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This study presents the analytic solution for an asymmetrical two-server
queueing model for arriving customers joining the shorter queue for the
case of Poisson arrivals and negative exponentially distributed service
times. The bivariate generating function of the stationary joint distribu-
tion of the queue lengths is explicitly determined.

The determination of this bivariate generating function requires a con-
struction of four generating functions. It is shown that each of these func-
tions is the sum of a polynomial and a meromorphic function. The poles
and residues at the poles of the meromorphic functions can be simply cal-
culated recursively; the coefficients of the polynomials are easily found, in
particular, if the asymmetry in the model parameters is not excessively
large. The starting point for the asymptotic analysis for the queue lengths
is obtained. The approach developed in the present study is applicable to
a larger class of random walks modeling asymmetrical two-dimensional
queueing processes.
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1. Introduction

The "two-server shortest queueing" model, also known as the "two queues in parallel"
model, has obtained quite some attention in Queueing Theory literature, the greater
part of it concerning the symmetrical model. For a short overview of the studies on

the symmetrical model, see [12]. The asymmetrical model presents an analytic pro-
blem which appeared inaccessible for quite a long time. In the present study, the solu-
tion of this problem will be given.

1This work was supported in part by the European Grant BRA-QMIPS of CEC
DG XIII.
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The model concerns a two-server system with a Poisson arrival stream of custom-
ers with rate A. An arriving customer joins the shorter queue if the queues are un-
equal; if they are equal, he joins the queue in front of server with probability
i- 1,2. The server provides customers exponentially distributed service times with
service rate 1/i, i- 1,2. The symmetrical model refers to the case when r1
7r2 1/2, 1 -/2" The analysis of the queueing model requires the investigation of
the stochastic process {xl(t),x2(t),t >_ 0} with xi(t) being the number of customers
present with server at time t, 1,2. The analysis of this stochastic process can be
reduced to that of a random walk with state space being the set of lattice points in

2 with integer-valued, nonnegative coordinates.
In applications of the two-server, shortest queueing model, the stationary joint dis-

tribution of the queue lengths or its bivariate generating function usually contains all
the information required to calculate the various performance characteristics of the
model. Approximate techniques have been employed to obtain this information.
Usually, they yield the replacement of the infinite state space of the random walk by
a finite one. For the resulting process, the Kolmogorov equations for the stationary
probabilities are then solved numerically.

Blanc [4, 5], applies the power series algorithm. Here it is assumed that the sta-
tionary probabilities can be expressed as a power series made of powers of some suit-
able chosen function of the traffic load to be handled by the servers. Substitution of
these series into the Kolmogorov equations then leads to a set of equations, from
which the coefficients of these series can be recursively calculated. The results obtain-
ed by this approach are quite satisfactory when compared to those obtained by simu-
lation. Actually, this approach is also based on a special truncation of the state
space. Unfortunately, a sufficient mathematical justification of this approach is still
not available. Adan et al. [2], and Adan [3] present an iterative approach.

Random walks on the lattice in 2 with integer valued, nonnegative coordinates
are instrumental in the analytical investigation of a large class of queueing models to
date. For such random walks and their application to Queueing Theory, quite some
information is presently available concerning a fairly general approach of their analy-
sis, cf. [7, 8]. For the subclass of semi-homogeneous, nearest neighbor random walks,
a more effective analytical approach came recently available, cf. [10, 14], and in parti-
cular for nearest-neighbor random walks with no one-step transition probabilities to
the north, the north-east and the east, cf. [9, 11-13]. For this latter case it appeared
that the bivariate generating function of the stationary joint distribution of the ran-
dom walk, if it exists, can be explicitly expressed in terms of meromorphic functions.
A meromorphic function is a function which is regular in the whole complex plane, ex-
cept for at most a finite number of poles in any finite domain.

The random walk to be used in the analysis of the asymmetrical shortest queue is
indeed a nearest-neighbor random walk. However, it is not semi-homogeneous, be-
cause the one-step transition probabilities at points above the diagonal of the first
quadrant differ from those below this diagonal. In fact, this random walk consists of
two semi-homogeneous random walks, one at the points above, the other at the
points below the diagonal, and they are coupled at the points of the diagonal. These
two random walks do not have one-step transition probabilities to the north, the
north-east and the east and so, it was conjectured that the bivariate generating func-
tion of its stationary distribution can be indeed described in terms of meromorphic
functions. This conjecture was the starting point of our analysis and it appeared to
be true.
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We continue this introduction with an overview of the sections of the present
study.

In Section 2 we establish functional equations for the bivariate generating function
of the stationary joint distribution of the queue length process, cf. (2.4). From these
equations, the following two equations are derived, cf. (2.9):

i. 2(fl) + P vB(T) at- ]1 (fl’ T)(I)0(T) 0,

for a zero-tuple (p,r) of hl(p,-), P[ _< 1, [-[ _< 1;
a2tii. 1(r) -Z-_ tB(t) + k2(r t)o(t O, (1.1)

forazero-tuple(r,t) ofh2(r,t), rl <1, tl <1.
Here k{(.,.) is a first degree polynomial, and hi(. .) a second degree polynomial
(they are given); the functions, B(. ), (I)0(.),DI(. and D2(" are all generating func-
tions which are regular inside the unit disk and continuous on the closure of the unit
disk. Next to these conditions, there is the norming condition, which is equivalent to

-112(1 -t-121(1 11-t-12 1, a A31, a2 A2. (1.2)

From the conditions mentioned so far, the functions B(. ), 0(" ), i(" ), i= 1,2, have
to be determined, cf. (2.10).

In Section 3, properties of the zeros of hi(p, )= 0 and of h2(r t)= 0 are describ-
ed. These zeros are denoted by cf. (3.9),

p() or (p) forhl(p,)-O,
(1.3)

r (t) or t (r) forh2(r,t)-O.
The curve hl(p, v) = 0, when traced for real p and v, is a hyperbola, which has one

of its branches into the first quadrant. A graph with successive vertical and horizon-
tal edges is inscribed into the branch in the first quadrant; see Figure 3.2. The corner
points of such a graph correspond to zeros of h(p, 7). Analogously, such a graph is
inscribed in the branch of h2(r t)= 0. Any point of h(p, )= 0 induces also such a

graph on h2(r, t) 0 and vice versa. In Figure 3.4, a binary tree is traced, starting at

0). Out from r) a graph, as mentioned above, is constructed on hi(p, )- 0 and
on h2(r,t) 0. Each corner point of such a graph induces on the other hyperbola
again such a graph; only ascending graphs are used here. The set of corner points so

obtained constitutes the tree generated by r); see for details Section 3. Such a tree,

with a properly chosen top v), is instrumental in the construction of the functions
B(.), i=

Section 4 starts with the formulation of a lemma. It states that the functions
B(s), 0(s) and i(s), i= 1,2, can all be continued meromorphically into Is > 1.
For those meromorphic continuations a set of relations is derived, cf. (4.1-4.4). We
mention here two of those relations, viz.

n:(z + + 0 hl( 0,
p (v)-r (1.4)a2t1(r ())
r (t) tB(t) + k2(r (t), t)o(t 0 for h2(r (r), r) O.



118 J.W. COHEN

It is assumed, cf. assumption 4.2, that all poles of B(s), Po(S), fi(s), i-1,2, in
s > 1 are simple; at a pole of B(.) its residue is indicated by b( ); 0( ), wi( ),

stand for residues of G0(.), fti(.), i= 1,2, respectively. Note that b(s)= 0 implies
that s is not a pole of B(. ). From the set of relations (4.1-4.4), a set of relations for
the residues is obtained; e.g., if r is a pole of B(. and also of I,0(- ), then it is seen
from (1.4) that in general p- (r) is a pole of f2(" and r- (r) is that of al(. ). The
essential point of the analysis is to construct from the set of equations for the residues
a nonnull solution such that B(.), G0, fti(.), i= 1,2, are true meromorphic func-
tions, i.e. the pole set of each of these functions has not a finite accumulation point.
It turns out that there is a nontrivial solution to this problem. The solution of this
problem is discussed in Sections 5, 6 and 7.

In Section 5, it is shown that there exists a unique T in T > 1 such that the equa-
tions

hit
p- (r)- rb(r) + ]1(P- (r), r)o(r 0, hI (p- (r), T) 0,

(1.5)

a2T
-(T)- Tb(T) + k2(r -(T), T)0(T 0, (T), T) 0,

for the residues b(T) and 0(T) of B(. and (I)0(.) possess a nonnull solution. Actual-
ly, T is then determined by that zero in T > 1, for which the main determinant of
the set of equations (1.5) is zero. Note that (1.4) and (1.5)imply that p-(T)is not
a pole of f12(" and r- (T) not a pole of 1(" )"

In Section 6, it is shown that the set of nodes of the tree generated by r(0) T is
the pole set of B(. as well as of (I)0(.). The poles of fi(" ), i= 1, 2, can be deduced
from those of B(. and G0(. ). Further, a recursive set of equations is derived for the
residues at these poles; see Lemmas 6.1 and 6.2. In order to decide whether the pole
set of B(. can be used to define a meromorphic function information is required con-

cerning the asymptotic behavior of the poles of B(.) and their residues b(.). This
asymptotic behavior is studied in Section 7. It is shown that this asymptotic behav-
ior is such that for the pole set of B(. ), a class of meromorphic functions can be con-

structed, similarly for G0(. ), fli(’), i= 1,2. The elements of these classes of mero-
morphic functions are ]arametrized by nonnegative integers mb, m,mi, i--1,2,
bounded from below by M- 1, where M is defined by the asymptotic behavior of the
residues, cf. (8.6).

In Section 8, the meromorphic functions B(.), G0(.), fi(’), i-1,2, are intro-
duced by using the pole sets obtained in Section 6 for the functions B(.), (I,0(.),
fi(’), i-1,2.j they., contain the parameters mb, m,mi, i- 1,2, el. (8.2). Furth..er,
p..olyn2mials B(s), G0(s), i= 1,2 are introduced; their degrees are indicated by Nb,
N, Ni, i- 1,2. With the functions so introduced, the functions

B(.)-B(.)+B(.), (I)0( (I)( + (I) ),
(1.6)

fti(.)-a(.)+ai(.), i-1,2,

are considered, cf. (8.7). These functions are substituted into equations (1.4), cf.
(8.9). The asymptotic behavior at infinity of the relations so obtained is investigat-
ed. It leads to relations between m and the degrees N of the polynomials.
Given , appropriate choices of m... "c[termines the degrees ".... With the degrees
so determined, the functions (1.6) are again substituted in the equations (1.4). By
considering the resulting equations for properly chosen zero-tuples of hl(p,r) and of
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h2(r t), a system^ olinear,^nonhomogeneous equations in unknown coefficients of the
polynomials B(. ), q)0(" ), fi(" ), i- 1, 2 is obtained. It is shown that this system has
a unique solution, and so, the functions of (1.6) are all known and satisfy the equa-
tions; moreover, they are all regular in the closed unit disk centered at zero. Theor-
em 8.1 states that for M >_ 1, a1 7(= a2, the functions so constructed, whenever taking
into account the norming condition, determine the bivariate generating functions of

1 1the stationary distribution uniquely if and only if +a- > 1. The case M- 1 is an

important practical case. Then the construction of the solution for the case M 2 is
discussed, whereas that for M _> 3 is exposed. In Remark 8.2, the meaning of T for
the asymptotic behavior of the constructed solution is discussed.

In Section 9, the case aI --a2, 7r1 7 r2, is discussed. For this case, the
construction of the solution of (1.4) is essentially simpler, because here the pole sets
do not have a tree structure. In Section 10, relations are derived for some
characteristic probabilities and moments of the model.

The approach developed in the present study is applicable to a larger class of asym-
metrical two-server models, e.g., the asymmetrical variant of the model in [9]. This
class is characterized by zero one-step transition probabilities to the north, north-east
and east in the upper as well as in the lower triangle of the first quadrant [15].

2. The Functional Equation

The functional equations for the bivariate generating function of the joint distribution
of the queue lengths x1,x2, of the asymmetrical shortest queue model have been deriv-

Below we recall these functional equations usinged in [1]; see Section III.1.2, p. 245.
mainly the same notation as in [1].

Denote for <_ 1,

(i) (I)0(r): E{rXl(Xl x2)},
(ii) 2.(r)" E{rX2(Xl 0)},

(iii)

(iv)

with

al(r)" E{rXl(x2 0)},

B(r)" (I)0(r) (a- + rl)-a-(I)0(0 -(1 ++)E{rXl(xl =x2+ 1)}

a1 >0, a2 >0, b: =a1-k-a2-k-ala2,

(2.1)

(2.2)

1 > 71" 1 > 0, 1 > r2 > 0, 7r1 -t- 7r2 - 1,

71" 7r2 if a a2, cf. Remark 2.3 below.

