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1. Introduction

In this paper we are concerned with Volterra and Urysohn equations in Banach
spaces. The paper will be divided into two main sections. In Section 2 general
existence principles are established for these equations. The technique relies on a

nonlinear alternative of Leray-Schauder type [2]. Our results improve and extend
results in [15]; in addition some of the results are new even in the finite dimensional
setting. In Section 3 some applications are given. First an existence principle of
Brezis-Browder type [1] is established for Hammerstein equations in Banach spaces.
Also in Section 3 we give a notion of "solution tube" for singular second order
differential equations in Hilbert spaces.

Throughout E will be a Banach space with norm [[. II. We denote by
C([0, T],E) the space of continuous functions u:[0, T]-.E. Let u:[0, T]---,E be a

measurable function. By f Tou(s)ds we mean the Bochner integral of u, assuming it
exists (see [16] for properties of the Bochner integral). The semi inner products ([7,
9]) on E are defined by

(x,y)+ II xlllim IIx+tyll II ll
tO +

Let fE be the bounded subsets of E. Let X E ftE. The diameter of X is defined by

diarn (X) sup{ II
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The Kuratowskii measure of noncompactness is the map a: E--,[0, cx] defined by

c(X)- inf{e > 0:X C_ [.J= 1Xi and diam(Xi) <_ }.

Theorem 1.1: Let T > 0 and E be a Banach space.
(i) Let A C_ C([0, T],E) be bounded. Then

(ii)

sup a(A(t)) < a(A[0, T]) _< 2a(A)
E [0, T]

where A(t) {(t): E A} and A[0, T] [.J E [0, T]{(t): E A}.
Let A C_ C([0, T],E) be bounded and equicontinuous. Then

a(A) sup a(A(t)) a(A[0, T]).
[0, T]

Proofi (i) For each t [0, T] we have A(t)C_ A[0, T] and so a(A(t))<_
a(A[O,T]) which gives

sup a(A(t)) < a(A[0,T]).
[0, T]

The other inequality follows from the ideas in [7, page 24].
(ii) The result follows from [7, 9]. D
Let E1 and E2 be two Banach spaces and let F: Y C E1---E2 be continuous and

map bounded sets into bounded sets. We call such an F a a-Lipschitzian map if
there is a constant k >_ 0 with a(F(X))<_ ka(X) for all bounded sets X C_ Y. We
also say F is a Darbo map if F is a-Lipschitzian with k < 1. Next we state a fixed
point result due to Sadovskii [2].

Theorem 1:2: Let K be a closed, convex subset of a Banach space B and let
N: K---,K be a bounded Darbo map. Then N has a fixed point in K.

We also have the following nonlinear alternative of Leray-Schauder type for
Darbo maps [2].

Theorem 1.3: Let K be a closed, convex subset of a Banach space B. Assume U
is a relatively open subset of K with 0 U, N(U) bounded and N:U--,K a Darbo
map. Then either

(A1) N has a fixed point in ]; or

(A2) there is anjOU and (O, 1) with u- Nu.

2. Existence Principles

In this section we establish existence principle for the Volterra integral equation

y(t) h(t) + / K(t,s,y(s))ds, t [0, T] (2.1)
0

and the Urysohn integral equation
T

y(t) h(t) + / K(t, s, y(s))ds, t [0, T]. (2.2)
0
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We will look for solutions in C([0, T],E); here E is a Banach space with norm I1" II.
The ideas involved in establishing existence principles for both (2.1) and (2.2) are
essentially the same; as a result we will examine (2.1) in detail and just state the
results for (2.2).

Theorem 2.1: Let K: [0, T] [0, t] EE. Suppose

there exists a constant 3/> 0 with a(K([0, T] x [0, t] x f)) < 7a(a)

for each bounded set f C_ E
(2.3)

27T < 1 (2.4)

(i)

(ii)

(iii)

(iv)

K: [0, T] [0, t] E--.E is L1-Carathodory uniformly in t; by this we mean

for each t G [0, T], the map uKt(s u) is continuous for almost all s G [0, t]

(note for each t e [0, T], Kt:[O,t]E-E is defined by Kt(s,u = K(t,s,u))

for each t G [0, T], the map s-,Kt(s u) is measurable for all u G E
(2.)

