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1. Introduction

This system appears in the form of a Bellman equation for the value function of the
problem of optimal detection of jump-times of a Poisson process investigated by
Donchev [2]. This problem is a generalization of the classical Poisson disorder
problem (Shiryaev [5], Davis [1], and Wickwire [6]) which is the following. Let {zt}
be a Poisson process whose rate p changes from A to # < A at a random time 0. The
time 0 is zero with probability x and if 0 > 0, then it is exponentially distributed with
parameter a. The Poisson disorddr problem is to find a way of using only
observations on {zt} to predict the value of 0, and to minimize some cost functional
depending on the difference between 0 and its predicted value.

In this problem, the disorder occurs only once. Now, we suppose that a multiple
Poisson change of the rate of {zt} occurs. We assume that this change takes place at
the jump-times On, n _> 1 of some non-observed Poisson process {Yt} and that for the
rate of{zt} p-A ifyt is odd and p-#ifytiseven. The rate of{yt} is equal to a

and the apriori probability x P{Yo E {2n + 1,n >_ 0}} is given. A policy is any non-
decreasing sequence of stopping times {r}, n >_ 1, w.r.t, the filtration generated by
the process {zt}. The problem is to minimize some cost functional depending on all
0n and rn, n >_ 1. Referring the reader for more details to Donchev [2], let us return
to the system. It is the following:
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ffl(t) (e 2asinh t)- l{A[fl(t fl(t- 7)]
-t- (a q- - aet)fl(t) q- 1}, t _> 0,

f’2(t) ( 2a sinh t)- l{A[f2(t f2(t 7)]
q- (a + fl ae t)f2(t q- 1}, t <_ O,

fl(t)--etf2(t), rE[--7,0],

(1.1)

(1.2)
(1.3)

where #, A, e, fl, 7 and a are positive numbers such that

A > #, e A- #, 7 lnA-ln#. (1.4)
It follows by dynamic programming reasoning that system (1.1)-(1.3) has a unique
solution which coincides with the value function of the above problem. On the other
hand, from the point of view of the theory of functional-differential equations such an
existence-uniqueness result is not trivial. In particular, if we try to solve system
(1.1)-(1.3), there would arise at least two difficulties to overcome. The first is the

singularity that equation (1.1) has a point t-ln(/2a+v/1 q-(e/2a)2), and the

second is the delaying argument of equation (1.2) on the negative half-line.
Here we prove the existence and uniqueness of the solution of system (1.1)-(1.3)

utilizing methods and ideas from the theory of functional-differential equations with
delay. This solution cannot be represented by means of known functions. Neverthe-
less, we describe its structure and obtain results permitting us to develop numerical
tools for its calculation.

This article consists of four sections. In Section 2 we investigate the asymptotics
of the solutions of equation (1.2) as t-c and obtain explicit formulas for the
global solutions of both equations (1.1) and (1.2). Section 3 is devoted to the funda-
mental functions of equations (1.1) and (1.2) and their properties. In Section 4 we
prove that the homogeneous equation corresponding to (1.2) has a non-trivial solu-
tion on the negative half-line and that the general solution of this equation is a sum
of its global solution and the solution of the homogeneous equation multiplied by a
constant. In the end of the section we utilize this fact when constructing a solution of
the system (1.1)-(1.3).

2. Asymptotics and Global Solutions

Equation (1.2) plays an important role in the system (1.1)-(1.3).
consider also the corresponding homogeneous equation:

Further we shall

/’(t) (e 2asinh t)- l{#[r/(t) r/(t 7)] + (a + 3 ae t)r/(t)}, t

_
0. (2.1)

In Section 4, we show that equation (2.1) has a non-trivial solution on the negative
half-line. The next theorem contains aprior information about the asymptotic behav-
ior of this solution.

Theorem 2.1" (i) Every solution of equation (2.1) has the following asymptotic
as t--, c"

(t) C(1 + /a + e- t) + o(1), C coast. (2.2)
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(it) If equation (1.2) has a solution, then this solution also has the asymptotics
(2.2) with some constant C.