The functional equations read: for It1 _< 1, r2l _< 1,
x1 x2 r 1(i) Etrl r2 (x2 > Xl)}/(l(rl,r2)+ 2( 2)a-(1 1-)

1+ (I)o(rlr2)[Tr2r2 - alrl al 7r2]- B(rlr2) 0,
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(ii) (2.4)

From these equations it follows,
Pr{x >_ 0,x2 >_ 0} 1, that cf. [1], p. 242,

by using the norming condition, i.e.,

aPr{Xl- 0} + aPr{x2- 0}- a + 12 1.

It follows that
1 + 12 > 1, (2.6)a-

is a necessary condition for the existence of a stationary distribution.
Remark 2.1" It will be shown, cf. Theorem 8.1, that (2.6) is also a sufficient condi-

tion.
Assumption 2.1: In the present analysis it will be assumed that

For a zero-tuple (71,72) of 1’1(rl, r2) It1 --< 1, _< 1, we have

rxlXn0 < lEerI r2(x2 > Xl)

_
1

and so it follows from (2.4) (i),

a(1) 1a2(F2) 1_.
1

+ O(Fl-2)[r2-2 1
alr a1

2]- B(12) O.

Set
hi(P, v): ala2r2 + (aI -bp)v + a2P2,
h2(r t)" ala2t2 + (a2 br)t + al r2,

l(fl, T)" 1 + a22(aiv p),

k2(r,t): 1 +all(a2t- r).

(2.7)

By using the properties of the zeros of Kl(rl,r2) when simplifying the expression in
square brackets in (2.7) and taking p- ?2, r- r’lr it is readily verified that (2.7)is
equivalent to

ale-(i) a2(fl) -- P " z’B(T) -- ]1 (o, T)dPO(T O,

for a zero-tuple (p,r) of hi(P,r);Ip

_
1, Iv - 1;

a2t(ii) i(r)-7-_tB(t) + k2(r t)(o(t O, (2.9)
for a zero-tuple (r, t) ofh2(r,t); rl _<1, tl _<1;

note that the derivation of (2.9) (ii)is analogous to that of (2.9)(i).
From the above, it is seen that the determination of the bivariate generating func-

x1 x2tion E{rI r2 } of the stationary joint distribution of the queue lengths requires the
construction of functions l(p),2(p),(Po(p) and B(p), which should satisfy the
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following conditions:

(i)

(ii)

they are regular for Pl < 1 and the sum of the coefficients in their series
expansions in powers of pn converges absolutely; (2.10)
they satisfy relations (2.1) (iv), (2.5), (2.9) (i), (ii) and, cf. (2.1), i(O)-
q0(0), i- 1,2.

R,emark 2.2: Once functions B(. ), 0(" ), 1(" )and 2(" have been constructed,
x1 x2which are not identically zero and satisfy conditions (2.10), so that E{rI r2 },

rl] _< 1, It21 <_ 1, is then determined via (2.4), then it follows that the Kolmogo-
rov equations for the stationary probabilities possess an absolute convergent nonnull
solution. By applying the well known Foster criterion, cf. [3], p. 25, it follows that
the queue length process (xl(t),x2(t)) of which the state space is irreducible, is posi-
tive recurrent and further that there is only one solution, which satisfies (2.10) and
the norming condition. Hence it suffices to construct functions B(.), 21(.) and
1(" ), which satisfy (2.10).

Remark 2.3: The analysis of the problem formulated in (2.10) for the case a

a2, 7r1 7r2, differs from that for the case a1 a2. The analysis in Sections 6, 7 and 8
concerns the case a1 7 a2. In Section 9, the case a1 --a2, 71" 1 7r2 is discussed. For
the case a1 a2, rI r2, see [12].

3. On the Zeros of hl(p, r) and h2(r t)

In this section we shall describe several properties of the zeros of hi(p, v) and h2(r t)
and introduce several functions of these zeros; these functions are needed to describe
the functions l(r), Ft2(p) q0(v) and B(v). Because of the symmetry between
hl(p,r and h2(r,t), we mainly restrict the discussion to hl(p,r); those for h2(r,t
follow by interchanging a and a2.

From (2.8) we have

(i) hl(P, r -0:::>v(fl)--2alla2[--al +bp+ v/(al-bp)2-4alap2],
(ii) hl(P, 7")- O::p(r) 2-2[bv -b /b27"2 4ala2(r A-a2v2)].

Lemma 3.1: For everu p with pl > 1, p : 1, the two zeros r
may be defined so that

I-(p)[ < Ipl < Iv+(p) l,

and, similarly, for the two zeros p(r) with 17" >- 1, 7 1, i.e.,

Ip-()l < Il < Ip+()l
Analogously, for h2(r t) O,

l,

I-(t)l < Itl < Iv+(t) for Itl >_ 1, t#l.
For the proof of Lemma 3.1, see Appendix A.
From (3.!) it is seen that r(p) has two branch points p- and p

(3.1)

4- (p) of hl.(fl 7")

(3.2)

(3.3)

+ and that p(r’)
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has also two branch points v- and v +. It is readily verified that

p+ -[1---2(1+X/)2]-1, 0<p- <p+ _<1, (3.4)

4ala27"- O, 0 < b2 4ala22
r < 1;

analogous relations hold for the branch points r + and t 4- of the zeros of h2(r t).
For real p and v, the curve hi(p, v)- 0 is a hyperbola with center (m, ’m) given

by
alb 2ala2[9m-b2 -4ala

> 0, :rm-b2 _4ala22 >
O, (3.5)

and asymptotes given by

P- fm "21[b4- v/b2-4ala22] (v-:rm)" (36).

Some special zeros of hi(p, r) are listed below:

" + (0) 1 "- (0) 0, p 4- (0) 0,a2

"- (1) rain(l, a) " + (1) max(l, a)
p-(1)- min(1, a1 +a), P + (1)- max(1,al +a),

dp(’r) a2(a1 1)
d" ala2 -F aI a2

for (p(-, 7")- (1, 1) and a2a1 + a2 1 7 O.

In Figure 3.1, we depicted the hyperbola hi(P, v)- 0 and r- 0 being its tangent
line atp-0, v-0.

Figure 3.1

Let (pn, 7"n) be a zero-tuple of hl(P, 7" with Pn- P-(Z’n), 7n--’r
7n > 1; see Figure 3.2.

+ (Pn), and
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(, ) o ( ) o

0 Pn-1 ,O Pn+l P 0 ’n-I n n+l ’

Figure 3.2

Starting from (Pn, rn), we construct a series of zero-tuples of hl(fl, ?’), cf. (3.2) and
(3.3)"

(flu’ Tu)"’" (fin 1’ Tn- 1)’ (fin, Tn)’ (fin + 1, Tn + 1), (3.8)
They are recursively defined by:

rn-l--r-(Pn)’ Pn+I--P

Pn_l-- fl-(rn_l), rn+l--7 + (fin+l)"
(3.9)

The sequence in (3.8) will be called the ladder generated by rn on the hyperbola
hi(p, r). Its "up-ladder" is unbounded, while its "down-ladder" is finite and stopped
at that index v, for which 0 < rv < 1 or Pv < 1.

Whenever al a2, cf. Remark 2.1, the zero-tuple (Pn, rn) of hi(P, r) induces also a

ladder viz.

,’",(rn-l,tn-1),(rn, tn),(n + l’7"n + 1)’" (3.10)
on the hyperbola h2(r t) 0, and tn rn i, : O. It is recursively defined by

t\-
tn-1 --t-(n), n+l--r+(n), (3.11)

"n-1--r-(’[n-1), tn+l- t+(’n+l);
again the "down-ladder" is stopped at that # for which 0 < tp < 1 or 0 < rp < 1.

Pemark 3.1: Note that for aI a2, i.e., hi(P, ) h2(P, t),

Yn-l m-l, Yn+l rn+l"
Analogously, a zero-tuple of h2(r t) with r, r- (tn) t, t + (r,) an~d t, > 1 or

rn > 1 generates a ladder on h2(r t)= 0 and induces a ladder on h(, t)- 0; see

Figure 3.3.
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Figure 3.3

These ladders are defined analogously to those in Figure 3.2. Actually, inter-
change in (3.9) and (3.11) p and r and also r and t. It should be noted that the
ladder in (3.8) with top (pn, vn)is identical to the ladder generated on hl(p,v)= 0
with top (p + 1, 7"n + 1) if r + 1 7" + (fin + 1), fin + 1 fl

However, the ladder on h2(r,t induced by (pn, vn) generally differs from that
induced on h2(r t) by (Pn + 1, Vn + 1)"
We shall denote by

(i) l(rn) with hx(Vn Tn)--O, the ladder generated by (Pn, rn) on hl(P,T --0;
(3.12)

(ii) (vn) the ladder induced by (Pn, Tn) on h2(Y t )-0 with hl(Pn 7n)- O.

Analogously, we define the ladders l(t,) and (tn).
lemark 3.2: Note that every point of hi(P, ) with p > 1 or > 1 induces a ladder

on h2(r t) and visa versa.

Further, it is readily seen from (3.9) and (3.10) that, cf. Figure 3.2 and 3.3:

7"n + l ?" + (fl + (7"n)), fln + l fl + (7" + (T + (Pn)),
(3.13)

tn+ 1-t+(r+(tn)), rn+l--r+(t+(rn)),
Tn + m--(:X) Pn + m-Cx3 tn + m--+cx3 rn + m

for m--<x3 and vn > 1, tn > 1.

Next we introduce a notation to describe all the ladder points on the up-ladders on

hi(p, t) 0 as well as on h2(r t) 0 generated by a point

(Po, o) of hl(fl, T) 0.

Define for m 0, 1, 2,..., the binary numbers

5m: hmlhm2""hmm with hmj {0,1}, j-1,...,m,
(3.14)

m: {:5 5j, j 0,...,2m- 1} {: {0, 1,2,...,2m- 1}}.
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The tree generated by (to, P0) is defined as follows:
its nodes at the nth level, n- 0, 1,..., are

(i) . 5(n) 5.n) 6(n) E % j 0,. 2n- 1-(n)) with5 n)<
J+l’ iT1 n,

(ii) ’(n2)’5’j " + (p + 5:z’(.)n))) for (jn + 1)= 2(jn),
(3.15)

t + (r + 5(_.))) for + 1.

(iii) V(o) vo r + (Po)"
In Figure 3.4, we depicted the nodes at levels 0, 1, 2 and 3 for the tree generated by

Figure 3.4

From the definitions above it is readily seen that the tree so constructed contains
all the ladder points on hl(p,r)=O and h2(r,t)=O generated by v0 with

hl(P0,r0) -0; note that l(ro) is the set of nodes on the left branch of the tree and

(r0) is the set of nodes on the right branch of the tree.
The tree generated by (to, to) is defined analogously, interchange the symbols r

and t and also p and r.
We conclude this section with the derivation of some asymptotic results. From

(3.1), it is seen that

R" aim
p + (v) 1

ro " =2(b -t- dl)’

R2:t:" lim
r + (t) 1

t-----Y-- )--1(b :k d2) (3.16)

TI:t: -olim
7" +p(p) 2a’a2(b :1: dI ),

T" lim
t 4- (r____) 1 (b + d2),ro r 2ala2

with
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dl: v/b2_4ala, d2: v/b2_4aa2.

Note that, cf. Lemma 3.1, for j- 1,2,

ala2(Tl=t= )2_ bTl:i: + a2 O, a2(R1=t= )2_ bRl:i: + all2 O,

a2(R1=!: 1)2 (b 2a2)(R 1) aI 0.

Further, from (2.4) by using (3.16) and (3.17),
dv + (p) bT1=t: -2a2lim

p---* dp 2ala2T b

Because

we have

and

lim
dp + (’) 2all2 bR1:t=

r- dr b- 2a2R
T.

R1- < 1 < R+ and R1- R+ al,

< min(1,al), R1+ > max(1,al),

a1 R al Rl:t=
a2 1 RI:t:"

(3.17)

(3.18)

(3.19)

(3.20)

4. Meromorphic Continuation

In this section we shall consider the meromorphic continuation of the functions 1(8),
2(s), B(s) and(I)o(S)out from sl <_lint sl >1.
Lemma 4.1: The functions i(s), 2(s), B(s) and Oo(S) can be continued mero-

morphically out from Is < 1 into Is > 1.
For the proof of this lemma, see Appendix B.
Remark 4.1: The lemma does not imply that these continuations are meromorphic

functions, i.e., have only a finite number of poles in every finite domain, but it im-
plies that their only singularities are poles or accumulation points of poles.

Assumption 4.1" Henceforth it will be assumed that the meromorphic continua-
tions of B(. ), (I)0(-), fl(" and f2(" are all meromorphic functions.

