥ —2 (L ’

) Gep=% % ﬂ(—) ,

nS1s5¢q  r—rit)
with, cf (3.14), € ®n g
B, ={0,1,2,...,2"~1}, (8.3)
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and where, cf. (4.6),

o™ = b(rf™), ) = go(r§V), ) = wolpfV), w3 = i (™). (8.4)

First, we have to determine the values of m  for which the right-hand sides of (8.2)
are well-defined meromorphic functions; cf. [15]

Consider first the function in (8. 2) (¢). From (7. 12) it follows that B(T), as
defined in (8.2) (7), has only a finite number of poles in any finite interval. From
Lemma 7.2 and (7.12), we have with

§=e2" +d,,d{™,d{™, as defined in (7.10),

for k—oo0,

k n) 4(r)
bge+ ™) be, ui

A A

k+tn)ym+1 [ (Fym+1
[rf )

(n) n)
= [p AP 14 [uz/\é'“”]dg : (8.5)

Because 0 < A\; < 1,i=1,2, and dg") +dg") = n, we have
n

n) n)
Z ( )[ i+ Y g e

n

Obviously, a unique, finite nonnegative number M may be defined by
(4) |ﬂ1)‘{w+1+l‘2)‘£/[+1 | <1< |l‘1)‘{v[ +N2)‘£/[ | Af [pd +ppdg | 2 15

(i) M =0 [pdy +pdy | <15 (8.6)
note that p; and p, are both negative; cf. (7.7) (iv), (7.8) (iv).

Hence, for my > M, it is seen that the right-hand side of (8.2) (i) converges
absolutel for every 7 with | 7| < R, for every finite R, whenever terms with poles
T ), |T§, | < R, are deleted from this sum. Consequently, the sum _in the right-
hand side of (8.2) (¢) is a well-defined meromorphic function for my > MN The same
conclusion is reached for the sums in (8.2) (ii7) and (8.2) (iv), i.e., my > M, my > M.
Next, consider (8.2) (i¢). A calculation analogous to that in (8.5) yields, by using
(7.7) (1), that the meromorphic function in (8.2) (i) is well-defined for m, >
max(0, M —1).

Lemma 8.1: For a; # a,, a +4 >1 the functions B( ), <I>( ),

o 1=12, are

well-defined meromorphic functions for
meM, m22M, mIZM, m¢2max(0,ll~l—l),

with M as defined in (8.6); ﬁ(r) and 50(1') are both regular for |7| <T =
2 ~ . 3 a
(al—1+al-2-) , Qy(p) is regular for lp| <p+(7'80)) :al(a%'*'al_z) + a%(alf+-al—2), and
) 1 1,1
Q(r) for |r]| <a2(q+ ) +a1 a2+a—2).
Proof: The first statement has been proved above, the other statements follow



Analysis of the Asymmetrical Shortest Two-Server Queueing Model 143

from Lemma 6.2 and T(()O) =T>1,7 ") >T,
3 a
p n) > p+(r(()0)) = al(all"'a%) +E;—+(ai1+al2), 6€B,,n=12,..,
and, analogously, for 51(7'), R R R o
Next, we introduce four polynomials, viz. B(-), ®¢(-), @;(-), with degrees N,

N¢, N, ¢=1,2, and put

ﬁb
B(r) = B(T) +B (7) with E(T) = Z Ekrk,
k=0

N
3
Do(1) = o(1) + Po(7) With Co(7) = Z ‘I’okfk’
k=0
(8.7)

ﬁ2
Qy(p) = Qy(p) + Qy(p) with Qy(p) = Z sz/’k,
k=0

ﬁl
Qy(r) = Qy(r) + Qy(r) with Q;(r) = > Qyr¥,
k=0

and LN?(), 50(-), 51’(')’ i=1,2, given by (8.2); cf. also Lemma 8.1. It will be
shown that these polynomials may be determined in such a way that the functions in
the left-hand sides of (8.7) satisfy conditions (2.10).

Lemma 8.2: The functions B(-), ®y(-), (), i = 1,2, as given by (8.7), satisfy
condition (2.10) (7).

Proof: The statement of the lemma follows immediately from Lemma 8.2., note
that 7> 1, pt(T) > 1 and r ¥ (T) > 1; cf. Lemmas 3.1 and 5.1. O

For the functions B(-), ®y(-), Q,(-), i =1,2, as described in (8.7), denote by

in () the left-hand side of (4.3),

(8.8)
Fli (7) the left-hand side of (4.4).
From (8.2), (8.7) and (8.8) we then have (note wg%) =0) that
FE(1) = e * (M) = B(r) & ks (0 * (1), 7))
0 _n) +
I S S B L e

w { {5}
“pEm—p pEM =T (3.9)

n T¢gn)k1(p iT(T)aT){_%_}mrb]'
BRSO

n:OgeanT—Tgn)

Note that the sum of the three terms inside the square brackets is zero for
T = Tg"), (cf. (4.10)). For 7—o0, it follows from (2.8), (3.16), (8.7) and (8.9), since
FQ:*: (7) is regular for | 7| > 1, that
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pi ()= 2EE) T, Ry o BO) R,

N RE 1, .8,
[p® ()] U 4 (6.10)
O (1) N, +1 . o :
+aymy(a; — Rf'E )———0(,\) T ¢ 45,24 0(] 7™ ! | ), 7—00,
(r]¢
with ¥, a nonzero constant and
Mm;: = max(m; —1,my —1,m,),i =1,2. (8.11)
Put A
ﬁi: = max(Ni, Nb, N¢ + 1,m2 - l,mb - 1,m¢),l = 1,2, (8.12)
with Ny + 1 deleted if Bo() = 0.
From (8.9), (8.10) and (8.12), it is readily verified that
|FE(r)| ~F, 7] P2 for | 7| —0o. (8.13)

Because 7 ¥ are the only branch points of p*(7) and p~(7), it follows from (4.3)

and Lemma 6.1 that F," (1) + F; (7) is regular for all 7. Consequently, Liouville’s
theorem implies that F2+ (r)+ F4 () is a polynomial of degree fi,. Such a polyno-
mial contains fi, + 1 coefficients. Because Fy' () + Fy (7) should be zero for all T,
cf. (4.3), and (8.8), we thus obtain conditions for the coefficients of the polynomials
B(-), ®(+), Q,(+), i = 1,2, since analogous conclusions hold for FE (t).

