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We consider a filtering problem for a Gaussian diffusion process observed
via discrete-time samples corrupted by a non-Gaussian white noise. Com-
bining the Goggin’s result [2] on weak convergence for conditional expecta-
tion with diffusion approximation when a sampling step goes to zero we
construct an asymptotic optimal filter. Our filter uses centered observa-
tions passed through a limiter. Being asymptotically equivalent to a simi-
lar filter without centering, it yields a better filtering accuracy in a pre-
limit case.
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1. Introduction

Any computer implementation of filtering leads to a so-called "continuous-discrete
time model" when a filtered continuous-time signal has to be estimated from discrete-
time noisy samples. In this paper, we analyze such a filtering problem with a small
sampling step, for which the use of a limit model, corresponding to a sampling step
going to zero, is natural. It is clear that asymptotic optimality for the "filtering esti-
mate" obtained via limit model plays a crucial role. To get an accomplished result
and compare it to other well-known results, we restrict ourselves to a consideration of
a simple model with a fixed sample step A so that a grid of times is: to O, tk kA,
k > 1. An observation signal at these points of time is defined as:

Yto 0

AXtk_ A + kV/, k > 1Ytk Ytk-1 1

where X is an unobservable signal andk is a noise (A is a known constant). In
this setting, we assume that {k,k >_ 1) forms an i.i.d, sequence of random variables,
independent of the process Xt, with EI 0 and EI2 B2. For further convenience,
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introduce right continuous, having left-sided limits, random process

Yta E I(tk-1 - < ;k)Yt
k 1" (1.1)

If A is sufficiently small, it makes sense to find a "limit" for Yt as A0. Applying
Donsker’s theorem [1] one can show (see e.g., [6]) that, independently of the distribut-
ion for (1, a diffusion type "limit" exists along with independent of (Xt) Wiener pro-
cess (Wt)"

Yt / AXsds + BWt" (1.2)
0

For the sake of simplicity, assume that the signal X is generated by a linear It
equation (with known parameters a and b) with respect to a Wiener process Vt, inde-
pendent of tk k >_ 1"

Xt-Xo+ / aXsds+bVt, (1.3)
0

where Xo is a Gaussian random variable. For a pair (Xt, Yt), the optimal filtering
estimate in the mean square sense is defined by the Kalman filter (Xo EXo, Po
E(Xo EXo)2) with

dX -aXtd + 2_(dYt_ AXtdt)

Pt 2aPt + b2 P2tA2
B2 (1.4)

Although 2t is defined via ItS"s integration "PtA/B2dYt’’, the first equation in (1.4)
can be used for finding a continuous functional rt(y), > O, y- (Yt)t >_ o C.[0, o)1

such that "t rt(Y)" It is clear that such functional is d-fined by the integral equa-
tion

7rt(y) .o + / (a PsA’ APty tA]p
s---)r(y)ds/- t- / Bysds (1.5)

0 0

and, in addition, it is well defined not only for Cr0, but for Dr0,o as well. More-
over, for functions from Dr0 of locally boundec valiations (hansel)/, as line of YtZX),
rt(y is defined by the fis etuation in (1.4) with replacing Yt by Yt" Therefore,
following Kushner [3], one can take 2t: rt(Y as a filtering estimate for prelimit

z lawobservation. A weak convergence (Yt) -- (Yt) for a fixed t, the contmmty of rt(y
in the local supremum topology, and the uniform integrability for (Trt(YA))2 allows
us to conclude that

aim E(X rt(YA )2
A-0

E(Xt-2t)2(- Pt)"

Let us compare now rt(YA) with the optimal filtering estimate rt
A -E(X lYe, t]).

Assume that a probability density function of the random variable 1 has a finite
Fisher information, say, 1... Under some technical conditions, it is shown in [2] that

P7rtzx ia_w E(Xt y[o,t],Yo,t]), where a pair (Yt, Yt)is defined as: Y0 Y- 0 and

1C[0,oo) and D[0,o) are the spaces of continuous and right continuous functions

with left-sided limits, respectively.
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dY AXtdt + CB2 (1/3p)dW + ldwt,

dY AXtdt + l--dWt,
with independent Wiener processes W,W independent of the X process. In turn, in
[4] (see also [9]), it is shown that

E(Xt Y[o,t],Yo,t])- E(Xt Y0, t]), P-a.s.