Remark 4.2: Whenever Assumption 4.1 leads to the construction of functions
B(. ), (I)0(.), 1(" and f22(. ), which satisfy conditions (2.10), our problem is solved,
because there exists only one set of such functions, cf. Remark 2.2.

The meromorphic continuations of B(. ), (I)0(.), fl(" and f2(" will be indicated
by the same symbols, respectively.

It is further shown in Appendix B that the functional equations (2.9) can be ex-
tended into the domains Iv] >1, P] >1, It] >1 and r] >1. Actually it is
shown that the following relations hold for all those v, p, r, t for which B(. ), (I)0(.),
fl(" ), 1"22(" are finite:

al "r+ (P) B(?.+ + :t=2(P) + 4- (P)) + kl(P’ 7" (p))(I)o(V (p)) 0
p- .,- (p)
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n(; +/- ()) +

l(r -l- (t))

for h(p,r+/-(p)) O,

B(t +/- (r)) + k2(r t + (r))%(t + (r)) 0

(4.1)

for h:(r, t +/- (r)) O, (4.2)

air B(.r) + kl(p :t: (r), r)(i)0(.) 0
()-
for h(p + (v), r) O, (4.3)

a2t .B(t) + k2(r + (t),t)(o(t) 0
r+(t)-t

for h2(r 4- (t), t) O. (4.4)

Remark 4.3: From the analysis in Appendix B it is seen that the relations (4.1)-
(4.4), are independent of Assumption 4.1. Note that (4.2) and (4.4), and similarly,
(4.1) and (4.3), are not independent.

Assumption 4.2: Henceforth, it will be assumed that the poles of B(.), (I)0(.),
a(. ), Ft2(. are all simple.

Remark 4.4: Concerning the introduction of the latter assumption, it is noted that
Remark 4.2 also applies here.

Put for finite t and p"

t)o(),b(t): stlim(s- t)B(s), Co(t): i_,I(S-
wi(p)’--lim(r-P)i(r i--12.

r--p

(4.5)

Assumption 4.2 implies that these limits exist. Obviously, cf. Assumption 4.2,

[b(t)[ #0 ,t is a pole of B( ),

Co(t) # 0 =t is a pole of (I)o(.),
(p) 0 ,re is a pole of fi(" ), i= 1, 2.

Note that (2.10) implies that

b(t) 0 and Co(t) 0 for tl < 1,

wi(p)-Ofor [Pl -<1, i---1,2.

(4.6)

(4.7)

From (4.1)-(4.6), it readily follows that, cf. (3.4),
for IPl 7 p:k and hl(p,r+(p))-O,

alv
+ (P) 4- 4- 4- dT" 4- r

w2(P) + 2_-.- 7" (p)) + kl(p, 7" (p))o(V (p)) dr P

for I1 #+/- and h(r,t+(r)) 0,

[- a2t + (r)b + k2(r, t + + J[dt+(r)]
-1

Wl(r) + (t (r))+ (r))o(t (r)) O;
r_ t:t: (r) d =r

(4.8)

(4.0)
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for v :/: r +/- and h1 (fl 4- (7"), ?’) 0,

[ 1;
1

02(p 4- (7"))
dp 4- (or) a17- b(v) + k1 (p

+ (7-), 7-)0(7" 0;do" =r+ 4- (-)- "
for tl t +/- nd h2(r + (t),t) O,

[ 1-1o1( + ()) ee+/-()_ + +/-- ) +( +
()_ t( (),)o( o.

(4.10)

(4.11)

In Sections 6, 7, 8 and 9, relations (4.8)-(4.11) will be used to calculate the resi-
dues of B(. ), (I)0(.), ill(" ), 2(" at their various poles. Note that relations (4.10)
and (4.11) on the one hand and (4.8) and (4.9) on the other hand are dependent on
each other.

5. The Equation for the Top of the Tree

In this section, we derive a relation for the smallest in absolute value pole of B(.)
and of o(" )"

From (4.3) and (4.4) we have that for [v[ >1, hx(p-(r),r)=0
h(- (-), -) 0:

Put

alv rB(r) -t- kl(P (r),v)(I)o(r) 2(P (r)),()

a2T
(7") 7

"B(7") "" k2(r (7"), 7")(I)0(7" l(r- (7")).
r

kl(p(r),r)

((),)
D(p(v),r(r),r):

A simple calculation using (2.3), (2.8) and (5.3) shows that

(5.1)

l(p- (r) v)(r- (r) r)D(p- (r), r- (v), v)

[b ala2(Trlr (r) + %p (r))]r air (r) a2p (r).
(5.4)

Because p- (r)- v - O, r- (r)- r # 0 for [r > 1, it follows that

D(p (r), r (r), v) O:r air- (r) + a2p- ()
b ala217rlr (7") + 7r2P (’)]"

From (2.3) and (3.7), it is seen that

b
ala2 71"lr (1)- ?r2P -(1) > 0. (5.6)
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Lemma 5.1:
(i) The equation

-() -()
a2 a1

b
ala2 {Trlr (T) -+- 7r2p

has in v > 1 a unique root r T, of multiplicity one,
(ii) for+> 1, it is given by

furthermore,

Proof: It is readily seen that the above equation is equivalent to

1+a1__(2 1 r-(r))r +a1--(1 1 p--(r))r
1-r 1-r-r(r----) Tr2 1 O-

Because (cf. Lemma 3.1 and (3.16)),

0< r <1, 0< r <lforr>l,

(5.7)

r -7-( 7" ]- /i2- fl (T)/i1- 1 for

and because the right-hand side of (5.7) is readily seen to be larger than 1 for ->_ 1
and it is continuous and increasing in r with a finite limit for r---,ec, the first state-
ment of the lemma follows. It is simply verified that 7-T, p-(r)-p-(T),
r- (r) r- (T) satisfy (5.7). It remains to show that, el. (3.1) (ii) and Lemma 3.1,

(i) p-(T) < T, < T,
(a.8)

(ii) hl(fl -(T), T) O, h2(r- (T), T) 0.
1 1Because+> 1, (5.8) (i) follows. Further by noticing that T- [p (T)]2, it is

readily seen that (5.8) (ii)holds.
Assumption 5.1: Henceforth, it will be assumed that, cf. also Assumption 6.1.

f2(p-(r)) < oo, lal(r-(T))I < c.

Remark 5.1" Concerning the introduction of the latter assumption it is noted that
Remark 4.2 also applies here.

Since r T is a simple zero of the determinant of (5.3), it follows from (5.2), and
Assumption 5.1 that

7"- T is a simple pole of B(r) and also of dgo(V ). (5.9)
In Section 8, Remark 8.2, it will be shown that T is the smallest pole of B(-) and

also of (I)0(.).
From (4.6), (5.2) and Assumption 5.1, we obtain,
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alT
fl- (T) Tb(T) -- ]1 (P- (T), T)o(T 0,

a2T
r- (T)- Tb(T) + k2(r -(T), T)0(T 0;

note that these relations are linearly dependent.
Remark 5.2: A simple calculation shows that for v > 1 the determinant

(5.10)

Similarly,

alT

a2t
r+(t)--t

a2t
r-(t)--t

]l(p (T), 7")

k2(r+(t),t)

(t),t)

with hl(fl 4- (T), 7") 0.

with h2(r 4- (v), v) 0,

(5.11)

(5.12)

and, by using (5.7),
-alT
+(T)-T

a2T
r+(T)-T

kl(P+(T),T)

k2(r+(T),T)

with hl(p 4- (T), T) 0, h2(r + (T), T) 0. (5.13)

Remark 5.3: From Lemma 5.1, it is seen that T is independent of the value of 71"1,
and that it depends only on the sum H a2.

6. Poles and Residues for the Case a1 # a2

In this section we determine the poles of B(.), Oo(-), fti(-), i-1,2, and derive
equations for the residues at these poles. From these equations, it will be seen that
these residues can be calculated recursively and that they all contain the factor Co(T).

With
V(o): T, p(o): p- (r(o)), r(o) -r-(V(o)), (6.1)

and T, as defined in Lemma 5.1, we have

ai’r0) 5(7"(00)) -- ]l(fl(00), T(00))0(T(00)) 0,(i)

+ ) )) 0(ii) r(o)O- 7"0With
fl(01)- p + (T(00)), /’iX): r+ (T(00)),

(6.2)

(6.3)
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we obtain from (4.10) and (4.11) that,

alr0)-- 7"(00)) ]l(fl(01) 7"(00))0(7"(00))’{- :tr(O’) O’--= 7"0) O,+ 1))

-[- Wl )L’ "do" Io. r
(6.4)

From (2.8) and (3.4), it is readily verified that the derivative in (6.4) (i)is finite
and nonzero. Furthermore, the determinant, formed by the coefficients of b(7"(o)) and

-))(i\ in (6.2)(i)and (6.4)-)l)(Z)siS nonzero; cf. (5.11). Hence, from (6.2)(i)and
it is seen that w2(p)1 nonzero and finite and proportional to o(r(o)),

analogously for wl(r1)). Consequently,

(i) p(o1) p + (r0)) is a simple pole of 2(" ),

(ii) r1) r + (r)) is a simple pole of 1(" )’ (6.5)
(iii) w2(p1)) and Wl(r1)) contain o(V)) as a factor.

T(3)
000 hi (p, r) 0

,,’,
’,

_(o)’// T

(z) p

h.(r, t) 0

Figure 6.1

In Figure 6.1, several nodes of the tree generated by 7"(oo) T are shown and

fl(0 fl + (7"(01)), ri21)_ r+ (7"1)), r(0 --r -k (7"(01)), fli)_ /9 + (7"1)).
Note that

(r (7"(01)), 7"(01)) and (r(o) 7"(01)) are zero-tuples of h2(r t) 0 induced by 7"(01),
(r- (7"(01)) is not shown in Figure 6.1),

(P

(6.6)

(6.7)

(7"1)), 7"1)) and (/9(110,) 7"1)) are zero-tuples of hI (fl, 7") 0 induced by 7"1),
(/9-(7"1)) is not shown in Figure 6.1).

Next, we consider (4.11) for the zero-rapid (r-(7"(01)),7"(01)) of h2(r,t)-O and
(4.10) for the zero-tuple (p-(7"1)), 7"1))of hi(P, 7")- 0, i.e.,
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(i)

(ii)

Wl(r_(7-(O1)))[dr-()1-1 -a2r1)

da Ja r1) - r (r1)) r1 b(T(o1))- ]2(r (7"(01))’ T(01))0(T(01)) O,

(a)];
1 alr1)

W2(fl (7-l)))[dPdq’ _rI1) + P (1)’- vl) b(T1))__
ki (p (7-1)), 7-1))0(7-1)) O.

Below we introduce Assumption 6.1, which implies that for the case a1 a2,

Wl(r-(7"(01))) 0, W2(fl-(7-1))) 0.

Hence, from (4.10) and (6.8) (i), we have

[ ff ]-a-r1) fl(01)
alw2(P(01)) dp (7)

1 7.(01)
-4- 7.(01)5(7"(01)) -4- ]1 (P(01)’ 7"(01))0(7-(01 )) 0,

a27-(01) 7-(01)) k2(r (7-(01)), 7-(01) 0(7-(01)1))_ + 0.

(6.9)

(6.10)

Here w,(p(1)) is given by (6.4) (i). The main determinant of.the two equations (6.10)
with urknwns b(7-(ol)), o(7-(o1)) is D(p-(7-(ol)), .r -(7-(ol)),7-(ol)); cf. (5.3). The unique
zero of determinant (5.3) in 7- > 1 is 7- T 7-(o), cf. Lemma 5.1, so that it is non-

zero, because 7-(o1) > 7-(o)> 1. The derivative n 16.10) is also finite and nonzero;
hence, (6.10) has a nonzero and finite solution b(7-(o11), o(7-(ol)).

Analogously, the equations

Wl(ri))[dr ((:r)l
l a27-1)

do. rl) rl 7-1 )b(7-l ))
__

]e2(rl ), 7-1))(o(7-1 )) 0,

a17-1) (6.11)

fl (TI)) T1)’b(7"1 )) -}- k1 (p (7-1)), 7-1 ))0(T1 )) 0,

have a nonzero and finite solution b(T1)), (01)(7-1)). Consequently,

(i) r(o1) and r1) are simple poles of B(-) and also (I)o(.),
(6.12)

(ii) b(7-(o1)), b(7-1)),o(7-(o1)), o(7-1)) all contain o(7-(o1)) as a factor.