Note that next to these conditions we have the two conditions which stem from
the definitions (2.1); see also (2.10). Further, it should be mentioned that the set of
Kolmogorov equations, which are equivalent to the conditions (2.10), contains one
dependent equation. So, in total, the coefficients of the polynomials have to satisfy
By +14+4,+14+2—-1=p;+M,+3 conditions. Consequently, we have, cf. (8.7)
and Lemma 8.1,

(%) meM,mZZANJ,ml}_M, md,Zmax(O,M—l),

() Np>20,N;>0,N;>0,N,2>0,

(151) | Bol 20, [Q0] 20, Q] 20, | Pg| 20, (8.14)
(iv) [y + iy + 3 conditions have to be satisfied.

The determination of the polynomials in (8.7) for given mym;, e ﬁb’ﬁi’ N¢,i =
1,2, basically proceeds as follows. From (8.12), fi;, ¢ = 1,2, is determined, so that we
need i, + 1 relations to guarantee that F 2+ (r) =0, and analogously, fi; + 1 relations
in order that F ;" (¢) = 0. These relations are obtained by choosing i, + 1 zero-tuples
(pt ('rj),rj), J=1,..,0y+1, of hy(p,7) =0. Insertion of these zero-tuples in (4.3)

leads to [i,+1 nonhomogeneous linear equations for the coefficients of the
polynomials in (8.7). Analogously, fi; + 1 zero-tuples (r(t;),t;) of hy(r,t) are chosen
and substituted in (4.4). From the structure of relations (4.3) and (4.4), it is seen
that 7, and t; may always be chosen in such a way that the resulting set of linear
equations together with ;(0) = ®,(0), cf. (2.10), is sufficient and hence leads to a
solution. Once the polynomials in (8.7) have been determined, the left-hand sides in
(8.7) are known. From the analysis given so far it then follows that the functions
given by (8.7) satisfy (2.9) for all | 7| > 0.
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Obviously, we have quite some freedom in choosing the exponents in (8.2) and the
degree of the polynomials in (8.7). This freedom is not so surprising because in
general, a meromorphic function does not have a unique decomposition, (cf. [15], p
304); see also Remark 8.1.

The available freedom will be used to choose the numbers in (8.14) (i) and (i1) as
small as possible, with M being defined in (8.6). Before discussing this point, we first
consider several zero-tuples which are most appropriate for the determination of the
polynomials in (8.7).

Denote by (5,7) and (7,7) a zero-tuple of hy(p,7) =0 and hy(r,t) = 0, respective-
ly.

For R

(5,7) = (o, —a%) and (7,7) = (o, -all) (8.15)

it follows from (2.9) that
(1) 20)-a ( ) (1+ ‘11772)%( 2) =0,

(i) ©,(0) +a2B( ——) (1+ a27r1)<1>0( 1) 0. (8.16)
Note that 7 = ——55> 7'80) =T and 7= —ET> 7'(()0) =T, so that 7 = —al—2 and 7 =
—31—1- are not poles of B(-) and of ®,(-); cf. Lemmas 6.1 and 6.2. From definitions

(2.1), we have
Q,(0) = ®(0), i =1,2. (8.17)
Hence, from (8.16),

() @B =)+ (1 +am)e —d; )= 20(0) =

(i) - a2B( - 01) (1+ aymy)®, ( ) 3,(0) = 0. (8.18)
Comparison of the relations (8.18) with (2.1) (iv) shows that

E{rxl()ﬁ = x, + 1} is finite for r = _Zil"

! (8.19)
E'{er(x2 = x, + 1} is finite for r = —-dl;.
For R
(7,7) =(0,0) and (7,t) = (0,0), (8.20)
we have
dT ﬂ = 0
dplr=0~" drit=9
and so, from (2.9)
(1) Q5(0)+ayB(0) — B4(0) =0,
()  ©4(0) —ayB(0) — 2(0) = 0. (8.21)
Hence, from (8.17) and (8.21) () or (8.21) (%),
B(0) =0. (8.22)
Obviously, here the dependency of the set of Kolmogorov equations is manifested.
For
sy =(11 Py =(1L
(p,T)-(l,al)and (r,t)_<1,a2), (8.23)

we have from (2.9)
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() Q1)+ a—l"%TB(J—l) - <I>0(;}I) =0,a, %1,

.o a
(i)  Q(1)— ,,2313(%2)— <1>0(GL2) =0, ay # 1. (8.24)
For R
(,7) = (1,1) and (7,1) = (1,1), (8.25)
we have from (2.9),
Q) +a, lim 24 [~ 14 aymyla - )Ig(1) =0,
por =1 (8.26)
. B(t
Q,(1)—a, r_lltII;_ . r£i+ [—14aymy(ay—1)]®4(1) = 0.
Hence, since Q,(1) is finite,
B(1) = 0. (8.27)
From (3.7) we have
dp _ l=— % dr_q___~"%
dt Taagta;—ay dit T agay+ay —ay’
Hence, from (8.26),
(1) - (a0, + 0, —a}EB(r) | +[— 1+ amyay —1)]2g(1) = 0,
- (8.28)

(1) + (agay +a -az)ad?B(r)l LTy (= DJeg(1) = 0
T =
Next we consider the zero-tuples, cf. (3.4),

(7,7) = (p(r*),7+) and (7,7) = (r(t ), T). (8.29)

From (3.4), it is seen that p(7 *) is a zero with multiplicity two of h;(p,7 ). Conse-
quently, it follow from (4.3) that p(7*) should be a zero of multiplicity two of (4.3)
with 7 =77, since 7 =771 is not a pole of B(r) and ®,(r), and p = p(r ) is not a
pole of Q,(p). Hence, from (2.9):

(2) [QZ(p)+ p_p(,’.'f'):
+

(i) [000) +B(r+)d A - as)