All these facts enable us to express the optimal asymptotic accuracy

lim E(X rta)2 E(Xt\ E(Xt ]Y0 t])’]2("1 Pt) (1.6)
A0

as the filtering mean square error for the pair (Xt, Y) or, in other words, to define

Pt as a solution of the Ricatti equation (compare with (1.4))
] 2aP + b2 ]p(PA)2

subject to P-P0" We compare now Pt and P. Due to the Cramer-Rao
1inequality, we have 3p> (unless 1 is Gaussian with 3p- ). Therefore, by the

comparison theorem for ordinary differential equations we obtain (unless of Gaussian

pt > pO t>0.

This fact shows that in the non-Gaussian case, the lower bound P is unattainable for
any linear filter with prelimit observations.

In the case of a finite Fisher information, the authors of [4] proposed a nonlinear
filter, for which P is asymptotically attainable. To describe the structure of this
filter, let us denote by p(x) the probability density function of 1" Since ]p < , it is

assumed that p(x)is a smooth function such that the function G(x)- -%(x)is well
defined. With that G(x), let us define the new observation (compare (1.1))

yp,/X_ i(t < t < )yp,/X (1.8)k-1 k tk_ 1’k

where y,A_ 0 and YtPlA- yp, A G -t--k-,-f-tk---1 and the filtering estimate
tk- 1 ap \ vIA ]

7rl(gp’A) with r’(y), y E D[0, o) defined by the linear integral equation (compare
(1.5))

0 0

The analysis of the prelimit mean square error ct: E(X -7rtP(yp’A))2 leads to the
following structure: c Po + ktA2 + o(A2).

In this paper, we show the existence of an asymptotically optimal filter with the
mean squ r  rror p,0 + + <

The paper is organized as follows. In Section 2, we describe the proposed filter
and give both the diffusion approximation and a proof of asymptotic optimality. In
Section 3, we analyze prelimit quality of filtering and demonstrate the results obtain-
ed via simulation.
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2. The Filter

The filter, given in (1.9), is inspired by the Kalman filter corresponding to the pair
(Xt, YPt). We introduce now another pair (Xt,X’c) with the centered observation
process

where XtP’C
fined (see e.g., Ch. 12 in [5])" X’c

0 0 P
--E(X Yd,ct]). For this pair, a generalized Kalman filter is well de-

EXo,P’c- E(Xo -EX0)2 and

dXPt, c aX,Cdt + lpP’CAdY’c

,c 2aP,C + b2 p(p,cA)2" (2.2)

Since Pt0 and Ptp’c are defined by the same Ricatti equation, we have Ptp’c- Pt0. It

should be noted also that
Ytp’c
]p

is so-called, innovation Wiener process and thus the

new observation YPt’c is a zero mean random process.
We use (2.1) and (2.2) to construct a new nonlinear filter for prelimit observa-

tion. (2.2)implies (compare (1.9))

0 0

]pAPsYsds (2.3)

and, consequently, we take 7r’C(Yp’c’A) as a new filtering estimate, where

and
yp,e,A __ E I(tk-1 <--’< ’k)YPic’_l (2.4)

k

y,,zx 0

yc, zX_ yc,_zx G k tkl Arp’c (yp’c’X)X/ (2.5)
1 k/ tk 1

2.1 Diffusion approximation for (X, y,e,a,, r,e(y,,,z))
For brevity, we will write W-limn__.o to denote weak convergence in the Skorok-
hod-Lindvall and the local supremum topologies (see e.g., Ch. 6 in [6]). Recall that

Theorem 2.1" Assume that EG2(I)< oe and the density p(x) is twice contin-
uously differentiable such that G’(x) is well defined and satisfies the linear growth
condition: [G’(z)[ _<c(l+ Ix[). Then,

’W -nlim(Xt, Y’C’zx, r’c(yp’c’/x))t > o (xt, Y’,2’)t > o.