With b(rl)), o(7-(o1)) defined above as the solution of equations (6.10) and b(7-1)),
0(r1)) as the solution of equations (6.11), we obtain from (4.4) and (4.11),

7-(01)a1
2t00 rl) + fl(0 7-(01)5(7-(01)) -- ]1 (fl(0),7-(01))(0(7-(01)) 0,

(6.13)

(ii) W1,/r (2))[d/’01 do"

+ (O.)]-1j: r1 7-(01)7-(01-}-
r(0)a2_ )5(7-I1)) - ]2(r(021), 7-(01))(0(7-(01)) 0,

d0. .r1 + a17-1)T(1)b(T1)) "]" kl(p) TI1))(0(TI) 0,

(6.14)
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(ii) dr r1) +
a27-

r) 1).b(l )) -t- ]2(r),1))o(71 )) O.

From (6.!3) and (6.14), it is seen that

p(0o), p0 and r(0l), r] are simple poles of Q2(" )and a1(" ), respectively,

for which the residues follow from (6.13)and (6.14).
(6.15)

Relations (6.4) and (6.8) represent the relations for the poles and residues at the zero-
level of the tree, cf. also (6.3); the relations (6.10), (6.11), (6.13) and (6.14)describe
the relations for the poles and residues at the first level of the tree generated by v(0).
To obtain those relations at the nth level of the tree, we introduce, cf. (6.9), the fol-
lowing.

Assumption 6.1" For the case a1 a2, let vn), 5 6 {0, 1,..., 2n- 1} be an element
of the tree generated by r(o) -T; see Figure 3.4. Henceforth, it will be assumed, cf.
Remark 2.1, that

(i) for 6 even:

Wl(r- (Tin))) 0 with h2(r- (r")), r")) O,

(ii) for 6 odd:

w2(p (rn))) 0 with hi(p (Tin)), 7(n)) O.

(6.16)

Remark 6.1:
applies here.

Concerning the latter assumption, it is noted that Remark 4.2 also

Consider Figure 6.2,

r+,i
/ h(p, r) 0

p")

(+ /
-("+I),,

2
r.) r25+1

h(r, t) 0

with the symbols defined by

Figure 6.2
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and

(n 4- 1) q- Tin) (n),

6 e {O,...,2n- 1}

(6.17)

written as a binary number, cf. (3.14).
Suppose for the present that

for even" ptn) is a simple pole of 62(. ),

for 6 odd: rtn) is a simple pole of 61(. ).
(6.18)

We consider first the case of
being even. (6.19)

Because Assumption 6.1 implies Ol(rtn)) -0, for which, we have from (4.10) and
(4.11),

(i) w2(pln))[dp- (r)]- 1 alT"In)
d(7 Jq rin)

q-
pin)_ Tin)

b(T")) -t- kl(fl"), Tn))O(Tn) O,

ar)
-@)_ ,)(,))+ (),,))o(,)) 0, (6.20)

(n +l))[dfl + (C)]- 1

+ al
da Ja rp) (n + 1) n)’b(Tn))() w2(f125

P25 r

(n+l) 7.tn))q0(7.tn)) 0,+kl(P26

(iii) (n 1))Idr + (r)]
1 a2vln) b(7n)w1(r26 ; 1 dr rin)--r26;l)(n Tin)

Next consider the case that

6 is odd.

Wn, nogousy, us ())- 0, w w"

(i)

(ii)

(6.21)

)[a-()1-1 -a27In)b(vln)) q- ]c2(rln), vln))O(Vln)) O,Wl(ri")[ da

alr)
pn)_ Tn)b(Tn)) +

l(pn)’ Tn))O(Tn)) O, (6.22)
1

Wl(r ;1 d Ja vin) + (n 1)_ Tin))
r25 + 1
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(n 7.n))0(Ttn)) 0,+($1,

(n+l))[dp + (o-)] a (ns__)
r

))() ( .) + (. .)(
(+) ))0()) 0.+ kx(p

(6.20) (i) re two equations for b(vn)), 0(wn)) and 5 being even. Again, it is
readily verified that the main determinant is nonzero and that the derivative in

(6.20) )is finite and nonzero; see below (6.10). From (4.6)and (6.18)it is seen that
w2(pF is finite and nonzero. Then (6.17) (i) has nonnull solution b(vn)),
0(Wn)), i.e., (cf. (4.6)), for 5 even:

) i simo of B(. nd so of 0(" )- (-e)

From the solution of (6.20) (i), it follows from (6.22) (ii)and (iii)that, cf. (4.6), for
even:

P2(n + ) and r25(n 11) are simple poles of 2(" and 1(" ), respectively, (6.24)

nd their residues are calculated from (6.20) (ii) nd (6.20) (iii). Further, from
(4.) nd (.lS), it follows that o 5 odd:

7n) is a simple pole of B(. and 0(" ),
(.e)

(n+l) and (n 1)
fl25 r25 1 are simple poles of 2(" and 1(" ), respectively,

and their residues are calculated from (6.22) (ii) and (6.22) (iii).
nIt remains to consider the hypothesis, cf. (6.18), that w(p )) for 5 even and

wl(rn)) for 5 odd are both finite and nonzero. By induction, it is seen from (6.20)
and from (6.22) for n 1,2,..., and (6.10), (6.11), (6.13), nd (6.14) that these hypo-
theses are indeed valid. Note that these relations show that all residues are zero or

no one is zero; the first case is impossible, see the penultimate paragraph of Appendix
B.
Lemma 6.1: For the case aI a2 and with T, as defined in Lemma 5.1

n)(i) vt , 0,1,,...; 5 e (0,1,...,e -1}, o[t t
by o): T is a simple pole of B(. and also oleo(. ),

(ii) pn) P- (wn)) is for 5 even a simple pole of 2(" ),

() r) - ()) o o a o of al(" ),

(iv) the residues b(rn)), 0(n)) of B(. and o(" are obtained by solving for
each vn), two linear equations, viz. (6.2)for n- O, (6.10) and (6.11) for
n 1, and (6.20) and (6.22) for n 2,3,...,

(n 1)) are determined by (6.8)(v) for 5 even, the residues w2(P2( + 1)) and W1(r25 1

fo 0, v (.13) fo 1, (.o) (ii), (iii) fo , ,...,
(n 1)) are determined by (6.14)() fo o, (+ 1)) a 1(: $1

fo 1, ad (.) (ii), (iii) fo , ,...,
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(vii) these residues can be calculated recursively, except for 0(v(0)) which is a

factor of every residue.

Proof: The proof follows immediately from the above analysis in this section. [:]

Lemma 6.1 describes the equations for the .residues at all nodes of the tree generat-
ed by r(0) T. But, as we have seen in Section 3, every node 7n), with 5 even, in-
duces on h2(r t)- 0 a ladder, and analogously for 5 odd, a ladder on hi(p, v)--O, see

Figures 3.2 and 3.3. So we have to consider also the equations (4.9)-(4.12) for the
residues at the points of the down-ladders of such induced ladders; see below (3.9).
Lemma 6.2: For lhe case a1 # a2, the only poles of B(. ), o(" ), l(r) and 2(P)

are those described in Lemma 6.1.
Proof: Let (rn, Pn be a zero-tuple of hl(P,r) and consider the down-ladder in-

duced by rn on h2(r t)= 0; see Figure 3.2.
With

7"n tn’ n r- (n), tn-1 t- (n), n-1 r- (n-1),’"

it follows from (4.10) that

a2tnWl(’n) n 7nb(tn)
-}- ]2(n’ tn)O(n) dt+

dr J=%

and

.. (t) + :(7,7)0(7) r01(i)
ri t

a2ti_ 1 dt (r)
"i- t_ lb(i_ 1) + ]c2(i’i- 1)0(i 1) dcr Ja r/_ 1,

(6.26)

(6.27)

for n- 1, n- 2,...,u, with u being the index at which the down-ladder is stopped
(cf. below (3.9)), i.e., the index, for which

so that; cf. (4.8),
O<t<l or O<Yu<l;

b(r) O, o(r) 0 or -Wl() O, (6.28)

and, cf. Assumption 6.1,
001(n) O. (6.29)

The set of relations (6;77), (6.28) and (6.29) is insufficient to determine the
unknown residues Wl(’i) b(ti) and 0(ti). However, Assumption 4.1 leads to the con-
clusion that the only solution of this set of relations is the zero-solution, i.e.,

at all induced down-ladders, the residues at the elements of these down-ladders are

zo, o tat ..t cannot o of B(. ), o(" ), 1(" a.a (-).
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To see this, first note that every element of the tree generated by 7-(oo) T induces
down-ladders on hi(p, v)= 0 or on h2(r t)= 0, and elements of down-ladders again
induce down-ladders. Since the tree generated by 7-(oo) consists of an infinite but
countable number of nodes, it follows that the finite part of hi(p, 7")--0 with p
IP (1), p + (1)] contains an infinitely countable set of elements (p, 7") stemming from
the induced down-ladders, similarly for h2(r,t) --O. Hence, Assumption 4.1 requires
that the residues at these elements are all zero, because of a meromorphic function
can have at most a finite number of poles in a finite domain. It is readily seen (cf.
(6.27), (6.28)) from Assumption 6.1 together with the relations (4.8)-(4.11), that all
residues at points of the down-ladders induced by any point of the tree are indeed
zero. Consequently, for the various assumptions so far introduced, cf. Assumptions
4.1, 4.2, 5.1 and 6.!, the only poles of B(. ), (I)0(.), fi(" ), 1, 2, are those mention-
ed in Lemma 6.1.

7. Asymptotic Behavior of the Residue, a1 # a2

For further analysis of the functions B(. ), (I)0(.), 1(" and 2(" ), we require the
asymptotic behavior for n-oo of the residues of these functions at their poles; see the
preceding section.

First we consider the ladder generated by -(0) -T on hi(p, ’)- 0, i.e., the set of
nodes .(n)5(p), 5.n)_ 0, n- 0,1, 2,..., which is the extreme left branch of the tree

3

generated by (T,p-(T)).
Put, cf. Figure 3.2, for n--0, 1,2,...,

h" (7.n) p (Tn q- 1), hl(Pn, Tn) O, (7.1)

hl (Pn + l,’rn + l O

From (4.8), we obtain

a17"n +w2(Pn A- 1) -- ,on -F 7"n + 1
b(Tn + 1) "- kl(fin + 1’ 7"n + 1)0(7"n 4- 1)]

=o,X L do" P+ 1

alTnw2(fln + l "+" fisT1-- 7-nb(7"n) -f- kl(fin + 1’ 7"n)O(7"n)1
dT"-

x
d =Pn+l

Elimination of w2(Pn + 1) yields

[ ,ll ’1:1]l(fln + l, Tn Jc l) dr+((7alT"n + 1 b(7"n + 1) -t- 7"n +
Vn 10(7"nfin + 1 7"n + 1 + -F 1 do" Pn -}-



138 J.W. COHEN

n + 1 7"n’b(7"n) -- 7"n rn(O(7"n) da Pn + 1"

Further, with

n + 1 r l(Tn + 1), h2(’n + 1, "rn + 1) 0,
from (6.15),

a2Tn + 1 k2(n + 1,7"n + 1)
( + 1)+ + 1o( + 1) 0.Tn + 1rn + 1 ?’n + 1

For n--c we have, cf. (2.8), (3.16)-(3.19), since vn-<x implies pn---,c and

alVn + 1 al kl (Pn + 1, Vn + 1)
r a22(a1 R ),fln T1-- Tn + l R_ 1

(7.4)

al ?’n al kl (fin + 1,- _
a27r2(aI R1+Pn + 1 Tn R1+ 1’ Vn

a2rn + 1 a2 k2(’n + 1’ Vn + 1)
"n + 1 Tn + /2- 1’ rn + 1 -- a17r1 a2 R- ),

dr Pn + 1

bT 2a2
2a1a2T1:t= b

Tn + l 7" + (fl + (T.)) O + (Tn)
Tn

R1+ T1+
RI_ TI_ =R1+T1+ >1.

(7.6)

Lemma 7.1: For the elements (Pn, ’.) of the extreme left ladder of the tree gener-
ated by (T, Po(T)), cf. (7.1), holds: for n O, 1, 2,...,

b(vm+n)(i) irno b(vm #,

7"m + n0(7"rn + n) o(7"m + 1)
(ii) lim #, lim Plo() 0(m)

c2(Pm+n) O(Vm + n)
() Lm o2(Pm #" .IL% o(.) ()"’

with

n- 1R- 1 7r1t- -- 7r2t1+(iv) 0 < 1: /1-t- < 1, #1 "1- R-- 1 7rl/i2- -1- 7r2R1- < 0,

(v) lim
b(Tn) R-n__cx)7.nO(7.n)

7r1

(vi)

(7.7)

lim
w2(p") alR-

no 7nO(-n) (R1- 1)(rlR2 + zr2R1- < 0;

for the elements (rn, tn) of the right-most ladder of the tree generated by (T,r-(T))
holds; for n O, 1, 2,...,
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with

(v)

(vi) lim
Ol(rn)

".o(%)
a2.R2-
//2- l(rr2R1-- + ’lR2-- < 0.