fo ac t [0, ] a.e fo ach > 0 it , e 1([0, r],
such that II u II <- r implies II Kt(s,u) II <- ht, r(s) for almost all s [O,t]

for each r > 0 there exists hr LI([o, T],I) and c > 0

.c tat Io < z i. [o. r]. f h.()s _< ( h()s)

for any r > 0 and any z,t E [0, T] we have that

1

f sup II u <r I[ K(z, s, u)- It’(t, s, u)II ds--O as z-+t
o

where t1 min{t, z}

(2.6)

and

h E C([0, T], E)

hold. In addition assume that there is a constant Mo, independent of/, with

II y II 0 sup [[ y(t)11 # M0
[0, T]

Io , omio e C([0,T],E) o

( /t )y(t) , h(t) + K(t, s, y(s))ds G [O, T]
o

for each , 6 [0, 1]. Then (2.1) has a solution in C([0, T], E).
Remark: Theorem 2.1 improves a result in [15, Section 3].

(2.7)
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Proof: Define the operator N" C([0, T], E)---,C([0, T], E) by

N y(t) h(t) + J K(t, s, y(s))ds.
0

Now (2.8).x is equivalent to the fixed point problem y- ANy. We would like to
apply Theorem 1.3. First we show N:C([0, T],E)C([0, T],E) is continuous. To
see this, let unu in C([O, T],E). Then there exists r > 0 with II un(s)Jl <-r and

II u(s)II <- r for all s E [0, T]. Also for each t E [0, T] there exists At, r LI([0, T], 1)
with

[I g(t,s, v)I] <- ht, r(s) for a.e. s e [0, T] and all II v II -< r.

Now from (2.5) we have for each t e [0, T] that

K(t, s, un(s))K(t s, u(s)) for almost all s e [0, T].

This together with the Lebesgue dominated convergence theorem yields N un(t)
g u(t) pointwise on [0, T]. Now (2.6) guarantees that the convergence is uniform

(i.e., the argument below will show that for any e > 0 there exists 5 > 0 such that for
t,t’ e [0, T] with It- t’ < 5 we have II gun(t’)- gun(t II < for all n and

I1 g u(t’) g u(t) II < )" Hence g u G C([0, T], E) and g is continuous.
Next, let fl be a bounded subset of C([O, T], E). We first claim that N gt is

bounded and equicontinuous on [0, T]. Then there exists r > 0 with I] u(s)II <- r for
all s[0, T] and ufl. Also there exists At, r and hr as in (2.5). Now N is
bounded since for t [0, T] and u E fl we have

IINu(t) ll <sup IIh(t)]] + / sup IIK(t,s,v) llds
--[0, T]

0 II ,, II <

_< sup ]1 h(t) II + hr(w)dw
[0, T]

0

Also, for t, t’ [0, T] with t’ > t and u fl, we have

II N u(t’) N u(t) ]] <_ II h(t’) h(t) ll + / sup
J

t
0

+ / sup II ds
J

< II + / sup
J
o I111 <_r

+ hr(s)ds

[I K(t’, s, v) K(t, s, v)II ds

II K(t’, s, v)- K(t, s, v)II ds
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Consequently N is equicontinuous on [0, T]. We now show

a(N)<_27Ta().
For t G [0, T], we have

a(N a(t)) a h(t) + K(t, s, u(s))ds: u e a
o

<_ a(t-d-5{K(t,s,u(s))’y E ,s [0, t]})

(2.9)

ta({K(t,s,u(s))’y ,s [0, t]})

<_ Ta(K([O, T] [0, t] [0, t]))

_< T (a[0, t])

where [0, t] [.is E [o,t]{(s)’ }. Theorem 1.1 (i) implies

a(N (t)) <_ 2"T (2.10)

In addition since N is bounded and equicontinuous on [0, T] we have from Theorem
1.1 (ii) that

a(N) sup a(N(t))
E [0, T]

and this together with (2.10) implies that (2.9) is true. Let

u {u e c([0, T], E): II II 0 < M0}, B K C([0, T], E).