(zu) [Ql(r) - =r(t +)

+
(iv) [—Q (r) B(T+)drr ++<I>0(t+)d (rt+)] —e ) =0.
Note that p(r +)—71 #0.
Next note that (2.4) (¢) for r, =0, r; #0, leads to (8.17) and so the zero-tuple

(p,7) = (p(r 7 ),7~) =(0,0) needs no further attention.
Finally, we consider the zero-tuples, cf. (3.4),

(3,7) = (p*,7(p*)) and (7,7) = (r *,¢(r *)). (8.31)

For p=p™T it is seen from (3.4) that 7 =7(pT) is a zero of multiplicity two of
hi(pT,7); also, T =7(p~) is a zero of multiplicity two of hy(p~,7). As before, we

B(T Y+ ky(p, 7 T )®(r 1))

r=p(‘r+):0’

=0, (8.30)

B(t+)+ ky(r,t F)@e(t )] _
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obtain from (2.9): for p+ # 1,

(i) [nz(pi)+ EoB) b * )R] ) =0,
) B(r>}+ Fk( 1IN 4 =0, (8.32)
and for rt #1,
O [ 0F) - F=BO+ b= 00(0), _, 4 =0,
() B0} + Sk = 08D, _, + =0 (8.33)
Note that, cf. (3.4),
p+ =1¢a; =1 and rt = l&a, = 1. (8.34)

The case a; =1 has to be excluded from (8.24) (i) and (8.30) (i), similarly a, =1
from (8.24) (i7) and (8.30) (4). If a; =1, then the second terms in (8.24) (z) and
(8.30) (¢) have to replaced by their limits for a,—1.

We proceed with the determination of the polynomials in (8.7). With regard to
the available freedom mentioned above we shall try to choose the degrees of the poly-
nomials in (8.7) as small as possible.

First we consider the case N

M =1. (8.35)

Take for the present case
mb—l:m2——1:m1—1:m¢zﬁb=ﬁ2=ﬁlzﬁ¢=0,
By =0,8y,=0. (8.36)
This choice is consistent with (8.14), and it follows from (8.2) and (8.12) that

. ~ ~ ~ ~ 00 ¢g n)
() B0)=8y0)=,(0) =0, By0) = — =
n=0 ¢ c G_B Tg
(1) iy =y =0. (8.37)
From (8.37) (41), it is seen that we need three coefficients. From (8.8), (8.17), (8.22)
and (8.37), we obtain R .
Q;(0) = Q; = 94(0), i=1,2; (8.38)

and so the three nonzero coefficients of the polynomials in (8.8) have been deter-
mined. The results so far obtamed lead to the followmg

Theorem 8.1: For “1 +a1 >1, ay£ay M=1, cf. (8. 6), the functions B(-),
Qu(-), (-), 1 =1,2, which satzsfy the conditions (2.10), are given by, cf. (8.2),

o ")
) B=Y % ggﬂ) T 1T <T=(ara)

n=20 5E€B T—T

0 n)

(“) q)O(T):Z Z 4’2 n)’ ITI <T7 (839)
n:Ogean‘r—‘rg

I s, .

@) )= -5 nBAE w o) <),
n=066?BnTg n=1 56913"9—92 pg
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| £ 8 o

) am=-F w458 v o it

=0 g n—l §€B r—rg g

These functions have meromorphzc continuations throughout the whole complex
plane, which are given by the right-hand sides of (8.39) ()...(1v). The residues bg )

n) i =1,2 can be calculated recursively (see Lemma 6.2), they all contain the
¢ 15 ’ y ) y
factor ¢0(‘rg ), whzch is umquely determined by

i 2(1)+—-Ql(1) =g+a -1 (8.40)

The generating functions E{r Wx; =x+1)}, E(r 2(x2 =x ¥ 1 Ir] <
(,,L1+al—2)2 are determined by (2.1) (iv), (8.39) (¢), (it), and E{rllr2 (x2>x1)},

E{r’l( ,r; (x; > x,)} are obtained from (2.4) and (8.39).
The queue length process {x,(t),xy(t),t > 0} is positive recurrent if and only if
i1
2

Proof: From (8.35)-(8.38) and the analysis given above, it follows that the
functions in (8.39) satisfy (4.3) for all |7| >0 and (4.4) for all |t| >0. So, by
using Lemma 8.2, they satisfy conditions (2.10) () and (2.9) or (2.10) (i¢). The

determination of E{r }(x; = x,+ 1)} follows from (2.1) (iv) and (8.39). It is further
seen, cf. (8.19), that the radius of convergence of the latter generating function is

larger than one, analogously, for E{r*?(x, =x; +1)}. From (2.4) and (8.39), the

bivariate generating functions E{r’;lr;?(xz?xl)} and  E{rilr3%(x, >xz)} are
obtained. It is readily seen that the domain of convergence of these bivariate
generating functions contains the Cartesian product unit disks |r; | <1, |ry| <1,
as a true subset. Hence, the coefficients in the series expansions of the bivariate

generating function E{r’l(lr;2} is an absolutely convergent solution of the Kolmogorov
equations. Hence, Foster’s criterion, cf. Remark 2.2, implies that the queue length
process {x,(t),x,(t), t >0} is positive recurrent for 7~ > 1; (2.6) shows that this
condition is also necessary. Because all generating functions contain ¢,(7') as a linear
factor, cf. Lemma 6.1, this factor follows from (8.40), cf. (2.1) and (2.5), and so it is
uniquely defined. For the uniqueness of the solution constructed for the conditions of

the theorem, see Remark 2.2. |
Next, we consider the case
M=2 L+l>1, a #a, (8.41)
1 92
Take

my—l=my—1l=my—-1=m, =1,
R R R R (8.42)
Ny =1, N2=N1:N¢=0.
This choice is again consistent with (8.14) and it follows that
by =H,=1 (8.43)

Hence, we need four coefficients. We have N p = 1 and, further, <I>00 should be non-
zero since <I>0(0) =0, and ®4(0) should be positive for a positive recurrent queue
length process; cf. (2.1) (i). Note B(O) =0 for my =1, so that BO(O) = 0; cf. (8.17).
From the two equations (8.8), B1 and tI>00 can be determmed their main determin-
ant is nonzero. Then, from (8.17) we obtain Q;,, i = 1,2. The explicit equations for
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El and 300 read, cf. (8.18),
a4 ~ ~ ~ 1 ~ 1
s (A i)
ag = ~ ~ 1 ~ 1 :
+ 2By + aymBop = ayB( = &) = (14 apm)8 ).