Proof: From (7.5) and (7.6), it follows that the following limit exists and is given
by, cf. (3.20),

b(’rn q- 1) al (R2- 1)(% R2- 71"1/2-lim
n---+oo Tn + l O(Tn + l -27rl

so that (r.r) (,) has been proved.
From (r.4), (7.6) nd (r.r) (), it is seen that the first limit in (r.r) () xss for

n 1 and from this result, the relation for the second limit in (r.r) () fo.ows by
using the definition of A1, ce. (r.r) (,), and the last relation or (7.6). The second
relation in (r.r) () ronows immediately from the first one in (r.r) ().

Next, we let n-+oo in (7.4). We then obtain by using (3.16), (a.18), (7.) and
(7.7) (v)

[ al ]R1- 1 ’1R2- + a2’2(al R1- R1-- #1

1+", i(- 7rlR2" q- a2rr2(aI R1+ )/1+

By using (3.20), the second relation in (7.7) (iv)is readily obtained, since 0 < RC <
1, R1+ > 1. The inequality on the left of the first relation of (7.7) (iv) follows from

R+ > - > 0.
From (7.7)(ii), (v)and from

b(Tn -b 1) b(7"n) TnO(Tn)
rr11- -Jim b(r.) rno(r.) Tn + lO(Tn + 1)

-1 (
71"1/2"- lim n +

-oo b(,-)
the relation (7.7) (i)readily follows.

From (7.2), we obtain for n---+oo,

lim
02(Pn + 1)

q._
.+oo ,. + 0(",, + 1)

a1

/C 1( 7rl/2- )q- a2rr2(al 1-- )1-- 0.
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So, by using (3.20), we obtain (7.7) (vi). From

W2(Pn -F I) w2(Pn H- 1) w2(Pn) TnO(Tn)
% + + + +

it follows, because the first and third quotient have the same limit, cf. (7.7), whereas
that of the last quotient is equal to #1-, that

+ 1)
lim #1"

Consequently, the first relation in (7.7) (iii) follows. Hence, (7.7) is proved, and
(7.8) follows by symmetry.

The lemm above describes only the asymptotic behavior of the various residues at
those nodes of the tree generated by (T,p-(T)), which belong to the left- or right-
most branch of that tree, i.e., at the nodes

-(om + ’) and -t’) with 5 2n- 1.

To consider the asymptotics for ncx of the residues at a generic point

we write
Tr+’), 6 e {0,1 ., 2m+n 1},

6 em2n + dn,

emE{O,...,2m-l}, d,E{0,1,...,2’-1}.
(7.9)

Hence, .,,,- +n), n 0, 1,2,..., is the tree generated by 7m), and it is a subtree of
that generated by T. Now, write dn as a binary number an in this binary represen-
tation denote by

d") the number of zeros, (7.10)

so that
dn) the number of ones,

(7.11)

It readily follows from (7.6), (7.9) and (7.10) that for every finite n: for m---,cx,
-F n) dn) > 1. (7.12)
m

Lemma 7.2: Let rm +n), m-O, 1,2,...; n-0,1,2,..., be a generic element of

(i) lim
b(r + n)) a)

em
wOk em
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(iii) lira wi(p!m+n))= #l #2 ,i-1,2,

m

with em, dn, dn), d’), for given 6 e {0, 1,..., 2m + ’
(.o), , . (.1),

-1}, as defined in (7.9) and

-(+")) fo o.

Proof." For 6- em2n+ d consider, the tree generated by r!m), which is a subtree
of the tree generated by r(0) -T. Apply for this subtree Lennma 7.1 with n- 1.
Next, apply again this lemma with n 1 for the elements

vim + 1) with 6 2em + dl,d1 E {0, 1}; (7.14)

then, (7.13) (i), for n- 1, follows from (7.7)(./)and (7.8) (i). Apply Lemma 7.1
again with n 1 for the subtree generated by vn + 1) as given in (7.14), then (7.13)
(i) follows for

Tim-F2) with 6- 22em +d2, d2 E {0, 1,2,3}.

Repeating this procedure leads to (7.13) (i). The statements (7.13) (ii) and (iii) are
similarly proved. E!

8. The Solution for the Case a1 a2

We introduce the following meromorphic functions.
For rl’), 6 e (0,1, 2, ., 2n- 1), n 0,1,2,..., a node of the nth level of the tree

generated by r(0) T, cf. Section 3, and with

ptn) p- (Tin)), hl(p -(Tin)), Tin)) O, 6 even,

rln) r- (rln)), h2(r- (rln)), rln)) O, 6 odd,
set for nonnegative integers rob, me, m2, ml:

o bn)
[ r_Z__mb

n =O a nr- rn)

(iii) 2(P):- (D) 2

n=l 5enp--pn)..

(iv) (r):-- [mi

it, (.),
: r- i) (i))

%n {0, 1,2,...,2n- 1},

(8.1)

(8.)
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and where, cf. (4.6),

26 W2 (n))_ (8.4)

First, we have to determine the values of m for which the right-hand sides of (8.2)
are well-defined meromorphic functions; cf. [i’5"].

Consider first the function in (8.2) (i). From (7.12)it follows that B(r), as
defined in (8.2) (i), has only a finite number of poles in any finite interval. From
Lemma 7.2 and (7.12), we have with

n dn) dn) as defined in (7 10),6 ek2 + dn,

[) dn). dln)]m + l

[1? +1]dn)[#2,2m 4-1]dln). (8.5)

Because 0 < h < 1, i- 1,2, and dn)+ dn) n, we have
n

( ) [P22 +l]dlnE dnn) [#11 + 1]dln) m [.11? +1 q_ ]_t2a-n + 1]n.
dn) 0

Obviously, a unique, finite nonnegative number M may be defined by

(i) [#1’1M +1 q_ 2)2M + 1[ < 1 < ,/.tl,lM "4- #2)2M if ]#lhi -4-#2)2 >__ 1;

(it) M 0 if I#11 + .221 < 1; (8.6)
note that #1 and #2 are both negative; cf. (7.7) (iv), (7.8) (iv).

Hence, for mb >_ M, it is seen that the right-hand side of (8.2) (i) converges
absolutely for every v with vl < R for every finite R, whenever terms with poles

ri rt’ I< R, are deleted from this sum. Consequently, the sure.in the right-
hand side of (8.2) (i) is a well-defined meromorphic function for mb >_ M. The same
conclusion is reached for the sums in (8.2) (iii) and (8.2) (iv), i.e., m2 _> M, mI >_ M.
Next, consider (8.2) (it). A calculation analogous to that in (8.5) yields, by using
(7.7) (i/), that the meromorphic function in (8.2) (it)is well-defined for me _>
max(0, M 1).

1

_
functions (), (), 5i, 1,2, areLemma 8.1: For a1 y a2, - + > 1, the

well-defined meromorphic functions for

mb > M, m2 > M, m1 >_ M, me > max(0, M- 1),

with i as defined in (8.6); B(r) and o(r) are both regular for rl < T

(1 1)2 (1 1)
3 a_2a 1 ) anda]- + - a2(P) is regular for P < p + )) a + a- + +

a 1
Prf: The first statement has been proved above, the other statements follow
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from Lemma 6.2 and 7(00) T > 1, wln)> T,

+ (.r(oO)) al(a_ + 12)
3 alq-22 q-(ll q-12), 5 E n,n-1,2,...,

and, analogously, for fl(r).
Net, we introduce four polynomials, viz. B(. ), (I)0(.), ftl(-), with degrees Nb,

N, Ni, i- 1,2, and put
Nb

B(r) (r) +
k=0

(I)o(W) (o(W)+ ’o(W) with o(W) OkWk,
k=0

2(P)- fi2(P)+ 2(P)with fi2(P)- E fi k
2kP

k=0

l(r) ill(r) q- 5l(r) with ill(r) E filkrk’
k=0

and B(.), G0(.), i(’), i-1,2, given by (8.2); cf. also Lemma 8.1. It will be
shown that these polynomials may be determined in such a way that the functions in
the left-hand sides of (8.7) satisfy conditions (2.10).
Lemma 8.2: The functions B(. ), Go(. ), i(" ), i- 1,2, as given by (8.7), satisfy

condition (2.10) (i).
Proof: The statement of the lemma follows immediately from Lemma 8.2., note

that T > 1, p + (T) > 1 and r + (T) > 1; cf. Lemmas 3.1 and 5.1.
For the functions B(. ), (I)0(.), fi(" ), i- 1, 2, as described in (8.7), denote by

F (7) the left-hand side of (4.3),

F14. (7)the left-hand side of (4.4).
(8.8)

From (8.2), (8.7) and (8.8) we then have (note w( -0)that
a17" ,h(7") q- 11l(fl 4-r[ fi (e + +

r Vn)
{fl (V).m2 bn) a1 v mb+E E 1 [w) n)..) + }r

+ Tn)l(p (T), T) m

Note that the sum of the three terms inside the square brackets is zero for
r- r), (el. (4.10)). For r+, it follows from (2.8), (a.16), (8.7) and (8.9), since

F (r) is regular for [r R 1, that
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(8.10)

with 2 a nonzero constant and

i" max(m/- 1, mb 1, me), 1,2.
Put

"fii: max(Ni, Nb,N + 1, m2- 1,rob-- 1,m4),i 1,2,

with N + 1 deleted if (I)0(.) 0.
From (8.9), (8.10) and (8.12), it is readily verified that

IF2:t: (7) 21 ’2 for

(8.11)

(8.12)

(8.13)

Because r + are the only branch points of p + (r) and p-(r), it follows from (4.3)
and Lemma 6.1 that F2+ (r)+ F2--(r) is regular for all r. Consequently, Liouville’s
theorem implies that F+ (r)+ F2- (r) is a polynomial of degree 2" Such a polyno-
mial contains 2 +1 coefficients. Because F+ (r)+ F-(r) should be zero for all r,
el. (4.3), and .(8.8), we thus obtain conditions for the coefficients of the polynomials
(. ), (I)0(.), ai(. ), 1, 2, since analogous conclusions hold for F1 (t).

Note that next to these conditions we have the two conditions which stem from
the definitions (2.1); see also (2.10). Further, it should be mentioned that the set of
Kolmogorov equations, which are equivalent to the conditions (2.10), contains one

dependent equation. So, in total, the coefficients of the polynomials have to satisfy

1 + 1 + 2 + 1 + 2- 1 1 + 2 + 3 conditions. Consequently, we have, of. (8.7)
and Lemma 8.1,

(i)

(ii)

(iii)

mb >_ M, m2 >_ M, mI >_ M, me >_ max(0, M 1),
Nb >_ O, N2 >_ O, N1 >_ O,N >_ 0,

IBol >_0, la201 _>0, Ill0[ >_0, I 001 >_0, (8.14)

leads to 2+ 1 nonhomogeneous linear equations for the coefficients of the
polynomials in (8.7). Analogously, 1 --1 zero-tuples (r(tj), tj) of h2(r t) are chosen
and substituted in (4.4). From the structure of relations (4.3) and (4.4), it is seen
that rj and tj may always be chosen in such a way that the resulting set of linear
equations together with fi(0)= (I)0(0), cf. (2.10), is sufficient and hence leads to a

solution. Once the polynomials in (8.7) have been determined, the left-hand sides in
(8.7) are known. From the analysis given so far it then follows that the functions
given by (8.7) satisfy (2.9) for all 17 > 0.

(iv) 1 + 2 + 3 conditions have to be satisfied.

The determination of the polynomials in (8.7) for given mbmi, m,Nb, Ni, N,i-
1,2, basically proceeds as follows. From (8.12), i, i- 1,2, is determined, so that we
need 2 + 1 relations to guarantee that F2+ (v)= 0, and analogously, .1 + 1 relations
in order that F+ (t)- 0. These relations are obtained by choosing 2 + 1 zero-tuples
(p + (7j), 7j), j 1,..., 2 + 1, of hl(p, 7) 0. Insertion of these zero-tuples in (4.3)
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Obviously, we have quite some freedom in choosing the exponents in (8.2) and the
degree of the polynomials in (8.7). This freedom is not so surprising because in
general, a meromorphic function does not have a unique decomposition, (cf. [15], p.
304); see also Remark 8.1.

The available freedom will be used to choose the numbers in (8.14) (i) and (ii) as

small as possible, with M being defined in (8.6). Before discussing this point, we first
consider several zero-tuples which are most appropriate for the determination of the
polynomials in (8.7).

Denote by (, ) and (?,7) a zero-tuple of hi(p, r)- 0 and h2(r,t -O, respective-
ly.