Now Theorem 1.3 (notice (A2) cannot occur) implies that (2.1) has a solution in U. [:]

A special case of (2.1) is

y(t) h(t) + / k(t,s)f(s,y(s))ds, t [0, T] (2.11)
0

where k takes values in R.
Theorem 2.2: Let k" [0, T] x [0, t]R and K(t, s, u) k(t, s)f(s, u). Assume

(2.3), (2.4) and (2.7) hold. Also suppose

f: [0, T] x E---E is a Lq-Carathodory function (here q > 1 is a

constant); by this we mean

(i) the map t-f(t,z) is measurable for all z E

(ii) the map z-f(t,z) is continuous for almost all tG [0, T]

(iii) for each r > 0 there exists #r G Lq([0, T], 1) such that

[I z ]l <- r implies II f(t,z) l[ <- #r(t) fr almost all G [O,T]

(2.12)
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1 1 and forkt(s G LP([0, t], P) for each G [0, t]; here + -4

each E [0, T], kt: [0, t]--P is defined by kt(s k(t, s)
(2.13)

and
for any tl,t2 G [0, T] we have that

3

fO ]tl (s) -kt2(s) Pds--O as tl---t2

where t3 min{tl, t2}

(2.14)

are satisfied. In addition, assume there is a constant Mo, independent of , with

]] Y ]] o = Mo for any solution y C([0, T], E) to

y(t) A h(t) + k(t, s)f(s, y(s))ds t [0, T]
0

for each [0,1]. Then (2.11) has a solution in C([O,T],E).
Remark: One could also discuss the case q 1 in Theorem 2.2.
Proof: The results follows from Theorem 2.1 once we show (2.5) and (2.6) are

true. Notice first for any r > 0 and any u E with Ilull

_
r there exists

#r e Lq([O,T],l) with II f(s,u)II <-#r(s) for almost all s [0, T]. Then for each
te[0, T]and Ilull -rwehave

II K(t,s,u) II - k(t,s) #r(s) ht, r(s) for almost all s [0, T].

By Hhlder’s inequality for x, z [0, T] with x < z, we have

and so

where

1 1

hz, r(s)ds
_

k(sllPds q(s)ds
x 0 x

1

< max k(s)[Pds q(s)ds- e [0,T]
0 x

f h,(le h()e

a _lq > 0 and hr [C]r]q with c max
e [0,T]

1

I/(s) Pds
0

Consequently (2.5) is true. Finally (2.6) follows since if t > z, we have

z

r0

sup

z

II K(z, , ) K(t, s, u) II ds / k(z, s) k(t, s) sup II f(a, u)II d



Volterra and Urysohn Integral Equations in Banach Spaces 455

1

(/Z )0<_ kz(s)- kt(s) Pds #qr(s)ds --,0 as z--,t.

o o

Essentially the same reasoning as in Theorem 2.1 establishes the following exist-
ence principle for the Urysohn integral equation (2.2).

Theorem 2.3: Let It’: [0, T] x [0, T] x E-E. Suppose

there exists a constant 3/>_ 0 with ce(K([0, T] x [0, T] x f2)) _< Tot(f2)

for each bounded set ft C_ E
(2.16)

27T <1

K: [0, T] x [0, T] x EE is L1-Carathodory in t;

by this we mean for each t E [0, T];

(i) the map uHKt(s u) is continuous for almost all s [0, T]

(ii) the map sHKt(s u) is measurable for all u E

(iii) for each r > 0 there exists ht, r e LI([0, T], P) such that

II , II _< ," implies II Kt(, u)II _< ht, r(s) for almost all s e [0, T]

(2.17)

(2.18)

T
It" is integrably bounded in t i.e. suPt E [0, T] o

f ht, r(s)ds < c
where ht, r(S is as in (2.i8) (iii)

(2.19)

T

lim / sup
z--,t II ’ II < r

0

1[ K(z, , )- ’(t, , ,)l[ d 0 (2.20)

and

h e C([0, T], E) (2.21)

hold. In addition assume there is a constant Mo,
II y II o # Mo for any solution y C([0, T], E) to

independent of with

y(t) ; h(t) + K(t, s, y(s))ds E [O, T]
o

for each A e [0,1]. Then (2.2) has a solution in C([O,T],E).
Theorem 2.3 immediately yields the following result for the Hammerstein integral

equation
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T

y(t) h(t) + J k(t, s)f(s, y(s))ds, t e [0, T].
0

Theorem 2.4: Let k[0, T] x [0, T]-R and K(t, s, u) k(t, s)f(s, u).
(2.16), (2.17) and (2.21) hold. Also suppose

Assume

and

f" [0, T] x E---,E is a Lq-Carathodory function (here q > 1 is a constant)

kt(s e LP([0, T], l) for each e [0, T]; here +- 1

(2.24)

the map t--,k is continuous from [0, T] to LP([0, T], l) (2.26)

are satisfied. In addition assume there is a constant Mo, independent of ,, with

II y II o Mo for any solution y E C([0, T], E) to

(/)v(t) + t [0,T]
0

for each [0,1]. Then (2.23) has a solution in C([O,T],E).