Hence, with Bl and 600 determined by (8.44) we have for the present case (8.41):

bim)
B(ry=7Bi+3, > 3 El
n=0 5eB, T_Tg Tg
. e )
Hr)=Bpo+ Y., >, —‘&T) Ol (8.45)
=0 sed r—rg) T
=R [es] (n)
2y(p) = oo + Z —i@—,;j [—/),;]2,
n=1 5B, P—Pg Pg
=R 0 (n)
Qy(r) = Qg + Z Z ‘ﬂégﬂ[f;]z-
n=1 = %n r—r r
Note that (8.27) implies )
~ ) by" 1
B, = - e 1 (8.46)
! nz=:0 B ;’;Bnl — ‘rg") (Tg"))2

For conditions (8.41) and with (8.39) replaced by (8.45) in Theorem 8.1 we obtain a
relevant theorem for the case M =2, a; # a,, al—+gl—> 1. It is fully analogous to
Theorem 8.1 and its explicit formulation is, therefore, omitted.

The determination of the polynomials in (8.7) for M >3, a1—+a1—1> 1, ay # ay,
proceeds along the same lines as for the cases M =1,2. The relations (8.17), (8.18),
(8.22), (8.24), (8.27), (8.28), (8.30), (8.32) and (8.34) yield, in general, twenty-two
equations, except for a; =1 or a, =1, cf, (8.24), (8.28) and (8.34), so their number
suffices for rather large M; cases with M >3 seem hardly to occur in the applica-
tions.

Remark 8.1: The degrees of the polynomials and the exponents of the meromor-
phic functions have been introduced in (8.7) and (8.2). They have to be determined
in such a way that (8.14) is satisfied and F* (1) + F (7), i = 1,2 are zero at fi; +1
points. In this determination there is no objection replacing my by my 4 hy, m & by
my + hy, my by my + hy and my by my + hy, with hy, h, hq, hq, positive integers (and
M defined by (8.6)). Such a change when compared with the case that hy, hy, hy, by
are all zero, actually amounts to subtraction of a polynomial from the meromorphic
function and addition of that polynomial to the “ A” polynomial; see (8.7). In fact,
this also occurs by noting that the solution given by (8.44) also holds for the case
M=1. 2

Remark 8.2: From (8.2) and (8.7), it is readily seen that T = Tgo) :(al—l+al-2-)

> 1 is the smallest pole of ®(-) and also of B(-). Hence, T determines the asymp-
totic behavior of Pr{x; = x, = n} for n—oo, i.e.
$o(T)

Tn+1

Pr{x; =x,=n} ~ — for n—oo.

Similarly, it is seen that
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o = p+ (r ) = al(all+a%)3 +ﬂ(i+a1§>,
) =rt () = a2(“11 +a2) +a1 % +a12)

are the smallest poles of Q,(-) and ©,(-), respectively, and so they determine the
leading term in the asymptotic behavior of Pr{x, = n,x; = 0} and Pr{x, = n,x, = 0}
for n—oo.

Remark 8.4: Numerical calculations indicate that always | Ayp; + Aguy | > 1. For
quite a few cases this has been proved in Appendix C. However, a complete proof of
M > 1 has not been obtained; actually, this is not very important, because if M =0,
then Theorem 8.1 also applies. Note that then the sum in (8.39) (i) may be written

TS S sl s A

n=0 56%7—72)7' n=0 §¢ 7'2" n=0g¢g

since for M = 0, the first sum in the right-hand side converges absolutely and the se-
cond sum is a well-defined meromorphic function, analogously for the other sums in

(8.39).

9. The Solution for the Case a; = ag <2, m; #

In the preceding section, the solution has been described for the case a; # a,. In this
section, we derive the solution for the case

@ =0a,=0y<2, T FMy 0<m=1-my <1 (9.1)
Again, T is defined as in Section 5, so cf. Lemma 5.1:
T=% " (0)=r"(I)=F 9:2)
note that (9.1) implies h,(p,7) = hy(p,7), so
r¥(r)=pE(r), 7 (p) =t (p). (9.3)
Again, Assumption 5.1 is here made, and, as in (5.9), it follows that
7 =T is a simple pole of B(r) and also of ®,(7). (9.4)

It follows, cf. the derivations of (5.10), that
b(T) +ky(p ™ (T), T)$o(T) = 0,

- (T) T (9.5)
;:@%%7¢av+kxwa»TwaT)=m

and that the two relations in (9.5) are linearly dependent, because (9.2) implies that
the main determinant of the system (9.5) is equal to zero.

From (9.1) and (9.3), it is seen that the zero-tuple of the ladder (3.8) generated by
the zero-tuple T on hy(p,7) induces on hy(r,t) = 0 ladders, which are all congruent to
ladder, cf. Figure 3.2,

(Pw Tu)’ [ERt} (Pn —13Th— 1)’ (Pn» Tn)a (pn +10Tn+ 1),- .o
(9.6)
rg =T, p_:=p~(T),
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with v as defined below (3.9), and p,,, 7, recursively defined as in (3.9).
Consider for the present case the relations (6.2) and (6.4), i.e.,

1
L b(T) + by o1, T)60(T) + wz(pl)[d” (")] ~0,
1 o=T

T (9.7)
a_ b(T) + ko(pg, T)do(T) = 0.
po—T
As in Section 6, cf. (6.5), it follows that

py is a simple pole of Q;(p), 0 < |w;(py)| < oo, i=1,2. (9.8)