Proof: Let us consider the equation

{ ex(1 x) + a(1 2x)]v’(x) + [Ax + #(1 x)]

I ( Ax )-v(x)]-(1-x)-v(x),x[1/2 1]. (2.3)v
x+#(1-x)

As shown by Dontchev [2], this equation reduces to (1.2) with 7- In- In # if one
introduces a logarithmic scale t’-ln(1-x)-lnx and a new unknown function
V(t)- v((1 + et) -1) and defines thereafter the function f2(t) by the formula

f2(t) (1 + e -t)U(t). (2.4)
Moreover, in this case, the homogeneous equation corresponding to (2.3) reduces to
(2.1). Thus, if equation (1.2) (resp. equation (2.1)) has a solution, then equation
(2.3) (resp. the homogeneous equation corresponding to (2.3)) has a solution as well.

Let f2(t) be a solution of (1.2) and consider the corresponding function v(x).
Applying the Lagrange formula to the difference v()x-A.tZ)-v(x)\./ in the left-
hand side of (2.3) we obtain

Ax v(x) v’ ex(1- x)
)’ ( e x,v + .(1 ) () + .(1 + ,(1 )

Substituting this expression into (2.3), we get

-(1 ) + (1 )[’()- v’()] + a(1 )v’() = (). (.)
Solving equation (2.3) with respect to v’(x) and taking into consideration the

facts that a > 0 and v(x) is a continuously differentiable function, we easily deduce
that v obeys a smooth second derivative in a neighborhood of the point x 1.
Therefore, we can apply the Lagrange formula once again to the difference
v’()- v’(x) which appears in the second term of (2.5). Thus, we obtain the following
equation:

a( ),’() Zv() + + o((1 ):), 1. (.)
Let us now return to the logarithmic scale t = ln(1- x)- ln x and the function

U(t). Then equation (2.6) takes the following form:

2aU’(t)sinh flU(t) (1 + e -t)- 1 + O((1 + e -t)- 2), t . (2.7)
The solution of the last equation is

sinh )d C - duU() exp Sinh 2a(1 + e U)sinh

+ exp ./ Sins O((l+e ’sinhu

1
_

--1 :
C1+-: (c- 1)2:- (c +1) -:- c d

-1
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e-u+1 (e-’- l)(e- u + 11

C -limt__,oU(t)’ t-oe.

The first integral in (2.8) is equal to -l(2+la)-a{1-(.e-t

(/3/a)(1 + e-t)- 1]} In view of the inequalitiese
u_ 1 < 1 and 1

e U+l e -1

which hold for u <0, the second integral can be written out as

1)7-[1 +
+1

2

e-U+l

f (1+
e u)- 20((1 + e u)- 2)d(1 + e u) 0((1 + e u)- 3). Substituting these express-
ions in (2.8), we obtain the following asymptotic formula for the function U(t):

U(t) Cffl(t + ff2(t) + 0((1 + e t)- 3), t-- cxz, (2.9)

where (l(t)-(e-t-l’-2--g-- (2(t) 1-F(/a)(1-Fe-t)-I and
t )e 4-1

/3- 1(2 + fl/a)- a. Applying Newton’s formula to the function 1(t) we get

l(t)--(e-t-1)1 --(1-1+e ) 2a

C-C1+

1 + (/3/a)(1 +e-t) -1 4o((1 +e-t)-1), t--,-oo. (2.10)

It follows from (2.9)and (2.10)that

U(t) C1[1 + (/3/a)(1 + e -t)- 1] + o((1 + e -t)- 1), t---* (2.11)

Let us note that the function l(t) is a solution of the homogeneous equation cor-

responding to (2.7) which appears in place of (2.7)if we consider equation (2.1) and
the homogeneous equation corresponding to (2.3) rather than equations (1.2) and
(2.3). Thus, both claims of the theorem follow from (2.4), (2.10), (2.11) and the
remark after formula (2.4).