3. Applications

In this section we use the existence principles of Section 2 to establish existence
theory for various integral equations. We begin by discussing the Hammerstein equa-
tion

T

y(t) h(t) + / k(t,s)f(s,y(s))ds, t [0, T]. (3.1)
0

Remark: An existence theory of "superlinear" type could easily be developed for
(3.1) (or indeed the Urysohn integral equation (2.2)) using the ideas in [13]; however
since the reasoning involved is essentially the same, we as a result will not include
results of this type here.

We first establish a result of Brezis-Browder type [1] for (3.1).
Theorem 3.1: Let k: [0, T] x [0, T]tt and g(t, s, u) k(t, s)f(s, u) and assume

(2.16), (2.17), (2.21), (2.24), (2.25) and (2.26) hold. In addition suppose

there exists R > 0 and a constant ao > 0 with

(f(t,y),y) + >_ ao ]l y ll II f(t,Y) ll for Il Y ll >- n and a.e. t G [O,T]
(3.2)

there exists constants r > 0,7 with 7 >_ q- 1 and a function G LP([0, T],R)
with Il Y ll >- rl ll f(t,Y) ll T W (t) fr ]I Y ll >- R and a.e. t G [O,T]

(3.3)



Volterra and Urysohn Integral Equations in Banach Spaces 457

and there exists a constant Ao >_ 0 with for any u G C([0, T],E),
T
f {f(t, u(t)), f Tok(t s)f(s, u(s))ds) +dt < Ao
o

(3.4)

are satisfied. Then (3.1) has a solution in C([O,T],E).
Proof: Let y be a solution of (2.27)a. We have (recall (x,y + z)+ < (x,y)+ +

(x, z)+ where x, y, z e B, a Banach space),

T T

/ (f(t,y(t)),y(t))+dt <_ ] (f(t,y(t)),h(t))+dt
o o

and so

Let

T T

+ / if(t,y(t)), J k(t,s)f(s,y(s))ds) + dt

o o
T

(f(t,y(t)),y(t)) + dt <_ / ]] h(t) ]] [[ f(t,y(t)) [I dt + [Aol.
I o

I {t E [0, T]: II y(t)II >- R} and J {t E [0, T]" I] y(t)II < R}.

Notice

T

/ (f(t, y(t)), y(t)) +dt >_ ao / ]1 y(t)II ]l f(t, y(t))]] dt

o i

>_ ao / ,] f(t, y(t)) ,I 7+ ldt +ao/(t) I] f(t, y(t)) ]] dt.

I I
Put this into (3.5) to obtain

ao / ]] f(t, y(t)) II 7 + ldt

<- ao I(t)] II f(t,y(t)) I[ at + II y(t) I[ II f(t,y(t)) II dt
i J

T

+ j II hft)II II f(t, y(t))II dt + Aol.
o

Since f is Lq-Carathodory there exists #R Lq([O,T], R) such that
implies II f(t, u)II <- #I(t) for a.e. t [0, T]. Thus

ll y(t) ]l I] f(t, y(t)) II dt + / II h(t) II II f(t, y(t)) II dt + Aol
J J

T T

<_ R / #t(t)dt + j II h(t) II #R(t)dt+ Ao A1
o o
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and so

aO / II f(t,y(t)) II / + ldt
I

_< ao / (t) II S(t, (t))II dt + / II h(t)II II S(t, (t))II dt + A1,

I I

Apply HSlder’s inequality to obtain

There exists a constant A2 with

11 f(t, y(t)) II " + ldt <- A2"
I

Returning to (2.27),x we have for E [0, T] that

sup II h(t) II + /II k(t,s)f(s, y(s)) II ds + J II k(t, s)f(s, y(s)) II ds
[0,T]

J I
1 1

sup II h(t) II + sup k(t, s) ds (s)ds
[o,T] [o,T]

0 o

and so

+T p(,y+l) sup
E [0, T]

0

1

](t, s) lPds A’ + 1

sup II y(t)II < M0
[0,T]

for any solution y to (2.27),x. The result follows from Theorem 2.4. M
Essentially the same reasoning as in Theorem 3.1 establishes the following exist-

ence result for the Volterra equation

y(t) h(t) + / k(t,s)f(s,y(s))ds, t E [0, T].
0

(3.6)
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Theorem 3.2: Let k" [0, T] x [0, t]--R and It’(t, s, u) k(t, s)f(s, u) and assume