We start with an auxiliary result. Define an non-decreasing right continuous
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function LtA -A[t/A], where It] is the integer part of t, and right continuous with
left-sided limits random process

LtA/A
MtA E G(k)" (2.6)P k--1

Introduce the process tp’c’a (for brevity write s- A instead of (s- A) V 0)"

,c, A f A[Xs a rPs ’-cA(p’c’a)]dLAs + MtA"
0

Lemma 2.1:

(2.7)

4r -nli_,m(Xt, Pt ’c’ h, rPt ’c(’P’c’a))t >_ o (Xt, YPt ’c, 2Pt ’C)t >_ o"

Proof: Since .,C(y) is a continuous funcitonal in the local supremum topology
and r’C(Yp’c) X’c, it is clear that the statement of the lemma follows from

%{7 _nlLm(Xt ,c, A)) >_ 0 (Xt, YPt ’C)t >_ o" (2.8)

Therefore, we will only verify (2.8) by applying Theorem 8.3.3 from [6]. Note that
EG(I) 0 and EG2(I) < . Then Mt forms a square integrable martingale (with
respect to an appropriate filtration). Recall also that

dX = aXtdt + bdV
and

dy,c A[Xt rp c(rp, C)]dt + l_dW

Hence, only the following two conditions from the above mentioned theorem have to
be shown. or every T > O,

e-lim su A[Xs
_p,c (p,c,a)]dL

_
A[Xs- sao < a "- a .(.. . a)] 0

o
L/a

o

A tlim sup EG2()--0. (2.9)
AO tT ]p k=l

Since EG2() ]p, the second condition in (2.9) follows from

lim sup ]L-t]-0.
A0 <T

To verify the first condition, let us use the estimate

l/’ )lag AiX-. )]d
t<] 0 0

{/ /I1 x_ x e + -’ (’’) ’c(’ ’) a
0 0

t<T t<T
0 o
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Al{il+i+i+i4}.
Since X is a continuous process, ilA--,0, P-a.s. as A--,0. Introduce a sequence of
piecewise constant processes xr- X[tm]/m m _> 1 ([x] is the integer part of x).
Then

i3 I < i Ad[LAs s]
t<T J --t(_T J

0 0

sup
t(T

_< 2sup Xt sup Lt- + sup IX,- XI[L + T]
t<T t<T

--*0, P-a.s., if for the limit lim limsup is taken.

Thu, i,i0 fo 0. To ,ia th same property for i and i, one has to
show first that

lim limsupP (sup ,c(p,c,5) >C)-0. (2.10)
C A0 < T

From (2.3), by using Theorem 2.5.3 [6], we obtain that for a fixed T > 0, there
exists a positive constant g, dependent on T, such that for any t T,

,c() 5 e sup u I.sup ]s
s<t s<t

Denote by X sups <t Xt , Yt sups <t y,c,A[, and M’* sups <t Ms "Then by (2.7), for any T, we arrive at te inequality

0
which, by Theorem 2.. in [6], implies that

Therefore, (2.10) holds true provided that

im limsup P ( sup M’*> C 0,

whose validity is due to Doob’s inequality (see e.g., Wehorem 1.9.1 in [6])"

T
T C2p

Thus, (2.10) and

lira limsup P( sup ],c,[ > C- 0 (2.11)
C A0 t T ]

are established.
"APWe are now in the position to show that z2 0 as A0. Due to (2.3) and (2.7)

for %very C > 0, there exists a positive constant 7, dependent on C, such that on the
et c {su < f,c,a C},
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Consequently, due to (2.10), the required conclusion, on the set tc, holds when
T
flM-M_/ldsO, as A--,O and the latter is due to the Cauchy-Schwartz in-

etuMity: E [M-M_ < (ELMS- M_ A ]2 . Therefore, by virtue of
(2.11), we obtain the desired roperty.

The proof for i20 iszimilar to that for i. Moreover, it suffices to check its
validity only on the set AC with an arbitrary C. In fact, letting ,c,m(y)_
t every m we on]/m(Y)’ for fixed have the above-mentioned set

t<T
0

and T

)1 +
0

where as the limit limmlimsupA0 is understood.
Prf of Threm 2.1: Due to Lemma 2.1 and Theorem 4.1 in [1] (ca. 1, 4),

the property
P-lim sup[Y’c’A- ,c,A]_ 0 for all T > 0 (2.12)
A0 < T’

yields the statement of the theorem. Below we verify (2.12). We show first that for
every T > 0,