As follows from (2.11), the function 2(t) plays an important role in formula
(2.9). Namely, it ensures the fulfillment of the identity C1 -limt_.._U(t in
(2.11). It is remarkable that the function f2(t)- (1 + e-t)2(t) is a global solution
(i.e., on the whole real line) of equation (1.2).

Theorem 2.2: The functions
1 + ilia + e

fl(t) /3(2 + fl/a)’ (2.12)

1 + /a +e -t

f2(t)-- /3(2+fl/a) (2.13)

are global solutions of equations (1.1) and (1.2), respectively.
To prove this theorem, it is enough to substitute fl(t) and/2(t) from (2.12) and
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(2.13) into (1.1) and (1.2) and make simple calculations.
Let us note that the functions from (2.12) and (2.13) do not satisfy system (1.1)-

(1.3) since the condition (1.3) in this case is not satisfied. On the other hand, we
could multiply the right-hand side of (2.13) by e and try to solve equation (1.1) on

[0, c] with an initial condition + (1 + Z/a)e
Z(2+Z/a) given on [--7,0]. However, in this

case we will not be able to escape the singularity that (1.1) has at point t

ln(c/2a+/l+(e/2)2. To overcome these difficulties, we need a full

characterization of the set of all solutions to equation (1.2) on the negative half-line.

3. Fundamental Functions and Their Properties

Denote by V(t,s) and U(t,s), the fundamental functions of equations (1.1) and (1.2),
respectively. Thus, for any fixed s, Y(t,s) (resp. g(t,s)) is a solution of the homo-
geneous equation corresponding to (1.1) (resp. (1.2)) with an initial condition given
on [s-7, s]bytheformulap(t)-0ifs-3,.<_t<sanda(t)-i ift-s. Y(s,s)-
U(s,s)-i and Y(t,s)-U(t,s)-Ofor t<s. If0<t-s<7, then in order to calcu-
late Y(t,s) (resp. U(t,s)) one has to solve the following ordinary differential equation"
f’(t) ( 2asinh t) 1(, -!- a + fl aet)f(t) (resp. if(t) ( 2asinh t)- 1(# + a +
fl ae- t)f(t)), s < t < s + 7, with an initial condition f(s) 1. Solving these
equations, we obtain the following expressions for the functions V(t,s) and U(t, s):

V(t’s)--(l+x2es)b(1WxaeS)q- x2et 1 + xi et (31).

U(t, s) es-t
1 + x2es 1 q- 1 (3.)
1 + x2etJ 1 h- Xl et

where Xl, 2 e/2a + V/1 + (e/2a)2 are the roots of the equation x2 -(e/a)x 1 O,
1 + (# + fl)/a + x2 1 + (It + )/a + X1 (3.3)b--

Xl_X2
c--

Xl_X2

It is easy to verify that b > 0 and that the identity b / c- -1 holds.
from (3.1)and (3.2)that

It follows

U(t, s) es- tv(t, s), s _< t _< s + 7. (3.4)
Since U(t,s)= V(t,s)= 0 if t < s, (3.4) is obviously fulfilled also for all t < s. If

t > s + 7, then the formulas for V(t,s) and U(t,s) are more complicated. Neverthe-
less, it turns out that formula (3.4) holds in this case as well.

Consider the equations:

f’(t) ( 2a sinh t)- l{A[f(t) f(t 7)] + (a + aet)f(t))},
f’(t) ( 2a sinh t) l{#[f(t) f(t 7)] + (a + 13 ae -t)f(t)}, (3.6)

and denote by fl(r,a)(t)(resp, f2(r,o)(t)), r E , a E C([r-7,r]), the solution of
equation (3.5) (resp. equation (3.6)) on [r,c)with an initial condition p.

Theorem 3.1" (i) For every real cr and a G C([r 7, r]),
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fl(ff, e(" )(t) (r, )(t) t >’f
The identity (3.4) is satisfied for all real t and s.