Next, consider for the present case the relations (4.9) (¢) and (4 10) (2),

dr 7 (o

wy(py) + [p = 7- b(ry) +k (/11,7'1)?50(7'1)][_—&_)]0 =p, =0

dr ¥ (o) - (9.9)

wy(py) + [%—[%b(ﬁ) + k2(P1,7'1)¢0(7'1)][—d—0—}a =p, =0

Via (9.7), wy(p,) can be expressed uniquely as a linear function of ¢y(T"); note that
the determinant formed by the coefficients of b(T") and ¢,(T') is nonzero, cf. (5.13),
(9.5), and that py=p~(T). Analogously, w,(p;) is determined. It is now readily
seen that system (9.9) for the unknowns b(r;) and ¢y(;) has a solution b(7) # 0,
$o(T41) # 0, since its main determinant is nonzero; cf. (5.13) for a; = ay, 7, # 7.
Consequently,

7, is a simple pole of B(7) and also of ®(7). (9.10)

Next, we consider relations (4. 10) and (4.11) for the present case, i.e.,
dpt (o
o O] ) i) =0

dp (a)] —ar (9.11)

“’1(/’2)[ =7, T ;%—-——’1;1’(7'1) + k1 (pgs T1)¢o(T1) = 0.

Hence, since b(r,) and ¢y(7,) are determined by (9.9), it readily follows that w,(p,)
and w;(p,) are both finite and nonzero. Consequently,

py is a simple pole of Q,(p), i =1,2. (9.12)

By repeating the argumentation above, it is readily verified that the following lemma
holds; its detailed proof is therefore omitted.

Lemma 9.1: For the case ay = aq,m) # Ty with 7o =T

©) T n=0,1,2,..., are simple poles of B(t) and also of ®y(7);

(#5)  p,, n=1,2,..., are simple poles of Q;(p), i =1,2;

(1i3)  the residues b(7,), ¢o(T,), wi(p,), i = 1,2, are recursively determined by

L (T) + by (o, T)eo(T) = 0, (9.13)
0
and forn=1,2,..., by )
. aT, _ dr ~ (o)]
@) o) + o= ob(r 1) + k(o b0l ]2 -, =0,
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1
() wr(on) + =L ) + ka7 om0 |2,

= pn
=0, -1

(zu) wZ(pn) + [p - b(T )+ kl(pn’ Tn)T ¢O(T )]l:iz;;ﬁl]d =P, = 0’

-1 (9.14)

(v)  wy(p,)+ [p — b(T )+ 7 kz(/’n’ T )T nbo(Th )][ da(O)}a = 0.

Next we consider the asymptotic behavior of b(7,), ¢,,(,,) and w,(p,), i = 1,2, for
n—oo.
Lemma 9.2: For the case a; = ay =a, m; # 7y with 7o =T

bt = lim b(r n+1) lim ¢0(7'n+1)_ ‘m (Pn+1) i=19
* ThnSeo b(Tn) =, ¢0(T) Tn=oo w( ) Y P e (915)
R~ -1 Rt -1R” -1 _
= —r"‘A 0,
v= Rt -1 R RT -1
with (since a; = ay),
Ry =R =R™,Rj =R; ER+,)\=/\1=)\2=—§-%. (9.16)

Proof: Add (9.14) (¢) and (i¢) and also (9.14) (4i¢) and (iv). Next, eliminate from
the resulting expressions wy(p,,) + w;(p,,); this leads to

T + g -
[kl(pn’ Tn) + k2(pn’ Tn)]d)O(Tn)[%ZiLf =P,

i (a)] (9.17)

a:pn'

= s a1+ Fa 7 Dol 1]
By using (3.16), (3.17), (3.18) and (3.20), it follows for n—oo that

+12
L ORI s PR (918)

so that by using, cf. (7.6), 7, , {/7, —X~!=R* /R, it is clear that

ulra)__ it 1-
Folrn_1) —F <0

Subtraction of (9.14) (:) and (i7), and also (9.14) (iié) and (div) yields, after
elimination of w,(p,) —w;(p,),

Pza—TT”l’ [drda(a)]” = b(T )+ Pn —Tn - -1 [drd—a(a)]ﬂ_: pnb(Tn -1)

rt (o -1
= A k() + o T, )[d ! )L,,n

+ Tnl (- 1(Pm n—l) +k2(Pn, n—l)]Tn—1¢0(Tn—l)[dT (U)]a =p,

Again, by using (3.16), (3.17), (3.18), and (3. 20) it follows for n—oo:
A a(r,)+ 24, )
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R
= ~alm = my{{E g o(ra) ~ LT 1 (r ).
Hence, ry) _R*1-R-

o(r,_,) R 1-RT

From (9.14) (¢), with n replaced by m + n, it follows, for m sufficiently large again
by using (3.17), (3.18), (3.20) and the asymptotic relations for b(r,) and ¢y(7,,)
obtained above that for n =1,2,...,

a + = "
orlp ) = ~ R ) B =]

R" n
)
“’2(Pn+1) R+ 1-R~

Hence (9.15) is proved. 0
As in (8.2), we introduce for the present case the meromorphic functions

+amyR™ Tm¢0(rm)[%= i

which yields that

B o~ b(1n) (™
B L= — N/ .L y
(7) n; (%)
o m
3 I ¢0(Tn T ¢
QO(T). ——ngorr—_—rr:(?r:) 3 (919)
q . “’i(Pn) p i
Uy =3 755 (72)
with for n =1,2,..,, n=1
TO:T’ Pn 41 :p+(Tn)’ Tn:T+(pn)’ (920)

and N N N
my > M, m¢2M, m;, > M,i=1,2;

here M is uniquely defined as the nonnegative integer such that (note 0 <A < 1).
() M=0, for [$A] <1,

(@) | YAM 1 <1< | 9AM | otherwise. (9.21)
By using (7.6) and Lemma 9.1, it is readily seen, since for £ large,
(7, 4 k) b(ry) A

~ YAt

(7, + K™ +1 [re])™ 1 ’
that for m > M the function B () is a well-defined meromorphic function which is
regular in | 7| < 1. Similar statements are true for the other functions defined in
(9.19). a1

Because, cf. (9.15), A= e : !
and since it is readily verified by using (2.3) and (3.16) that | Ay | < 1, we take, from
now on in (9.19),

m =M =0. (9.22)
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Theorem 9.1: For a; =a,=a<2, 7 #7y#1, the functions B(-), ¥y(-),
Q.(+), 1,2, which satisfy conditions (2.10) are given by

(i)  B(s)= -B(0)+B(s),
(i) Bo(s) = B (s), (9.23)
(i) Q(s) = (0)— Q,(0) + Q(s), i = 1,2;

here B(-), <I>O( )s Q( ), i =1,2, are given by (9.19) with my = my =my=m; =0,
and they all contain ¢y(T) as a factor, which is determined by

2(1) + Ql(l) =2 —a.