lira limsupP(sup Ig’c’ >)-0. (2.1)
C 0 T

Taking into account the linear growth assumption for G’(x) and using (2.5) nd the
obtained above estimate sups <t] r,C(y) g sups < t] Ys ], for every t T, we get

sup Y’C’A] [sup ]M +cL(I+ ]Asup X
St [T ST

(2.14)+c sup ]Y’_
8t8

0

Hence, due to Theorem 2.5.3 in [6], (2.13) holds true, provided that

lira limsupP(sup IMI >)-0. (2.1g)
0 T

(2.15) is due to the weak convergence -lim0(M) > 0- (@Wt)t > 0, which, in
turn, is due to the Donsker theorem (see e.g., [6]). oP

or further convenience, denote

and set
6t y,c, ZX ,c,/X and z zrtP’c(yp’c’/x rtP’c(p’c’5

ttA(t) ]p (k)’ tk-1 < t

_
tr

Lta/
Ut ]P k l

tk- l"
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x G’ OkA[Xtk_ 1 tk- 1
(Y k (k)" (2.16)

By the mean value theorem,

/ .p,c (yp, c,A A Ay,c,a uZX(s)A[Xs- A -"s- a )]dLs + Mta + Ut
0

This presentation and (2.7) imply that

5,- U + (uzX(s) 1)A[Xs- x- "s-/x

0 0

Denote by 57 sups <t 151, z7 sup <t z, I, and Ut’* sup <t lUll. Notie-

* </5 one can showing also that z

5 UtA’*+ sup
t<t

..p,c (yp, c, zX)]dL(uA(s) 1)A[Xs- a -"s- A
0

/ / IAI:_dL.
0

Therefore, Theorem 2.5.3 of [6] makes us conclude that the statement of the theorem
holds true provided that

P-lim [UTA’*[ --0
AO

P lim sup
A0 < T

P’cA(YP’C’ A(uZX(s) 1)A[Xs- zX rrs- )]dLy
0

(2.17)

For C > 0, introduce the set %c { A [supt < T lXtl + suPt < T
I’,(Yp,=,")l] _< c}. A method of the proof for Theoren 1 in [4] is also
applicable here for checking that, for every C > 0 (I%c is the indicator function of
the set

P-limx__+0 ([U’ * I%c)-0and

.p, c [Vp, c, A nP lim sup (uh(s) 1)A[Xs- X -"s- ht )]dLs O.
A-0 < T

0

Thus, limc_,limsuPh_,oP(ft\%C)- 0 yields (2.17).

2.2 Asymptotic optimality

As mentioned, Pt0 E(Xt.- .Pt. ’c filtering error.
p,c p,c, zX ,, )2 is a lower bound for asymptotic

So, 7r (Y is an asymptotic bptimal filtering estimate, if

lim(X rr,c(yp, c,h))2zX-+o\ Pt" (2.18)

Theorem 2.2: Let the assumptions of Theorem 2.1 be met and EG4({1)<
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Then (2.18) holds.
Proof: For any fixed t > 0, by Theorem 2.1 we have, as A-+0,

and, therefore, only the uniform integrability for (Xt--rPt’c(yp’c’A))2 should be

verified. We use the sufficient condition supA iE(X 7 c(ypc ))4.... < . Since

X is a Gaussian variable, only supA < E(’c(yp’c’A)4< has to be verified. The
use of inequality ,c(yp, c,A) us t-[ y,c,A] reduces our verification to

sup Esup Y’C’14 <
<1

only. Moreover by virtue of (2.14), for some fixed T > t, only the validity of

sup E sup ]M 4 < , (2.19)
<1 s<t

needs to be proved. One can use now the fact that the random process M is a

martingale and apply the Burkho]der-Gundy inequality (see e.g., Ch. i, 9 of [6]):

EsuPs TMI 4 C4E[M, MA], where C4 is constant, independent of , and

in our case, [MA, MA]T- PL/AG2[c Hence,k 1 k)"
3p

E[M,M] EG4((1) + 2 (EG((1))p k=l k=l i=1

< 4 ..EG (1) + 2 < const.
$p 3p

3. Prelimit Analysis

Hereafter, we study prelimit properties of the filter proposed in the preceding sections
and compare it to the one obtained in [2] and [4]. We show that centering of the ob-
servations by the filtering estimate is advantageous in a pre-asymptotic situation.