Making use of Hale ([4], Theorem 6.3.2), we obtain the following repre-
(ii)
Proof:

sentation for the functions fl(cr, e(" ))(t) and f2(r,)(t) for t _> r:

fz(, o)(t) U(t, )o(r)

-#/ o(s)U(t,s +7)[e-2asinh(s +7)]-lds, (3.8)

fl(a,e(" )o)(t) V(t,a)eo(a)

-/ o(s)eSV(t,s +7)[e-2asinh(s +7)]-lds. (3.9)

First, we shall prove the claim (i) in case r < t < r + 7. Since t < s + 27 for all
s [r 7, er] one can apply formula (3.4) to both V(t, er) and V(t, s + 7) in the right-
hand side of (3.9). Making simple calculations, we get (3.7).

Now we are in a position to prove (ii). Let us fix s and divide the interval [s,
into segments of length 7: [s, oo) (.J n > 0[s + sT, s + (n + 1)7). We shall prove by
induction that (3.4) holds in every segrent [s + sT, s + (n + 1)7), n 0, 1, For
n- 0, the claim was already proved. Assuming that (ii) holds true for t [s + kT,
s + (k + 1)7) and some integer k > 0 we shall prove that (3.4) is satisfied in the next
segment as well. Indeed, to find the functions V(t,s) and U(t,s)on [s + (k + 1)7
s + (k + 2)7) one must solve equations (3.5) and (3.6), respectively, taking as initial
conditions the already calculated values of these functions on [s +kT, s +(k + 17).
According to the induction hypothesis, (3.4) holds on [s + kT, s + (k + 1)7). Applying
(i) with r s + (k + 1)7, T(.) e-sU(.,s) and t e Is + (k + 1)7,s + (k + 2)7) we get
the claim for n k + 1. Thus, (ii) is proved.

In order to prove (3.7) for r

_
t

_
+ 7, we have used only formula (3.4) with

t- s

_
7. Since, according to (ii), the last formula holds for all t and s it follows

that (3.7) is fulfilled for all t _> r.

Consider the following domain in the plane (s, t)" D- {(s, t)’s

_
t

_
0}.

Theorem 3.2: The function U(t,s) is continuous and bounded in D.
Proof: The coefficients of equation (3.6) are bounded continuous functions provid-

ed t >_ 0. For any fixed s _< 0, function U(t, s) is given by formula (3.2) if s

_
t

_
s +

7 and it satisfies equation (3.6) with an initial condition fr +.r(" )-Us +’r(" ,s)if
t > s +7- Here, as is generally assumed in the theory of functional-differential
equations, for any f C([s, t)), t > s + 7 and r [s + 7, t], fr(" denotes a function
belonging to C([-7,0]) which is defined by the formula fr(O)- f(r q-0),

7, 0]. In view of (3.2), since s + 3’ + O [s, s + 7] provided e 7, 0], it follows
that

Us+../(O s)_e_O_.( l+x2eS )b( l+xles )c1 q-x2es+’r+O 1 q-Xles+’r+O

o e [-,0]. (3.10)

The last function is continuous in both 0 and s if 0 E [-7, 0] and s < -7. Being
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a solution of equation (3.6) with the continuous initial condition (3.10), the function
U(t,s) is continuous w.r.t, t if t >_ s + 7. Its continuity if t E [s,s + 7] follows from
formula (3.2). It remains to be proved that U(t,s) is continuous w.r.t, s for every
fixed t<0. The proof is non-trivial only ifs<t-7. Let s<t-7 and {xn} be a

sequence converging to s. Then, because of the continuity of function (3.10) w.r.t.
both 0 and s, the corresponding sequence of initial conditions {Vsn+.(.,s,)} will

converge uniformly to Us +.(. ,s). Thus, the continuity of V(t,s) in s follows from
the theorem for the continuous dependence of the solutions of functional-differential
equations to the initial data (Hale [4], Theorem 2.2.2).

In order to prove the second claim of the theorem, let us rewrite the equation
(3.6) in the form

f’(t) A(t)f(t) B(t)f(t 7), (3.11)
where. A(t) (e 2asinh t)- 1(he -t a # -/3), B(t) #(e 2asinh t)- 1 and set
cr- -ln(1 + (/3 + 2#)/a). It is easy to see that the coefficient A(t) decreases in t,
t < 0, whereas B(t) is an increasing function and for t < or, the inequality B(t) < A(t)
holds.