If a > 2 no stationary joint distribution exists. R R N

Proof: As in Section 8, introduce the polynomials B(:), ®4(-), @;(-), i=1,2.
The degrees of these functions are determined by the same arguments as used in
Section 8 for the case M =1; then the proof is rendered as in Theorem 8.1 and is
therefore omitted here. Note that for the present case, fi; =0, 1 =1,2; cf. (8.12). 0O

Theorem 9.1 provides all results needed to get the characteristics of the queue
length (x;,x,) stationary joint distribution. The following analysis provides some
detailed information about the influence of the probabilities 7., ¢ = 1,2, m; + 7, = 1;
cf. (2.3).

Set

Qr): = ${0 () + (1)}, (9:24)

Elimination of B(-) from (4.3) and (4.4) yields for the present case, i.e., a; = a, = q,
T F To

0 * (1) + [~ 1+ 5a%t — gor * (1)]24() =0, (9.26)
with (r % (t),) a zero-tuple of
h(r,t) = at? +[1 - (24 a)r]t +r2 = 0. (9.26)

Relations (9.25), (9.26) formulate a functional equation which is identical to that of
the symmetrical shortest queue; cf. (3.6) of [12]. Hence, the solution constructed in
[12] can be used here.

Put, cf. (3.2), (3.3) and also [12],

(?) rrj’+1:=r+(t:),t:::t"'(r:),nzo,l,,,,,

with 4 5
tg = ol rét =%, (9.27)
(}fi) top1=tT )y =rt (), n=0,1,..,
wit
tg =—g g = 1—%.

The solution of (9.25) and (9.26) is then expressed by, cf. (4.7) of [12],

M- (1- ) TR=oll-75)

o 1(1—=) _0(1“t_+‘, (9.28)

:

Bo(1) = B(1)

:
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1

m=ol=75) n=101--F)
Q(T‘):Q(l Hn_o(l___.) Hn_l(l—;‘%,
with "
Q(1) :%(2——(1),(1)0(1) :m. (9.29)

Here the first relation in (9.29) follows from (2.5) and (9.1) and the second one is ob-
tained from (9.25) for the zero-tuple (r,t) = (1,1). Because the zero-tuples in (9.27)
are independent of 7, i = 1,2, it is seen that

®(t) and Q(r) are independent of =, i = 1,2. (9.30)

Consequently, the stationary distribution of x; +x,, that of max{x;,x,} and of
min(x,,X,) are all independent of 7, i = 1,2, cf. [2].

10. Some Expressions for Probabilities and Moments, a; # a.,

In this section, we derive some expressions for several characteristics of the queue
lengths.
We consider first the case

o £1,a,#1, algéaz,al—1+a-1-2—> 1, (10.1)

since we have to discuss separately the case that one of the a,’s is equal to one.
From(2.4) and Appendix D, we have

a;r B(r)
—ay rq)o( r)= l—ayrr—1

(7')

E{r1(x, > %))} = 7= (1) -
(10.2)

E{rxz(x2 > x;)} = agrmy®y(r) — ayr—
The latter yields, cf. (d. 4),
@) Bl >x)} = 1= h(1) ~1=5; =)~ 1= a LB, =1
(1) E{(xg >x)} = aymy®y(1) - d,B(T) I =1
(15)  E{(x; = %)} = @(1), (10.3)
()  E{(xy >x5)} = a;m @p(1) + ald B(r)|, =1

here (10.3) (iv) is obtained from (10.3) (i7) by interchanging a; and a, and by chang-
ing the sign of the term with B(-), cf. (2.4) (i) and (2.4) (3%).
It follows from (10.3) (i¢)-(iv), that

1= {1 +aymy +a;m}Po(1) + (e — ‘12)%3(7’) lr =1

so that

2(1) = ﬁ—ﬁ{ ~(ay~a) B} |, =1},

B > %)} = gl = 1+ (1 +a)B(1)}, (10.4)
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E{(x; > %)} =g= a =l — 1+ (1 +ay)2y(1)].
From (d.6) and (d.4), we obtain for the present case, cf. (10.1),
(1) Elxy(xy>x)} = aymy®(1) + az”zdiq’o(’") lr=1
1

—a2d B(r)lrzl 2a2d B(r)lrzl,
(1) E{x(x; > x5} = aym Bp(1) + al”l% Po(r) |, =1

+a B |, _ o +1a L B (10.5)

1dr r=1 21d7"2 r=1 .
(i) Blx(x = x)} = Lag(r) |, -,
. a

(1) Bl >x1)} = ({1~ 2o(1) —dﬁ,:B(r) =1}

(1
1 1 @
1_a dr(I)O()Ir—l 21—10 d2 (T)Ir—l

The summation of (10.5), (4)-(iv) yields the expression for E{x;}. The expression for
E{x,} then follows by interchanging a; and a, and changing the signs of the terms
containing B(-).
Next, we consider the case
a;=1,a,#1, a1+a2>1 (10.6)
By noting that relations (10.3) (4)-(7v) and (10.4) have been all derived from (d.6),
in which 1 —a; does not occur, it is seen that these relations also apply to the present

case with a; = 1.
From (d.10), we obtain for the present case (10 6)