Centered limiter: For the sake of simplicity, we analyze the centered filter with
the Kalman gain in which Ptp’c is replaced by its limit pp, c: limt__,_ ptP, C, that is
the following filter will be investigated (recall that the process Ytp’c’is defined in

(2.5)):
d’P’ C’ a c’ Adt + ]pAPp’ cdYpt c’ A. (3.1)

tP; and "t k tkDenote by U C A E

_
c, h 2 c, A E X Xp’ c’ A Assuming

that G(. is three times continuously differentiable and all its derivatives are bound-
ed and the fourth moment of filtering estimate is finite, for small A it can be shown
that

Uc’A (1 + aA -]pA2pp, c/k)2UIc,A + b2tk/k +(pp’cA)2pA+1

+ {(pp’cA)2A2E[G’(I) ]p]2UtPC’ A
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+ 2(pp, c 21 2 Up, c,&A) .A EG(I)G"(I) tk

21 pp, CA4EG,,,(I)E(Xt
k Xtk^p, c, A)4}A2 + o(A2).

Non-centered limiter: In this case, with y,A_ ki(tk_ 1 < t < tk)YY’& O,

(compare with (2.5))we rrive at

d,& a,&d + AVp’Cp (dY
and Bp’ADenote U; E(X X) E( X

k tk Xtk tk ). Under

assumptions made for the case of the centered filter we get

(3.2)

and

(3.3)

the

UtP/A -(1 + aA- 3pA2Pp’cA)2UPtzX + b2 A +(Pp, CA)2pA
+1 tk

+ {(pp’cA)2A2E[G’(I)- ]p]2EXk
+2(pp, c 21 2 )EXkA) A EG(1)G’’(

21 pp, CA4EG,,, &X3(IEDtk tk)A2 + o(A2). (3.4)

Compn of the liters: Put Ui6-UrlC’A. (3.2) and (3.4)imply that

(l+aA 3pA2pp’c 2+1 A)

+{(Pp’CA)2A2E[G’(I)- ,p]2(EXk-UC’A)
+ 2(Pp’CA)2A2EG(I)G"(I)(EXk- Ur;c’A)

= (1 + aA ]pA2pp’cA)25 + pAA2 + o(A2). (3.5)

It can be shown 5a is asymptotically positive in the sense of lima+0pa > 0 We
k

have, with D and D’c being limits for D’A- Xt-’ and D’c’A-Xt,c, a respectively, that

limp& (pp’c)2A4E[G’(I)- :jp]2(EX2 Ptp,c)A--,0

+ (PP’C)2A4EG({I)G"(I)(EX2 POt)
1/2pp, cA4EG,,,(I)(EDrX3t E[D,C]4)

K + K2 Ka. (3.6)



Filtering with a Limiter (Improved Performance) 299

The limit processes (Xt, D)and D’c are Gaussian and therefore,

E[D,C]4- 3E[D’C]2- 3PPt ,c

EDPtX3tk 3EDXtEXt 3PPt’ cEX2t
Mo eowr, in ea(l)a"(l)-fPP,,dx and EG’"(I)-fP’P’(x)dx, we get
K2-K3. Hence,

lim pA (PP’C)2A4E[G’(I) 3p]2(EX p,c) > O. (3.7)
0

Examples: We compare here three filters: the Kalman filter and nonlinear filters
with and without centering. A Gaussian mixture distribution

was chosen for a" Typical filtering estimates are plotted in Figures 1-2. For relative-
ly small sampling intervals, both nonlinear filters give the same filtering accuracy and
it is better, than the one, obtained by the Kalman filter. See Figure 1.

10

-lO

10

-lO

lO

-10

Kalman filter

0 0.5 1.5 2 2.5 3 3.5 4 4.5 5
Non linear filter without centering

’i

0 0.5 1.5 2 2.5 3 3.5 4 4.5 5
Non linear filter with centering

l’’

" .’.

"’, ,, ,,, S.t" ,... /
0 0.5 1.5 2 2.5 3 3.5 4 4.5 5

time in seconds

Figure 1: Small sampling interval

An essential increasing of the sampling interval (see Figure 2) causes severe perform-
ance degradation of the nonlinear filter without centering, while the filter with center-
ing still gives a satisfactory estimate.
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Non linear filter without centering
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Figure 2: Sampling interval is increased
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