Consider the following domains in the plane (s, t):
D1 {(s,t) e D:s _< t_<

D2 {(s,t) e D:t > s >
D3 {(s,t) D:t > c,s < c}.

Obviously, D- D1 U D2 t3 D3 and it is enough to prove the claim in each of
domains D1, D2 and D3. Since D2 is a compact set and U(t,s) is a continuous
function, the proof is non-trivial only in D1 and D3.

Consider the following subdomains of Dl"D’-{(s,t)Dl"t<a-1/n},
n- 1,2, Since the closure of the set [.Jn > 1D coincides with D1, it follows from
the continuity of function U(t,s) that it is sufficient to prove its boundedness in each
of domains D,n- 1,2, If t < a- 1In then A(t) > A(a- l/n), suPt < a-1In
B(t) < B(- l/n) < A(c- l/n) and therefore, according to Hale ([4], -quation

(5.9.2)), the trivial solution of equation (3.11) is uniformly stable for t<_ -1In.
This means that for any r < c-1In and d > 0 there exists 5- 6(d) such that the
inequality ]1 o 1[ < 5 implies [[ (f2)t(r, 99) 11 < d for alkr < t < a- 1/n. Here [[ 11
denotes a sup-norm and the function f2(a, ) is the same as in Theorem 3.1.

Let us now represent equation (3.11) in operator form. That is

if(t) L(t, fl(" )),
where L(t, o), t <_ 0 and o C([- 7, 0]) is the following operator:

L(t, (r) A(t)T(O) B(t)( 7).
Since for t < a- 1/n both A(t)and B(t)are between 0 and 1,

L(t, )I _<mll ll, (3.12)
Applying Hale ([4], Lemma 6.6.2) to equation (3.11) and making use of (3.12), we
obtain the claim in D.

For any fixed s < c, the function U(t,s) satisfies the following equation
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f(t) f L(u, f(. ))du + U(, ), t z [, 0] (3.13)

with an initial condition fs(" )-Us(" ,s). Let us note that if t < 0, then (3.12) also
holds with m (2# / )/c. Since (s,a) E D1 it follows from (3.12) and (3.13) that

[U(t,s) <_ f L(u,U=(. ,s) du + U(,

<_ m / [I Uu(" ,s) ll du + K, K-sup U(t,s)[.
s (t,s) D1

Therefore, the following inequality holds:

II vt(., )II _< m / II v(.,)II du + K.

Applying Gronwall’s lemma to (3.14) we get

(3.14)

II u(,, )II K1, K1 KemS, t E [c, 0].

Hence, sups < < 01U(t, s) < K1. Since the constant K1 does not depend on s,
it follows that U0, s’ is bounded in D3 as well.

Pemark: All results cited in the proof relate to the case when the functional-
differential equation is given on the whole real line, whereas we consider it in th
interval (-c,a-1/n]. However, setting in (3.10) a(t)=A(-l/n), B(t)=
B(c-l/n), t> c-1In we get an equation which is defined on the whole real line
and coincides with (3.10) in (-c,c-l/n]. Since all cited results hold true for the
last equation, it follows that they hold for equation (3.10) in the interval
(-oo, o 1/n] as well.

4. The Solution of System (1.1)-(1.3)

We begin this section with the following lemma.
Lemma 4.1: Let us set X(r,,t),= f2(r, 1 + file + e ("))(t), r < 7, where as in

Theorem 3.1, f2((r, 1 + /a + e -t" ))(t) denotes the solution of equation (3.6) with an

initial condition,(t) 1 + /a + e- given on [a 7, c]. Then the following holds:

(i) X(r,t)>_ l+fl/a+e-t, te[r,(r+7], (4.1)

(ii)
[,,r+max 7][X(r,_ t) 1 /a e t] O(e), cr-- cx. (4.2)