(1) E{xp>x)}=3 ‘I’o(’") ly=1+3 " 23(’") lr=1
(1) E{xy(y=x)}= —‘I’o(r) lr =1 (10.7)
(i) Bi{xy(x > x)} = m@(1) + mbay(r) [, oy + LB, 2y
+5 Lpel, s,
Here (10.7) (444) follows from (10.5) (é¢) with a; = 1; note that (10.5) (i7) has been de-
rived from (d.6).
Appendix A
Let (&,1) be two stochastic variables with a joint distribution given by
Pr{€=279=0}="22

Pr{g=1n= 0}=‘%

(a.1)
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Pr{{=0,n=2} =%2—.
Hence, we have, from (2.8),

hy(p,7) = 0 E{rép"} = pr. (a.2)
Put 7 = pp in (a.2), so that

hy(p, pp) = 0p = B{p¢pt + 1= 2}, (a.3)
Note that (a.l) implies Pr{€+7—2<0}=1, so that for |p| >1, p#1 and
lpl =1,

|E{p¢pt+"=2}| <E{|p|¢+n-2}<1=|p]. (a.4)

For fixed p, |p| >1, the last term in (a.3) is regular for |p| <1 and continuous
for |p| <1. It follows by applying Rouché’s theorem that h(p,pp) has for
|p| >1, p#1 exactly one zero in | p| <1, and so the other zero of h,(p, pp) lies in
|p| >1; cf. (a.4). Note that hy(p, pp) is a quadratic function in p. This proves the
first statement in Lemma 3.1, the proof of the other ones is similar. ad

Appendix B

In this appendix, we prove Lemma 4.1 and relations (4.2). From (2.9), for zero-tuple
lpl =1, 7=7"(p) (note |77 (p)| < |p| =1, cf. (3.2)), we have

_ 47" (p)
N0
The function €,(p) is regular in | p| <1 and continuous in |p| <1. Consequently,
the right-hand side of (b.1) can be continued analytically into |p| <1. Consider
this analytic continuation of the right-hand side of (b.1) along a simple contour in
| p| <1, starting at a point oy with |oy| =1, 0y # 1 and such that it intersects the
interval [p~,p%], cf. (3.4), only once at an interior point oy, say, with

B(r = (p) + k(o= (P (T~ (P)), 1P| =1.  (b.1)

p~ <o, <pt. Because (o) =71 (0,), it is seen that the analytic continuation
of the right-hand side along this simple contour leads, on its return to o, to

a17'+(‘70) + + +
= Qy(0¢) = ——5=B(r 7 (09)) + k(00,7 T () Po( T (0p))- (b.2)
p—T17"(0g)
This relation holds for all |00| =1, 0y # 1, and so, by continuity it also holds for

op=1.
Hence, we obtain the following set of relations, of which the last three are
motivated by analogous arguments to those used in deriving the first one:

a T':t
Q(0) +- O Bt () s k(o E ()BT E(D) =0, |p] =1, (b.3)

p—7%(p)

_ agtE(r) 4 + £ _
Q(r) _——_r—ti(r)B(t (1) +ko(r, tE(r))2(t=(r)) =0, || =1,  (b.4)
Qz(ﬂi(T))+;%B(T)+k1(/’i(f)ﬁ)%(f)=0, 7] =1, (b.5)
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O O) g BB+ EOO =0 1 =1 (66)
with

(pyT + (p)) and (p + (1), 7) zero-tuples of h(p,7),
(1‘,t:b (r)) and (r + (t),t) zero-tuples of hy(r,1).

Because, cf. (3.2), |7F(p)| >1for |p| =1, p#1, it is seen from (b.3) that there
is a domain in | 7| > 1 where ®y(r), and similarly, B(7) is regular; note that k,(p,7)
is regular in |p| >1, |7| >1. Also 7 (p) is regular in |p| > 1, with |p| and
| 7| finite. Further, it is seen, that in | p| > 1 domains exist where Q,(p) and €, (p)
are regular. Next, take 7 in the domain where ®((7) and B(t) are regular, i.e., in the
domain defined by {r:7=77%(p), |p| =1}. For such 7 it is seen from (b.5) that
Qy(p T (1)) is regular. Since |pt(r)| > |7|, T#1, it follows that the domain
outside |p| =1, where Q,(p) is regular, can be again extended. So, by repeatedly
using relations (b.3) and (b.5) the domains of regularity of ®,(7), By(7) and Q,(p)
can be recursively extended; analogously for Q,(r). Because |pT(r)| > |7| in
[7] >1, |7 (p)| > |p]| in |p| > 1, it follows that the domain in | 7| > 1 where
®(7) is regular is unbounded, similarly for B(7), and analogously for Q,(p) and
Q(r).
1The singularities of ®y(7) in | 7| > 1 can only be poles, because kl(p,ri (p)) and
Icz(pi (r),7) are regular in |p| >1 and |7]| >1, respectively; note (3.4), and
similarly for the other coefficients in (b.3)-(b.6). Further ®,(7) has at least one pole
in {r:1< |7| <o}, because if ®y(7) would be regular here, then, since it is also
regular for | 7| <1, cf. (2.10), it is necessarily a constant, as Liouville’s theorem imp-
lies. Analogously, for B(T), Q,(p) and Q,(r). Consequently, Lemma 4.1 is proved. O
From the analytic continuations discussed above, it is seen that the relations (b.3)-
(b.6) hold for all those 7,t,p and r where the functions in (b.3)-(b.6) are finite. Con-
sequently, it is seen that the validity of the relations (4.1)-(4.4) has been established.

Appendix C

The integer M >0 has been defined in (8.6). Numerical results indicate that M is
always larger than zero. A proof of M > (0 seems to be rather lengthy and intricate.
Below we discuss some cases, for which the proof is fairly simple.
First consider
al_—.-a2=a<2,71'1=7r2=l (c.1)

3
From (c.1), (3.17) and (7.7) (iv) it follows that

R 1R +R{" R -1 b/a
M = R —1 2By T RF -12R; (c2)

From (3.16), (3.20), (c.1) and (c.2) it results that

— 2y =(2+a)(R{T —1)(a— R )= - _2(;r_a S (c.3)

Rf =12+a+v1+d?)

From (c.3), it is not difficult to verify, since A;py = Ayp,, for the present case, that
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| Appg + Agng | > 1for 0 <a<?2,

so that for the present case M >o.