(2.3), (2.4), (2.7), (2.12), (2.13), (2.14), (3.2) and (3.3) hold. In addition, suppose

there exists a constant Ao 0 with for any u @ C([0, T],E),
T

f (f(t, u(t)), f tok(t s)f(s, u(s))ds) + dt <_ Ao
o

(3.6)

is satisfied. Then (3.6) has a solution in C([O,T],E).
lmark: Existence theory of "growth type" could also easily be developed for

(3.6) (or indeed (2.1)) using the ideas in [12].
For our next application we will examine the abstract Dirichlet boundary value

problem

y"+f(t,y) 0 a.e. on [0,1]
(3.8)

y(0) y(1) 0;

here y: [0,1]---H where H is a Hilbert space with inner product (.,.). We give a

notion of "solution tube" for such problems in the Hilbert space setting. Our theory
was motivated by ideas in [4, 5]. We will assume that f:[0,1] x H--,H is a Loc-
Carathodory function. By this we mean

(i) the map tHZ(t,z is measurable for all z e E;
(ii) the map zHZ(t,z) is continuous for almost all t e [0, 1];
(iii) for any r > 0 there exists hr G Loc(O, 1) with II f(t,z)II _< h (t) for almost

1
all tel0,1] and all Ilzll <r; also fx(1-x)hr(x)dx<cx with lim

1 0 t-*0 +
t2(1 t)hr(t 0 if f (1 x)hr(x)dx oe and lim t(1 t)2hr(t) 0

1 0 tl

if f xhr(x)dx c.
0

Remark: It is worth remarking that other boundary data (homogeneous and non-

homogeneous) could also be considered here. However in our opinion (3.8) is the
"most difficult" to examine (i.e., the "most singular") and as a result we will concen-

trate our study on (3.8).
By a solution to (3.8) we mean a function y E AC([O, 1],H) VCI([o, 1],H) with

y’E ACtoc((O, 1),H which satisfies the differential equation in (3.8) almost every-
where, and the stated boundary data. One can check (see [10, 14]) that solving (3.8)
is equivalent to finding a function y C([0, 1], H) to

where

1

y(t) f k(t, s)f(s, y(s))ds,
o

t e [0,1] (3.9)

(1 t)s, O<_s<_t
k(t, s)

(1 s)t, <_ s <_ 1.

Remark: Notice hr in (iii) above is not necessarily in LI[0,1].
Theorem 3.3: Let K(t,s,u)- k(t,s)f(s,u) and suppose the following conditions

are satisfied:
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there exists a constant 0 <_ 27 < 1 with c(K([0, 1] [0, 1] Q)) _<

for each bounded set 9t C_ H (3.10)

f: [0, 1] H--,H is a Loc-Carathkodory function

for any to E (0, 1), tI E (0, 1) with to < tl, there exists

v G AC([0, 1],H) 3 CI((0, 1),H) with v’ ACtoc((O, 1), H),
and M e AC([O, 1],[O, cxz))nvl((o, 1),R) with M’ G ACtoc((O, 1),R

(v and M are independent of to, tl) with

(y- v(t), f(t, y)- v"(t)) >_ M"(t)M(t)

for a.e. t G [tO,tl] and all y G H with ][ y- v(t) l[ M(t) and M(t) O

(3.12)

for any to (0,1), tI (0, 1) with to < tl, there exists v and

M as in (3.12) with

(u (t), l(t, v(t)) ,"(t)) > m"(t)II u- (t) II
(3.13)

for a.e. t G [to,tl] and all y e H with I[ Y- v(t) ll > M(t) and M(t) O

and

II v(0)II
_
M(0) and II v(1)II M(1). (3.14)

Then (3.8) has a solution y with II y(t)- v(t) II
_
M(t) for all t [0, 1].

Proof: Consider the problem

where

i.e.

1

y(t)- j k(t,s)f(s,p(s,y(s)))ds, t e [0,1]
0

p(t, y) min 1,
Il Y v(t) ll

y + 1-min 1, I[ Y v(t) [I

u _(t) v(t)
p(t, y)

M(t) II - (t)II +
if I] Y- v(t) II - M(t)
if II y- v(t) II > M(t)

is the radial retraction of H onto {y: II y- v(t)II

_
M(t)}. We now show (3.15) has

solution in C([0,1],H) by applying Theorem 1.2. Define the operator N:
C([0, 1], H)C([0, 1], H) by