Proof: If t e [a, r + 7] then X(r, t) can be calculated by the formula (3.8), where
function U(t,s)is given by (3.2). Setting in (3.8), T(s)- 1 and (s)- e -s and cal-
culating the corresponding integrals we obtain the functions

Kl(t U(t, cr)+ a-[e-t + 1+
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U(t, r)(e- -[- 1 -t-
A -t-a/)],

K2(t e-tV(t, cr)+Am{1 + (1 + # +a fl)e -t

where

# /U(t cr)[1 + (1 + a j*a (4.4)

m --(xI x2)2bc (1 + It + fl) A +aa (1+ 1, (4.5)

and both V(t, cr) and U(t,r) being given by (3.1) and (3.2), respectively. Calculating
the derivative of the function X(, t)- 1- fl/a- e- t_ (1 + /a)gl(t + g2(t
1- fl/a- e- w.r.t, t we obtain the following expression:

--m l[A( 1 q-# +a )+(1 + 3/a)- mI {1 q-et[l(1++x1(#et)(-" l)/a]-t-x2et)-I
1 + x2ea 1 + Xlea [ea( 1 + (A + fl)/a) + 1] e -tx
1 + x2et 1 + Xlet

It is easy to verify that the number (1 +" +a f)/-(1 / fl/a)is less than m. Thus,
the first factor in this expression is negative. On the other hand, simple calculations
show that the second factor increases in t. Hence, it reaches its minimum at point
t (r and this minimum is equal to me2r(1 + Xlea) 1(1 + x2ea)

1 > 0. Therefore,
the function X(r,t)-1-//a-e -t increases on [r,r + 3’] and since X(cr, cr)-1-
/a- e- 0 it follows that (i) holds and that it attains its maximum at point t

or+3’. Let us set t-r+3’ in (4.3) and define a new function Ki(u so that
Kl(ea) Kl(r + 3’). The function 1<l(u) is equal to:

(4.6)

where

x[1-a-m 1 +A+a.)]+am 1 +A+a). (4.8)

In a neighborhood of point u 0

l+x2u)b( l+xu’
c

tilt _[_ ,,x2u tilt _[_ ,XlU]
1 +,_.1 + A -t-a/)u -t- O(u2), (4.9)

and hence
R(u) ..../e_1 + A +a )\ + O(u), uO. (4.10)

Taking in (4.8) only the first term of the Taylor’s series of the function in the left-
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hand side of (4.9), we get

It follows from (4.6), (4.10), and (4.11) that

Kl(U -//A -t- O(u), u0. (4.12)
Similarly, calculating the value of function K2(t)-e -t at point t-a +7 and
making the substitution u- ea we obtain:

’2(U)-- U -1- R(U)U +1+ + )--l]+ e
a am

where function R2(u) is defined in such a way that 2(ea) K2(a + 7). Making use
of (4.10) we get

Since X(,)- 1 B/-e -t K()- e -t + (1 + B/a)[K()- 1] the second claim
of the lemma follows from (4.12) and (4.1a).
Trem 4.2: The eqion (2.1) has non-rivil solution on he negative hlf-

line.
Prf: Consider the following Nnctions defined on (- , 0]:

1 +/a+e -t, -n7

x( e 0].

We shall prove that the sequence {r/n}, n > 1 converges uniformly to some func-
tion r/(t) which satisfies equation (2.1) on the whole negative half-line.

Let us consider the series

r/1 (t) + E [r/n -b 1(t) r/n(t)]" (4.14)
nml

To find the function r/n+ l(t) on [-n7,0] one must solve equation (2.1) with an ini-
tial condition X( (n / 1)7, t), t [- (n + 1)7, nT]. Hence, making use of formula
(3.8) we obtain:

r/. -t- l(t) r/n(t)

O, t< (n+ 1)7

X(t)-l-/a-e -t, t E [-(n + 1)7, nT]

[X( nT) 1 fl/a enT]u(t, nT)

t f -+ 1)7IX(s)- 1 /a- e- s]

[e 2asinh(s + 7)]- 1U(t, 8 + 7)ds,
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where, for the sake of brevity, we have omitted the first argument of the function
X(-(n + 1)7, t). Therefore, it follows from Theorem 3.2, Lemma 4.1, and the
convergence of the integral fo (e-2asinhs)-ds that for all sufficiently large n

rln + l(t)- .(t) _< Ke-, K const.