For

it follows from (2.9) that

(i) f2(O)-alB(-)-(l--alr2)gPo(-a)-O,

IB>( 1 -t- a2rl)(I)o a
1--- (8.16)(ii) 1(0) -- a)- (1) 0.

andr-Note that r- r(0) T and r > r(00) T, so that r-
a2

1
al

are not poles of B(. and of (I)0(.); cf. Lemmas 6.1 and 6.2. From definitions

(2.1), we have
ai(0 Go(0), i= 1,2. (8.17)

Hence, from (8.16),

(i) alB(-a-) + (1 + alTr2)0( a-)-- I)0(0)- 0,

(ii) -a2B( -a-)"[-(1 + a2rl)(I)o(- a-)-(I)0(0 --0. (8.18)
Comparison of the relations (8.18) with (2.1) (iv)shows that

For

we have

E{rXl(Xl x2 + 1} is finite for r 1

E{rX2(x2 -x1 - 1} is finite for r-

a,
(8.19)

1
a2

(, ) (0, 0) and (F,)’) (0, 0), (8.20)

dr] -0 dt] -0v=0 -- 0dp p=o r=0

and so, from (2.9)
(i) 2(0) + alB(0 (I)0(0) 0,
(ii) 1(0) a2B(0 (I)o(0) 0. (8.21)

Hence, from (8.17) and (8.21) (i)or (8.21) (ii),

B(0) =0.

Obviously, here the dependency of the set of Kolmogorov equations is manifested.
For

(, ’)- (1,11)and (’,’)- (1, a-) (8.23)

we have from (2.9)
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(i)

(ii)

a12(1) 4.
al L iB(a-) (I)0(a-)- 0, a1 1,

a2 B(1l(1)--a2_ 1 \a2)--(X)0(a)--0 a21 (8.24)

For

we have from (2.9),

2(1) 4. al

(’, ’) (1, 1) and (F’,’) (1,1),

lim
B(r)

p---r 1 P- 7" 4.[- 1 + a27r2(aI 1)]0(1 0,

1(1) a2 lim
B(t)

r---,t 1 r t 4.[- 1 + a17r1(a2 1)](I’0(1 0.

Hence, since fi(1) is finite,

B(1) 0.
From (3.7) we have

dp
1 al

dt
Hence, from (8.26),

2(1)- (all2 4.aI a2)d--B(7.) I. 1

dr
ala2 4. a1 a2’ dt a1a2 4. a1 a2"

4. 1 4. a2r2(a1 1)]0(1 0,

1(1) 4. (ala2 4" aI a2)d-B(v) [. =1 +[- 1 + a17r1(a2 1)]o(1 0.

Next we consider the zero-tuples, cf. (3.4),

(, F) (p(7 + ), r + and (, ’) (r(t + ), t + ).

For p-p + it is seen from (3.4) that -v(p+) is a zero of multiplicity two of

hi(p +, r); also, ?- r(p-)is a zero of multiplicity two of hi(p-, r). As before, we

From (3.4), it is seen that p(r +) is a zero with multiplicity two of hi(p, v + ). Conse-
quently, it follow from (4.3) that p(r + should be a zero of multiplicity two of (4.3)
with v-r+, since r-r + is not a pole of B(r) and (I)0(r), and p- p(r+)is not a

pole of fl2(P)" Hence, from (2.9):

air+(i) [2(fl) 4.
p-’r T

B(T + 4. ]C
1 (p, T + )(O(T + )]p p(. -F 0,

alv-F(ii) [d-2(fl)4. B(7. + )d-p_ r+ 4. 00(7" + )d--kl (fl’7. + )Jr p(r + )-- 0,

r -t
+.B(t + + k2(r t + )o(t + )]r r(t +) 0, (8.30)

(iv) [rrl(r)- U(7. -t- )-r a2t -I-- + + o(t + )(, t + )] ( + o.
Note that p(7. + )- 7. + # O.

Next note that (2.4) (i) for r2 = 0, r1 = 0, leads to (8.17) and so the zero-tuple
(, F) = (p(7. ), 7" (0, 0) needs no further attention.

Finally, we consider the zero-tuples, cf. (3.4),

(, ’)- (p +,7.(p +)) and (7",’)- (r+,t(r+)). (8.31)

(8.29)
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obtain from (2.9)" for p + # 1,

() [2(fl +) q- +
alr B(’) + ]1(fl +’’)(I)0(7)] + 0,

p - =(p

(ii) d . alr O,trt;"+ " r’"B(T)} + d-{]el(fl
+ ’)(I)0}]r= r(p +)

and fort + 1,
-t- a2t(i) [al(r tB() + (r +, )(I)o()]

t( +/- 0,

(ii) t{r +/-%t_tB()} + {/(r +/-, )o()}]t t(r +) 0.

Note that, el. (a.4),
p+ lenaI 1 and r + lt=a2 1. (8.34)

The case a1 1 has to be excluded from (8.24) (i) and (8.30) (i), similarly a2 1
from (8.24) (ii) and (8.30) (ii). If aI 1, then the second terms in (8.24) (i) and
(8.30) (i) have to replaced by their limits for 81--1.
We proceed with the determination of the polynomials in (8.7). With regard to

the available freedom mentioned above we shall try to choose the degrees of the poly-
nomials in (8.7) as small as possible.

First we consider the case
M- 1. (8.35)

Take for the present case

mb 1 rn2 1 me Nb N2 N1 N4, O,

Bo 0, oo 0. (8.36)
This choice is consistent with (8.14), and it follows from (8.2) and (8.12) that

(i) B (0) 2(0) 1(0) 0, (I)0(0) E ’,,=o

(ii) 1 2 0. (8.37)
From (8.37) (ii), it is seen that we need three coefficients. From (8.8), (8.17), (8.22)
and (8.37), we obtain

i(0) io o(0), i- 1,2; (8.38)
and so the three nonzero coefficients of the polynomials in (8.8) have been deter-
mined. The results so far obtained lead to the following.

Theorem 8.1: For 1_+ > 1, aI 82, i 1, cf. (8.6), the functions ,B(.),q)0(" ), fi(" ), i- 1,2, whlich slatisfy the conditions (2.10), are given by, cf. (8.2)

+(T),
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(iv) 1(r) E S-’ J- E E r r -t-
n=0 5 nrn) n=l 5 E %nr-rn) rn)’ < r (Z).

These functions have meromorphic continuations throughout the whole complex
n)plane, which are given by the right-hand sides of (8.39) (i)...(iv). The reszdues b

n(n), w5(n), ’-- 1,2 can be calculated recursively (see Lemma 6.2), they all contain the

factor o(r)), which is uniquely determined by

"2(1) + "1(1)- +-1. (8.40)
x2enerating functions g{rXl(xx x2 + 1)}, E(r (X2 X1 + 1)}, [r <The

(ii), > Xx)),

r2 (x1 > x2) } are obtained from (2.4) and (8.39).
The queue length process {xl(t),x2(t),t > 0] is positive recurrent if and only if

1 1
al

Proof: From (8.35)-(8.38) and the analysis given above, it follows that the
functions in (8.39) stisfy (4.3) for n Ir I>_ 0 nd (4.4)for 11 It I>_ 0. So, by
using Lemma 8.2, they satisfy conditions (2.10) (i) and (2.9) or (2.10) (ii). The

determination of E{rXl(xl x2 + 1)} follows from (2.1) (iv) and (8.39). It is further
seen, cf. (8.19), that the radius of convergence of the latter generating function is

larger than one, analogously, for E{rX2(x2- x1 -}-1)}. From (2.4) and (8.39), the

bivariate generating functions E{r;1 x2 xl x2r2 (x2>xl)} and Etr1 r2 (xl>x2)} are
obtained. It is readily seen that the domain of convergence of these bivariate
generating functions contains the Cartesian product unit disks rll < 1, It21 < 1,
as a true subset. Hence, the coefficients in the series expansions of the bivariate

generating function E{r;lr;2] is an absolutely convergent solution of the Kolmogorov
equations. Hence, Foster’s criterion, cf. Remark 2.2, implies that the queue length

1 1process {xl(t),x2(t), t> 0} is positive recurrent for +h-: > 1; (2.6) shows that this
1 2

condition is also necessary. Because all generating functions contain 0(T) as a linear
factor, cf. Lemma 6.1, this factor follows from (8.40), cf. (2.1) and (2.5), and so it is
uniquely defined. For the uniqueness of the solution constructed for the conditions of
the theorem, see Remark 2.2. El

Next, we consider the case

M- 2, + > 1, a1 a2. (8.41)
Take

mb 1 m2 1 m1 1 me 1,

Nb-l, N-N1-N+-0.
(8.42)

This choice is again consistent with (8.14) and it follows that

1 2- 1. (8.43)
Hence, we need four coefficients. We have Nb 1 and, further, (I)o0 should be non-

zero since q)0(0)-0, and (I)0(0) should be positive for a positive^ recurrent queue
length process; cf. (2.1) (i). Note B (0)- 0 for mb 1, so that B0(0 -0; cf. (8.17).
From the two equations (8.8), B1 and (boo ca^n be determined, their main determin-
ant is nonzero. Then, from (8.17) we obtain fti0 i- 1,2. The explicit equations for
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B1 and oo read, cf. (8.18),

al.2B1 -a1’2(I)00- -alB ( -)-(1 + a12)0(
(8.44)

+B1 + a2100- a2 ( --)--(1 + a21)0(--).
Hence, with B1 and 00 determined by (8.44) we have for the present case (8.41):

T

()
l(r)-- 00+ WlSn ]r2

Note that (8.27) implies

hi- 1

or conditions (8.41) and with 8.a9) replaced by (a.4a)in Theorem 8.1 we obtain a

relevant theorem for the case M 2, a a, + > 1.
2

Theorem 8.1 and its explicit formulation is, therefore, omted.
1 1The determination of the polynomials in .7) for M

proceeds along the same lines as for the cases M- 1,2. The relagions(8.17), (8.18),
(8.22), (8.24), (8.27), (8.28), (8.a0), (8.a2)and (8.4) yield, in general, twenty-two
equations, except for a 1 or a- 1, c (8.24), (8.28) and (a.a4), o their number
suffices for rather large M; cases with M a seem hardly to occur in the applica-
tions.
mark 8.1" The degrees of the polynomials and the exponents of the meromor-

phic functions have been introduced in (8.7) and (8.2). They have to be determined
in such a way that (8.14) is satisned and F (r) +F (r), 1, are ero at i + 1
points. In this determination there is no objection replacing mb by mb + hb, m4 by

+ h4, m by m + h and m by m1 + hi, with hb, h,h,hl, positive integers (and
M defined by (8.6)). Such a change when compared with the case that hb, h, h2, h1
are all ero, actually amounts to subtraction of a polynomial from the meromorphic
Nnction and addition of that polynomial to the "A" polynomial; see (8.7). In fact,
this also occurs by noting that the solution given by (8.44) also holds for the case

M-1.
Remark 8.2: From (8.2) and (8.7), it is readily seen that T- r) +

> 1 is the smallest pole of 0(" and also of B(. ). Hence, T determines the asymp-
totic behavior of Pr{x1 -x- n} for n, i.e.

Pr{x1 x2 n} (T) for
Tn+l

Similarly, it is seen that
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1) + + a1 ol

are the smallest poles of f12(" and ill(’), respectively, and so they determine the
leading term in the asymptotic behavior of er{x2 u,xI 0} and Pr{x1 n,x2 0}
for n---oo.

Remark 8.4: Numerical calculations indicate that always Aa#l + "2#2 > 1. For

clite a few cases this has been proved in Appendix C. However, a complete pLoof of
M 1 has not been obtained; actually, this is not very important, because if M- 0,
then Theorem 8.1 also applies. Note that then the sum in (8.39) (i) may be written

Tn): :0 6 6 T--
since for M -0, the first sum in the right-hand side converges absolutely and the se-

cond sum is a well-defined meromorphic function, analogously for the other sums in

(8.39).

9. The Solution for the Case a1 a2 < 2, 1 # 7r2

In the preceding section, the solution has been described for the case a1 7! a2. In this
section, we derive the solution for the case

a: a a2 < 2, 7r1 7! r2, 0 < r 1- r2 < 1. (9.1)
Again, T is defined as in Section 5, so cf. Lemma 5.1"

T a4-, p- (T) r- (T) ; (9.2)
note that (9.1)implies hi(p, r)- h2(p, v), so

r 4- (r) p + (r), v + (p) t + (p). (9.3)
Again, Assumption 5.1 is here made, and, as in (5.9), it follows that

v T is a simple pole of B(r) and also of (I)0(v). (9.4)
It follows, el. the derivations of (5.10), that

aT rb(T + kl(p- (r), T)0(T 0,p-(T)-
aT T) + k2(p (T) T)0(T 0,p- (T)- Tb(

and that the two relations in (9.5) are linearly dependent, because (9.2) implies that
the main determinant of the system (9.5) is equal to zero.