Because Ay, is a continuous function in each of the parameters ay, ay, 7y = 1—
Ty, it follows from the results so far obtained that A is larger than zero for |a; —
ay| <€y, [T =5 1| <€, 1/a; +1/ay > 1, with ¢; and ¢, sufficiently small.

Next we consider the case )

a>Lm=r=x5 (c.4)
From (3.17), (7.7) (iv) and (c.4) we have
R -
_ (BT —O)(B5 +RF) RO Ry ta Ry R
171 — — -\ - — -
(B =1)(Ry +R) R R, +aL1—R2 - R

. Rz—(R++R1_)+a2_"2R2_—(R1++R1_) ()
= -1+ C.
R Ry +4- —R2 -R

5 - 0(f-2) o)

Rt Ry +3-—2R;

= -1+

Because R1+ —1> 0, the denominators in (c.5) are positive and the numerator in the
last term of (c.5) is not positive for a; > 1, noticing that

b |
@—2= —l+a1+52->0fora1_>_1,

it follows that Ay < —1. Hence, from Ayu; <0 we obtain | Ay + Aqng | > 1, e,
M >o. Analogously, M >0 for a, > 1, 7r1 Ty =1/2.

Finally, consider the case m; = m, = 5 and a210 It is readily verified that Rz_ —0
for a,|0 and so it is seen from (c.5) that for a, sufficient small, the numerator in the
last term of (c.5) will be negative and it follows again that A;u; < —1 and so M >0,
since Ayu, < 0.

Appendix D
From (2.4), it is seen that for |r| <1,
E{rxl(x2>xl)}—l—;—(;1—r(l—- r)— 1—’“92(1)+1—’“q>0(r) B(r)y=0, (d.1)
B{r*2(x, > x)Hagt — (1= r)my@(r) = B(r) = 0. (d.2)

So that by letting r—1, it follows, cf. (2.10), that
B(1) =0. (d.3)

Because the smallest pole of B(7) as well as of ®y(7r) is 7 = 7'(()0) =T > 1, cf. Lemma
5.1, (8.2) and (8.7), it follows that there exists a neighborhood of 7 =1 where B(-)
and ®y(-) are both regular, so that all derivatives of B(-) and ®y(-) at r =1 are
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finite. Thus we may write, (cf. (d.3)): for r ~ 1,

B(r) = (r—1)Z- B(?’)lr_1+2(7"—1)2 3B(r) |, =1

+3r = 1PLB) |,y + 0 - 1),

(d.4)

B(r) = (1) + (= 1)k d(r) |, _y + 3 =12 L50,0) |, +0((r = 1.

From (d.1), we have: for r ~ 1,

B{10x, > %)} = T (0) ~ 78D + (= D060 |, 2o

L Vo= NOTNIRT O 1)3;—;%@) =1+ O((r = 1)")]

4T . d 1 d?
- 1_1(11,,.[%‘3(70) l r=1 +§(T' - 1)&?B(r) | r=1

+3r= LB |, o+ O((r - 1)
and from (d.2), B(r)
27'__1)'

E{rx2(x2 > xq)} = agmyrdy(r) —a

For, cf. Theorem 8.1,

a; =1, azgél,a +(112>1’

we have from (d.5): for r ~ 1,

E{r(x, > x,)} = 1{25(1) = @o(1) — (r = 1)L ag(r) |, _4
Yo NOTMINEY (R NI MY
~THAEBO |, _y o+ - 050,

+3r-1EEB0) |, i+ 0 -]
From (d.7) and (d.8) we have:

o = Loy # L+ b > 120,(1) - 26(1) ~ LB |, _, =0,

(d.5)

(d.6)

d.7)

(d.8)

(d.9)

because the left-hand side is bounded by 1 for r = 1. Hence, if (d.7) applies then: for

r~1,

E{r1(x, > )} = Ly(r) |, _y +4(r = D Eap(r) [, - +-LB(r) |
2 1 “dr 0 r=1 2 dT‘Z 0 r=1 dr r=1

2 3
+5raB) |21+ grr = 5B |, 21+ 0= 7))
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Appendix E

In section 7 we have defined A\; and X,. For the determination of M, cf. (8.6), we
need some more detailed information. It is obtained in this appendix; further, some
relations between A; and a;,a, are deduced. These relations are helpful in the numeri-
cal evaluation of queueing characteristics.

Denote

b 11,1
A: = aga, 2 al+a2+1). (e.1)
Since for i = 1,2,
;A% > 1, (e:2)
we have R
6, =a,A’> 1. (e.3)

Hence, from (3.16), (7.7) and (7.8): for i = 1,2,
0<x=4/8i-\/5i-1<1. (e.4)

N -2 211 =0,

It follows that

Consider the hyperbola y? —2yz+1=0. It has its center at the point (0,0) and
asymptotes y =0, y = 2z, the point (1,1) lies on it. It is readily seen that for
i=1,2, R

6, >0=0< A, <1, (e.5)

and A; decreases monotonically from 1 to 0 for 5: 1—00.
From (e.5), it is seen that a positive integer n may exist such that
AT+ > 1

However, for n sufficiently large, this inequality cannot hold for any 3,- >1,i=1,2.
To derive the relation between a; and 6, note that from (e.1) and (e.3) we have

-~ 2 ~
6 6
a? | 2= | +2(1 - 26)a;=—2x+1=0, (e.6)
by + 68y 61+ 6,
with N
€ = ,\6162,\ -1>0. (e.7)
8 + 6,

From (e.6) and (e.7), it follows readily that: for i = 1,2,

~

6
o =31+ 22T+ )}, (e-8)

so that ) )
-1
E+;2T:[1+26:t2\/6(6+1)] .
It follows that
L1y, Lyl (.9)

a a
a;”  ay 1 2
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Hence, if, cf. (2.6) and Remark 2.1,

1
ate;> b

then the relation between a; and 3,‘ is given by

3 ,
ai=1;€{1+2€—2\/€(6+1)}, 1=1,2, (e.10)

al1+61;:1+2e+2,/e(e+1).
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