Thus, the series (4.14) converges uniformly to some function r/(t) on (-oo, 0].
It remains to be proved that this function satisfies equation (2.1) on (-oo, 0].
Let rE[-7,0]. Since for every n _> 1 the function tin(t) satisfies equation (2.1)

on [-7, 0], it follows that

rn A(t)rn(t) B(t)r]n( 7), n 1,2,..., (4.15)

where A(t) and B(t) are the coefficients of equation (2.1) defined after formula
(3.11). Utilizing (4.15) we easily deduce that

r]i(1) q" E [r] + l(;t)- rib(t)] A(t){,l( q- E [/}n + 1($) r]n(:)]}
n--I n=l

B(t){rll(t 7) 4- E [rln + 1 (t 7)- rln(t- 7)]}
n--1

A(t)rl(t B(t)rl(t 7).

Therefore, differentiating series (4.14), we obtain that in this case, the function /(t)
satisfies equation (2.1).

If t El-(k + 1)7, -k3’], k >_ 1, then we can represent function rl(t) in the form

r}(t) r]k + l(t) -]- E [r]n + 1 (t)
n--k+l

and repeat the same considerations taking in (4.15) n k + 1, k + 2,
Now we are able to characterize the set of all solutions of equation (1.2) on the

negative half-line.
Theorem 4.3: The function

l+/a+e -t

f2(t) fl(2 + file) + Cr/(t),C const. (4.16)

is a general solution of equation (1.2) on (-oo, 0].
Proof: According to Theorems 2.2 and 4.2 function f2(t) is a solution of

equation (1.2) for all C. It remains to be proved that every solution of this equation
can be represented in the form (4.16) with some constant C. Let f(t) be such a

solution. Then, Theorem 2.1 (ii) implies that it has the asymptotic
C1(1 + fl/a + e-t)+ o(1) as t--.- oo with some constant C1. On the other hand, it
follows from the proof of Theorem 4.2 that function (t) has the asymptotic
1 +fl/a+e-t+o(1) as t-, oo. Therefore, taking in (4.16)
C- C1 -[-fl-1(2 q-/a)- 1 we obtain a solution f2(t) that has the same asymptotic
as t---,- oo. Thus, for every 6 > 0 there exists < 0 such that

sup If(t)- f(t) < , (4.17)
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If t E [r, 0] then, in view of Hale ([4], Theorem 6.3.2), both functions f(t) and f2(t)
have the following representation"

f(t)- f(a)U(t,a)-#/ f(s)U(t,s+7)[c-2asinh(s+7)]-lds

+ J U(t’s)(c-2asinhs)-lds’

Hence,

f2(t) f2(r)U(t,a)- # / f2(s)U(t,s + 7)[e- 2asinh (s + 7)]- lds

+ ] U(t’s)(e-2asinhs) -lds"

f(t)- f2(t) --[f(r)- f2(cr)]U(t,

# / [f(s) f2(s)]U(t,s + 7)[ 2asinh (s + 7)]- lds,

and utilizing (4.17) and the boundedness of function U(t,s) we get

max If(t)- f2(t) < KS, K coast.
e [,o]

(4.18)

Since the number 5 > 0 in (4.17) and (4.18) is arbitrary, it follows that f(t) f2(t).
Utilizing the last theorem we are in a position to prove our main result about the

solution of system (1.1)-(1.3).
Theorem 4.4: System (1.1)-(1.3) has a unique solution.
Proof: According to Theorem 4.3, the general solution of equation (1.2) on

(-cxz, 0] is given by formula (4.16). To satisfy (1.1) and (1.3) on must multiply
(4.16) by e on [-7,0] and solve equation (1.1) with an initial condition etf2(t),
tE[-7,0]. We shall show that, taking a suitable constant C in (4.16), we can

escape the singularity that equation (1.1) has at point t lax1. Then, since the
coefficients of this equation are unbounded only in a neighborhood of this point, the
existence and uniqueness of its solution will follow from the well-known result from
the theory of linear functional-differential equations (Hale [4], Theorem 6.1.1).