From (9.1) and (9.3), it is seen that the zero-tuple of the ladder (3.8) generated by
the zero-tuple T on hi(p, v) induces on h2(r t) 0 ladders, which are all congruent to
ladder, of. Figure 3.2,

(p,, 7",),..., (Pn 1’ 7"n 1)’ (Pn’ Tn), (Dn + 1, Tn + 1)""
(9.6)

70" -T, p_" -p-(T),
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with u as defined below (3.9), and Pn, rn recursively defined as in (3.9).
Consider for the present case the relations (6.2) and (6.4), i.e.,

aTTb(T)-t- ]1 (ill, T)o(T) + w2(/)1)[dp + (O"
--0

Pl da T

(9.7)
aT b(T)+ k2(P0 T)0(T 0

po_ T

As in Section 6, cf. (6.), it follows that

Pl is a simple pole of fi(P), 0 < [wi(pl) < oc, i= 1,2. (9.8)
Next, consider for the present case the relations (4.9) (i) and (4.10) (i),

a"1 [d- + ()];
1

W2(fll) + [Pl = rib(rl) + k(p, 1)0(1)] dff Pl
0,

[fl aT .[dr + (if)I- 1 (9.9)
Wl(Pl) + 71b(Vl)+ k2(fll,Vl)O(Vl)]L de J Pl

0.

Via (9.7), w2(p can be expressed uniquely as a linear function of Co(T); note that
the determinant formed by the coefficients of b(T) and o(T)is nonzero, cf. (5.13),
(9.5), and that Po P-(T). Analogously, wl(Pl is determined. It is now readily
seen that system (9.9) for the unknowns b(Vl) and O(Vl) has a solution b(Vl) 0,
O(Vl) 0, since its main determinant is nonzero; cf. (5.13) for a1 =a2,
Consequently,

v1 is a simple pole of B(T) and also of o(V). (9.10)
Next, we consider relations (4.10) and (4.11) for the present case, i.e.,

[d : )]-1 alW2(f12) fl ’ v1 +f12 T1b(T1) +I(fl2’T1)0(T1)- 0

1() d; ) a
rl + f12 2 7ib(71) + kl(P2, rl)0(rl) 0.

Hence, since b(rl) and 0(r) are determined by (9.9), it readily follows that w2(p
and w(P2) are both finite and nonzero. Consequently,

p is a simple pole of hi(p) i= 1,2. (9.12)
By repeating the argumentation above, it is readily verified that the following lemma
holds; its detailed proof is therefore omitted.
Lemma 9.1: For the case a1 a2, 1 2 with ro T:
(i) , o, 1,,..., a ipo 4B(,) and ao of o();
(ii) , n 1,,..., a ipto of a(Z), i= 1,;
(iii) the residues b(rn) O(rn), wi(pn), i= 1,2, are recursively determined by

aTT(T) + 1(o, T)o(T) 0, (9.1a)
Po-

and for n 1, 2,..., by
1[(i) W2(fln) +[pTn--rn_llb(Tn_l) +l(p’Tn-1)0(Tn-1)][d da J=p0
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(iN) a__..__n .-_ .1. ,b(T Ida" (r)7 1

Wl(Pn) -It-[Pn- ’n- 1 n- 1) -}- ]2(P, Tn- 1)(0(Tn- 1)] L d 1 P.

(iii) w2(Pn + [p:_nrnb(v,) + (pa, rn)Vuo(V,)] 0,’--- 1 --Pn
(9.14)

(iv) Wl (fin) q- [Pn arvnnb(7"n) "-[- 1._] (Pn, Tn)TnO(Tn)]
dr a) 0vn 2 Pn

Next we consider the asymptotic behavior of b(vn) Cn(rn) and wi(Pn), i= 1,2, for
n.
Lemma 9.2: For the case a1 a2 a, 1 2 with r0 T:

b(Tn 1) O(Tn wi(fln + 1)

" -lim + =lim + =lim i-1,2,. b(v,) 0(v,) - wi(p,) (9.15)
R--1 R +

-R+-1 R- =A-RR +-1-1<0’
with (since a1 a2)

R R R- R -R R + - 1- 2- R- (9 16)
R +"

Prf: Add (9.14) (i)and (ii)and also (9.14) (iii)and (iv). Next, eliminate from
the resulting expressions w2(pn + wl(pn); this leads to

.[dT + (ff)- 1

[1(,) + :(, )]o()[. x J: ,
(9.17)[dT" (r)]

1

[]l(fl,’ T._ 1) -[- ]2(fln, T,_ 1)]q0(7"n_ 1,L d

By using (3.16), (3.17), (3.18) and (3.20), it follows for n--o that

[R-] [R+]
1 R- r"(r’)

1 R + r,_ lO(Tn_ 1)--+0; (9.18)

so that by using, cf. (7.6), rn + 1/v,--*A 1 R +/R -, it is clear that

o(.) a+ 1-R---,- <0.
0(%- 1) -/ +

Subtraction of (9.14) (i) and (ii), and also (9.14) (iii) and (iv)yields, after
elimination of w2(pn wl(p,)

2avn [dr+(er’)]-I [ 2 12avn_ 1 dr o’)
1

Pn-Vnb do" jo.=pnb(vn)+pn-vn_l =pnb(vn-1)

Idr + ()]:1d([- 1(,) + :(,)]o(%) Pn

1,,"F T". i
] fln Tn 1)

__
],
2 fln Tn 1)]7.n l0(Tn 1) .(.T cr

(r Pn"
Again, by using (3.16), (3.17), (3.18), and (3.20), it follows for n---oc:

2aR b(vn) + 2aR--+ b(vn 1)R- -1 R + -1
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Hence

--a(rr2-r )f[R’]2 [R + ] }1 R’’+ rn lO(Tn- 1) ---*0.

b(rn) R + 1-R-
b(r,_ 1) 1 R +

From (9.14) (i), with n replaced by m + n, it follows, for m sufficiently large again
by using (3.17), (3.18), (3.20) and the asymptotic relations for b(r,)and 0(rm)
obtained above that for n- 1,2,...,

aR- {b(rm)
+ R--w2(Pm + n) n- l n +-

tn+ ar2R -rmo(rm) +_
1-R+1R- },

which yields that w2(fln + 1) + 1-R-
w2(Pn I- 1 R +"

Hence (9.15) is proved.
As in (8.2), we introduce for the present case the meromorphic functions

rt--O

oo o(r.n){r_L,m (9.19)

with for n- 1,2,...,

and

n-’-I

7"0 T, fin + 1 P + (7"n), 7"n 7" + (Pn), (9.20)

mb _> M, me > M, m >_ M, 1, 2;

here M is uniquely defined as the nonnegative integer such that (note 0 < A < 1).

(i) M-0, for 111 <1,

(ii) M + 1 < 1 <_ M otherwise. (9.21)
By using (7.6) and Lemma 9.1, it is readily seen, since for k large,

b(7"n+k) b(Tk) +1 n

[Tn+k]m+l []+(
that for m >_ M the function B (r) is a well-defined meromorphic function which is
regular in [r _< 1. Similar statements are true for the other functions defined in

(9.19).
Because, cf. (9.15)

_
R- 1
R + -1’

and since it is readily verified by using (2.3) and (3.16) that I1 < 1, we take, from
now on in (9.19),

(9.uu)
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Theorem 9.1" For a1 a2 a < 2, 7r1 7r2 1, the functions B(. ), (Po(" ),
i(" ), 1,2, which satisfy conditions (2.10) are given by

(i) B(s)- -B(O)+B(s),

(ii) (o(S) ( (s), (9.23)

(iii) i(s) (b (0)- i(O) + gti(s ), 1,2;

here B (. ), (o(" ), i(" ), i- 1,2, are given by (9.19) with mb me m2 mI O,
and they all contain Co(T) as a factor, which is determined by

2(1) + 1(1) 2- a.

If a >_ 2 no stationary joint distribution exists.
Proof: As in Section 8, introduce the polynomials B(.), (I)0(.), i(’), i-1,2.

The degrees of these functions are determined by the same arguments as used in
Section 8 for the case M- 1; then the proof is rendered as in Theorem 8.1 and is
therefore omitted here. Note that for the present case, fii 0, 1, 2; cf. (8.12). [-!

Theorem 9.1 provides all results needed to get the characteristics of the queue
length (Xl,X2) stationary joint distribution. The following analysis provides some
detailed information about the influence of the probabilities ri, i- 1,2, 7rI -r2 1;
cf. (2.3).

Set
D(r): 1/2{Dl(r)+ D2(r)}, (9.24)

Elimination of B(. from (4.3) and (4.4) yields for the present case, i.e., aI a2 a,
7r1 7r2

(r 4- (t)) + 1 + 1/2a2t 1/2ar 4- (t)](i)0(t) 0, (9.25)
with (r 4- (t), t) a zero-tuple of

h(r, t) at2 + [1 (2 + a)r]t + r2 O. (9.26)
Relations (9.25), (9.26) formulate a functional equation which is identical to that of
the symmetrical shortest queue; cf. (3.6) of [12]. Hence, the solution constructed in
[12] can be used here.

Put, cf. (3.2), (3.3) and also [12],
+ +(t2),t2" -t +(r2),n-0,1,...,(i) rn + 1 r

with
4

r0+ 2t2 a2 -, (9.27)

(ii)
with

t-+ 1 t + (r-), r- r + (t-), rt 0,1,...,

1 2to- a, ro -1 a"

The solution of (9.25) and (9.26) is then expressed by, cf. (4.7) of [12],

=0( 1

(I)(’)- (I)(1)I’I n: 1(1- tn1-=-) I-I n:0( 1 t--)’ (9.28)
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with
(1) (2 a), (I)o(1) 1 + a" (9.29)

Here the first relation in (9.29) follows from (2.5) and (9.1) and the second one is ob-
tained from (9.25) for the zero-tuple (r,t)= (1, 1). Because the zero-tuples in (9.27)
are independent of ri, i- 1,2, it is seen that

(I)0(t) and 12(r) are independent of i, i= 1,2. (9.30)
Consequently, the stationary distribution of xI +x2, that of max{xl,x2} and of
min(xl,x2) are all independent of ri, i= 1,2, cf. [2].

10. Some Expressions for Probabilities and Moments, a1 a2

In this section, we derive some expressions for several characteristics of the queue
lengths.
We consider first the case

al l, a2 l, al a2, 1-l-t- 1-2 >1, (10.1)

since we have to discuss separately the case that one of the ai’s is equal to one.

From(2.4) and Appendix D, we have

E{ xl 1 _,l,,alr (i)0(r) alr B(r)
r (x2 > Xl) } 1_ alra2(1)--1 --1--alr r- 1’

E{rX2(x2 > Xl)} a2r2o(r -a2rr
B(r),
-1"

(10.2)

The latter yields, cf. (d.4),
1 al(i) E((x2 > xi)} 1 "1ai2(1) -1 al(I)0(1) i-aI

rB(r) lr 1,

E{(x2 > Xl)} a2r2(I)0(1)- a2TrB(r) lr 1,(ii)

(iii)

(iv)

E{(x1 x2)} (I)o(1),
E{(Xl > x2)} alrl(I)o(1) q- alTrB(r) lr 1;

(10.3)

here (10.3) (iv)is obtained from (10.3) (ii) by interchanging aI and a2 and by chang-
ing the sign of the term with B(. ), cf. (2.4)(i)and (2.4)(ii).

It follows from (10.3) (ii)-(iv), that

1 { 1 + a2rr2 + a141" 1}(I)0(1 + (aI a2)d-TB(r [r 1,

so that
1(I)0(1) 1 + a17r q- a27r2

{1 (a1 a2)-JTB(r)} r 1},

a2E{(x2 > x1)} al a2
1 + (1 + a1)(I)0(1)], (10.4)
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a1E{(x1 > x2) } a2 al[ 1 + (1 + a2)(I)o(1)].

From (d.6) and (d.4), we obtain for the present case, cf. (10.1),

(i) E(x2(x2 > Xl)} a27r2(I)o(1)+ a27r2r(X)o(r)I r 1

1 d2

l-a2dr.B_r_)] =1,a2

(ii) E{Xl (Xl > x2} a171"10(1) / a171"lrrO0(r) ]r 1

+ (10.5)a1 1 -aldrDkr..r 1’

(iii) E{Xl(Xl x2)} d-(I)0(r)I r 1,

al(iv) E{Xl(X > Xl)}
(l-a1){a(1)-o(1)-rB(r)l=l}

-r 1 al dr2B r1 Oo(r)] 1 2 1-a1
rl_al r =1"

The summation of (10.5), (ii)-(iv) yields the expression for E{Xl}. The expression for
E{x2} then follows by interchanging a and a2 and changing the signs of the terms
containing B(. ).

Next, we consider the case

al 1, a2 7 1, 11+ W12 > 1. (10.6)

By noting that relations (10.3) (ii)-(iv) and (10.4) have been all derived from (d.6),
in which 1- aI does not occur, it is seen that these relations also apply to the present
case with a1 1.

From (d.10), we obtain for the present case (10.6):
d2 d2

(i) E{Xl(X2 > Xl)} 21- r2Oo(r) lr =1 + 21- -rB(r) l 1,

(ii) E{Xl(Xl x2)} ro(r) lr 1, (10.7)

(iii) Elxl(Xl > x2)} r1o(1)+ 7rlr(I)o(r)I r =1 +rB(r)I r =1

d2
+ 1/2 -fiB(r)I ,. 1,

Here (10.7) (iii) follows from (10.5) (ii) with a 1; note that (10.5) (ii) has been de-
rived from (d.6).

Appendix A

Let (, 7) be two stochastic variables with a joint distribution given by

Pr{ 2,- 0} ala2
b

Pr{t- 1, r]- 0} __1,
(a.1)
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Hence, we have, from (2.8),

a2Pr{ 0, /- 2} --.
(.2)

Put v pp in (a.2), so that

hi (p, pp) Ozp E{pgpg: + rt-- 2}. (.3)
Note that (a.1) implies Pr{+q-2 _< 0} 1, so that for pl 1, p :/: 1 and

E{pp + ,- 2}[ _< E{lpl + rt- 2} < 1 [;I. (a.4)
For fixed p, Pl > 1, the last term in (a.3) is regular for Pl < 1 and continuous
for pl< 1. It follows by applying Rouch’s theorem that hl(p, pp has for

Pl >1, p # l exactly one zero in Pl <l, andsthetherzerfhl(P, pp) liesin
pl > 1; cf. (a.4). Note that hl(p, pp) is a quadratic function in p. This proves the

first statement in Lemma 3.1, the proof of the other ones is similar. El

Appendix B

In this appendix, we prove Lemma 4.1 and relations (4.2). From (2.9), for zero-tuple
Pl 1, v v-(p) (note 17--(p) < pl 1, cf. (3.2)), we have

al"r- (P)
B(v- (p)) + kl(p, v- (p))(I)o(7"- (p)), pl 1 (b.1)(p)

p- --(p)
The function f2(p) is regular in Pl < 1 and continuous in Pl < 1. Consequently,
the right-hand side of (b.1) can be continued analytically into Pl < 1. Consider
this analytic continuation of the right-hand side of (b.1) along a simple contour in

Pl < 1, starting at a point 0 with ]01 1, 0 # 1 and such that it intersects the
interval [p-,p+], cf. (3.4), only once at an interior point r, say, with

fl- < o"1 < fl +. Because v- (r)-7 + (al), it is seen that the analytic continuation
of the right-hand side along this simple contour leads, on its return to %, to

2(r0) al’r + (or) B(-r + ((r0)) + kl(r0, v + (r0))O0(r + (r0)). (b.2)
P- + (0)

This relation holds for all [(r01 1, r0 - 1, and so, by continuity it also holds for

%=1.
Hence, we obtain the following set of relations, of which the last three are

motivated by analogous arguments to those used in deriving the first one:

al "r+/- (P) ]( 4. 4- 4.22(p)+/=-).,7-(p))+k(p,7" (p))(I)0(7 (p))-0, Ipl--1, (b.3)

l(r _a2t !r) B(t 4- k2( 4- (r))o(t 4- (b.4)
r t (,)

(’)) + "’ (,)) 0, I 1,

a17"f22(p 4- (7")) + 4- ,B(7-) + kl(p 4- (7"), 7")(I)0(7- 0, 17" 1, (b.5)
p ()- .
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with

a2t ,B(t) + k2(r 4- (t), t)q o(t 0 tl 1 (b.6)al(r4-(t))- 4-(t)_t

(p, - + (p)) and (p + (v), v) zero-tuples of h(p, 7),

(r, 4- (r)) and (r 4- (t), t) zero-tuples of h2(r t).
Because, cf. (3.2), Iv +(p) > 1 for Pl 1, p 1, it is seen from (b.3) that there
is a domain in Iv > 1 where (I)0(v), and similarly, B(r) is regular; note that kl(p, v)
is regular in Pl >_1, vl >_1. Also r +(p) is regular in Pl >-1, with Pl and
Iv finite. Further, it is seen, that in Pl >_ 1 domains exist where f2(P) and fl(P)
are regular. Next, take v in the domain where (I)0(r) and B(t) are regular, i.e., in the
domain defined by {v:v v +(p), Pl 1}. For such r it is seen from (b.5) that
f2(p +(v)) is regular. Since p +(v) > Iv I, v-fi 1, it follows that the domain
outside Pl 1, where f2(P) is regular, can be again extended. So, by repeatedly
using relations (b.3) and (b.5) the domains of regularity of (I)0(v), B0(v and f2(P)
can be recursively extended; analogously for fl(r). Because P +(v) > v in

iv > 1, Iv + (p) > [pl in [p[ > 1, it follows that the domain in [v > 1 where
(I)0(r) is regular is unbounded, similarly for B(v), and analogously for fl2(P) and
l(r)

The singularities of (I)0(r) in Iv > 1 can only be poles, because kl(p, 7"
+ (p)) and

k2(p+(r),v) are regular in pI>I and [r > 1, respectively; note (3.4), and
similarly for the other coefficients in (b.3)-(b.6). Further (I)0(r) has at least one pole
in {r: 1 < ]r _< oo}, because if (I)0(r) would be regular here, then, since it is also
regular for rl < 1, cf. (2.0), it is necessarily a constant, as Liouville’s theorem imp-
lies. Analogously, for B(r), f2(P) and ill(r). Consequently, Lemma 4.1 is proved. 13

From the analytic continuations discussed above, it is seen that the relations (b.3)-
(b.6) hold for all those r, , p and r where the functions in (b.3)-(b.6) are finite. Con-
sequently, it is seen that the validity of the relations (4.1)-(4.4) has been established.

Appendix C

The integer M >_ 0 has been defined in (8.6). Numerical results indicate that M is
always larger than zero. A proof of M > 0 seems to be rather lengthy and intricate.
Below we discuss some cases, for which the proof is fairly simple.

First consider
_1 (c.1)a1-a2-a(2, r1-r2-.

From (c.1), (3.17) and (7.7) (iv)it follows that

R- 1 R{- + R1+ R- 1 b/a’1#1
/il-t- 1 2R1- R1+ 1 2R-" (c.2)

From (3.16), (3.20), (c.1) and (c.2)it results that

2Al#2 (2 + a)(R1+ 2+a
+,1)(a R1-)

2-a-(1--a)R1

R1+ 2 -+-a + V/4 + a2).

(c.3)

From (c.3), it is not difficult to verify, since )11 )2#2 for the present case, that
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]AI#I -b A2#2[ > 1 for 0 < a < 2,

so that for the present case M > 0.
Because AI#1 is a continuous function in each of the parameters al, a2, 71 1-

2, it follows from the results so far obtained that M is larger than zero for al-
1a21 < el, [1 --[ < e2, 1/al -+- l/a2 ) 1, with eI and e2 sufficiently small.

Next we consider the case
1

al > 1,TVl- ’2--"
From (3.17), (7.7) (iv)and (c.4) we have

(R1- )(- + R1+ aV- +-( +

-1/
(R2- -1)(a-2)+ 2(a 1)

Because R1+ 1 > 0, the denominators in (c.5) are positive and the numerator in the
last term of (c.5) is not positive for a1 >_ 1, noticing that

ab 2 1 + a -}-22 > 0 for a > 1a2

it follows that AI1 < - 1. Hence, from )2#2 < 0 we obtain )1#1 + )2#2 > 1, i.e.,
/>0. Analogously, M>0fora2>1 -2-1/2"’land a20. It is readily verified that R2-----0Finally, consider the case 1- 2-
for a20 and so it is seen froln (c.5) that for a2 sufficient small, the numerator in the
last term of (c.5) will be negative and it follows again that Al#1 < 1 and so M > 0,
since "2#2 < 0.

Appendix D

From (2.4), it is seen that for r _< 1,

alr. r) lal-rrQ2(1 + lal-rr(I)0(r B(r) 0, (d.1)E{rXl(x2 > Xl)}
1
alr =(1-

E(rX2(x2 > Xl)} 1-r (d.2)a2r (1 r)2(I)0(r B(r) O.

So that by letting r-l, it follows, cf. (2.10), that

B(1) 0. (d.3)
nus t smst ,o o B() s wl o %() is 0)_ T > , .m
5.1, (8.2) and (8.7), it follows that there exists a neighborhood of 1 where B(.
and 0(’) are both regular, so that all derivatives of B(.) and 0(’) at r 1 are
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finite. Thus we may write, (cf. (d.3)): for r 1,

B(r) (r- 1) B(r) r 1 + (r- 1) dr2B(r) r 1

3 d3
r 1 O((r 1)4+ ,r- 1) a-B(r) + ),

dmt O((r 1o(,) (,- 1) =1 +

From (d.1), we have: for r 1,

1 1 r[Oo(1 + (r 1)o(r 1E{rXl(x2 > Xl)} 1-alr2(1) -1-aI
r

and from (d.2),

For, cf. Theorem 8.1,

+21_(r 2 d2 (r 1 3 d3
r O((r 1)41) dr----Oo(r) lr 1 " r3(X)0(r) 1 " )]

d2alr r[rB(r) =1 q- 1/2(r- 1)-r2B(r) =11 -a1
r r

q-(r 1)2 d3 B(r) 1 + O((r- 1)3)],
dr3 r

E{ x2 B(r)
r (X2 > Xl) } a2r2raPo(r --a2r

al--1, a2 k 1, 11+ a- > 1,

we have from (d.5): for r 1,
1E{rXl(x2 > Xl)} 1-r[f2(1) -(I)(1)- (r- 1)d-dT(I)o(r)I r 1

3 d31 2 d2
m -(r 1) -73%(,-) + O((1 r)4)2(r- 1) r2Ovr)Ir- r= 1

r -r 1/2 )dr2B(r)l_r[ B(r) l= 1+ (r-1 I=1

(d.4)

(d.5)

(d.6)

(d.7)

(d.8)

2 d3+(r- 1) 7raB(r)I 1 q- O((1- r)3)].

From (d.7)and (d.8) we have:

-1,a2 1,11 +12 > 1=>2(1)-(I)0(1)-d-dTB(r)I r 1 -0, (d.9)a1

because the left-hand side is bounded by 1 for r 1. Hence, if (d.7) applies then: for

E{rXl(x2 ) Xl)} (I)o(r) r 1 "[- (r- 1)-r(o(r)I 1 -4- B(r) lr 1

1 d2 d3+r--B(r)lar_ 1 +l-dr(r. 1)-B(r)I
gir.. 1 q- O((1- r)2).
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Appendix E

In section 7 we have defined )1 and A2. For the determination of M, cf. (8.6), we
need some more detailed information. It is obtained in this appendix; further, some
relations between A1 and al, a2 are deduced. These relations are helpful in the numeri-
cal evaluation of queueing characteristics.

Denote
b 2(11 + 12 _t_ 1). (e.1)A:

2ala2

Since for i- 1, 2,

we have
aiA2 > 1, (e.2)

5"" aiA2 > 1. (e.3)

Hence, from (3.16), (7.7) and (7.8): for i= 1,2,

0 < Ai--/-V/i-1 <1. (e.4)

It follows that
1/2Ai-25iA +1--0.

Consider the hyperbola y2_ 2yx + 1 0. It has its center at the point (0,0) and
asymptotes y-0, y-2x, the point (1,1) lies on it. It is readily seen that for
i= 1,2,

5 > 0=,.0 < A < 1, (e.5)

and A decreases monotonically from 1 to 0 for 5" 14oo.
From (e.5), it is seen that a positive integer n may exist such that

nA

However, for n sufficiently large, this inequality cannot hold for any 5 > 1, 1, 2.
To derive the relation between a and 5i, note that from (e.1) and (e.3) we have

with

+ 2(1 2c)al^ + 1 0,
+ 2 51 + 2

5152
c:-^ -1>0.

51 + 52

(e.6)

(e.7)

From (e.6) and (e.7), it follows readily that: for i= 1, 2,

ai
:t: 5i {I+2e+2VQ(I+)}-l+e

so that
1 - [1 + 2c -t-2X/’e(e + 1)]- 1

all: + a2:l:
It follows that

1___ 1_. 1 + 1___ >1"
al t-a2_t_ < 1,

a2

(e.8)

(e.9)
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Hence, if, cf. (2.6) and Remark 2.1,

a-+ > 1,

then the relation between a and 5 is given by

ai 1 + e{1 + 2e- 2V/e(e + 1)}, 1,2,

1 1 + + +

(e.lO)
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