Let us set k lnx and take an arbitrary real 5 G (0, k A (7/2)). Then, it follows
from the choice of 5 and formula (3.1) that the solution of equation (1.1) has the
following representation in the interval [k- 6, k + 5]:

fl(t) V(t,k 5)fl(k 6)

k-5

--/ ] fl(s)[e 2a sinh(s + 7)]- 1V(t, s + 7)ds
k-6-
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+ / -2asinhs)-lv(t’s)ds
k=6

(4.19)

(1 + x2et) -b(1 + xle.t) -c{(1 + x2e
k 6)b(1 + xek-6)Cfl(]--5

+ f [1 Afl(s ")’)]( 2a sinh s)- (1 + x2eS)b(1 + XleS)Cds}.
k-6

Since 1 + x2ek 0 and b > O, the function fl(t) will be bounded in a neighborhood of
point t- k only if

(1 + :ek-)b(1 + lek-)Cfl(k-)
k

+ J [1 ,Ii(s )](e 2asinh s) (1 + e)b(1 + leS)Cds O. (4.20)
k-

Making use of L’Hopital’s rule, it is easy to verify that condition (4.20) is also
sufficient for boundedness of fl(t). On the other hand, Theorem 4.3 implies that

fl(t)- fl)(t)+f2)(t)+Cf3)(t), C-const, te[k-6-/,k-6], (4.21)

where fl)(t) is a solution of equation (1.1) with a zero initial condition and f2)(t)
and f3)(t) are solutions of equation (3.5) with initial conditions on [-7, 0] equal to

fl- (2 + (fl/a))- 111 + (1 + (/a))et] and etrl(t), respectively. Note, that if t _<
k-5 then the coefficients of both equations (1.1) and (3.5) are bounded and, there-
fore, all functions in (4.21) are well defined.

Substituting fl(t) from (4.21) into (4.20) we obtain a linear algebraic equation
A C + B 0, for the constant C which always has a solution C C if the coefficient
A is not zero. In this case, taking C- C in (4.21), we ensure the fulfillment of
condition (4.20) and so we obtain a bounded solution of equation (1.1) in
[k-5, k +5] given by formula (4.19). Since the coefficients of (1.1) are bounded
continuous functions provided t _> k + 5 it follows that this solution can be continued
on the whole positive half-line.

Thus, to complete the proof it is enough to show that

(1 + x2ek-5)b(1 + Xlek-5)cf3)(k--5)
k

--/ f3)(s-7)(e-2asinhs)-l(1 +x2eS)b(1 +xles)Cds 5 O.

k-6

(4.22)

To do this, assume the contrary. Then, repeating for function f3)(t) and equation
(3.5) the same considerations as those for fl(t) and equation (1.1), we deduce that
the function

f3)(t) (1 -t- x2et)-b(1 + xlet)-c[(1 + x2ek-5)b(1 + Xlek-5)cf3)(lc--5)
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A ] f3)(s-7)(e- 2asinh s)- 1(1 + x2es)b(1 / xleS)Cds]
k-6

remains bounded in the interval [k-6, k + 6]. Therefore, f3) can be continued on

[k + t, cx) so as to satisfy equation (3.5). Hence, in view of Theorems 4.2 and 3.1 (i),
we conclude that the function

t _< o
(t)

>_ o

is a non-trivial global solution of equation (2.1).
Therefore, it follows from Theorem 2.2 that the function F(t)= f2(/)+ (2 +

/a)(t), f2(t) being given by (2.13), is a global solution of equation (1.2) such that
F(I)O, as t---,-c. However, from Donchev [3, Theorem 3.1], we obtain that F(t)
has a singularity at point t = In z1. This is a contradiction that proves (4.22).
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