1

y(t) / k(t, s)f(s, p(s, y(s)))ds.N
0

Let Un--,u in C([O, 1], H). Then
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II N .(t) N (t)II < (1 t) / s II f(s, p(s, Un(S)) f(s, p(s, u(s)))II ds

0
1

+ t / (1 s)II f(s, p(s, un(s)) f(s, p(s, u(s)))II d

_< J (1 s)s II f(s, p(s, un(s)) f(s, p(s, u(s))) II d
0

1

+ ] (1 s)s II f(s, p(s, Un(S)) f(s, p(s, u(s)))II d

1

/ (1 s)s II f(s, p(s, Un(S)) f(s, p(s, u(s)))II d.
0

So N: C([0, 1], H)--,C([0, 1], H) is continuous. Now let f2 C_ C([0, 1], H) be bounded
i.e., there exists r > 0 with I[ u(s)[[ < r for all s E [0, 1] and u E f2. There exists hr

as in the definition of Loc-Carath6odory with

[[f(s,u)[[ <_hr(s)fora.e. s [0,1] and all [lull -<r"

Now N [2 is bounded since for t [0, 1] and u f2 we have

1 1

[[ N u(t) II <- (1- t)J shr(s)ds + t / (1 s)hr(s)ds <_ / s(1- s)hr(s)ds.
0 0

Notice also for u G f2 and t E [0,1] that

so we have

(Nu)’(t) /sf(s,u(s))ds + f (1- s)f(s,u(s))ds
0

1

II (N )’(t)tl _< / hr()d + / (1- s)hr(s)ds ’r(t).
0

(3.16)

It is easy to check since f s(1- s)hr(s)ds < oe that Tr LI[0,1]. Consequently N f2
0

is equicontinuous on [0, 1]. Next we show

For t [0, 1], we have
o(N) <_ 27o().

/{0 1 }/K(t, , p(, ())). e a

(3.17)
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< .({K(. . (.())): n. e [0. ]})

_< a(K([0, 1] x [0, 1] x -5(gt[0, 1] t2 v[0, 1])))

since if u E and s E [0, 1] we have

p(s, u(s)) Asu(s + (1 As)v(s e -5([0, 1] U v[0, 1])

where

Thus

M(s) }18 min 1, II ()- v(s)II

c(N (t))

_
7a(--5([0,1] U v[0, 1])) 7c([0,1] U v[0,1])

and so
7c([0, 1])

_
27a()

a(N gt) sup a(N (t))

_
27a().

E [0,1]
Thus (3.17) is true. Theorem 1.2 implies that (3.15) has a solution y C([0,1], H).
Next we claim [[ y(t)-v(t)[[

_
M(t) for t [0,1]. If the claim is true then y is a

solution of (3.9) and consequently y is a solution of (3.8).
It remains to prove the claim. If the claim is not true then

]] y(t)- v(t) ]] M(t)

has its positive (absolute) maximum at, say, t2 (0, 1). Choose o > 0, < 1, to <
t2<t1with IlY(t)-v(t)ll -i(t)>OfrtE(to, tl) and

IlY(tl)-V(tl)ll -M(tl)< I]Y(t2)-v(t2)]] -M(t2); (3.18)

this is possible since II y(1) v(1) [I M(1) _< 0. Also we have

(11 y- v II M)’(t2) O. (3.19)

In addition for a.e. t G (to, t1) we have

11 y(t)- v(t) II

II y(t)- v(t) II
[((t)- (t), V(t)- v’(t))]

Ily(t)-v(t)ll 3

((t)- v(t), V’(t)-
II y(t)- v(t) II

(y(t) v(t), f(t, p(t, y(t))) v"(t))
II (t)- (t)II

>_M"(t).
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To see the last inequality there are two cases to consider, namely M(t) 0 and
M(t) O. IfM(t)#Owehave
(y(t) v(t), f(t, p(t, y(t))) v"(t))

(p(t, y(t)) v(t), f(t, p(t, y(t))) v"(t)) >_ M"(t)M(t)
by (3.12), whereas if M(t)- 0 we have

(y(t)- v(t), f(t, p(t, y(t)))- v"(t)) (y(t) v(t), f(t, v(t)) v"(t)) >_ M"(t)

by (3.13). Consequently,

(l[ Y- v [[ M)"(t) >_ 0 for a.e. t E (to,tl). (3.20)

Now (3.19)and (3.20)imply

(11 y- v II M)’(t) >_ 0 for t (t2, tl)

and consequently

II y(tl)- v(tl)II M(tl) _> II y(t2)- v(t2)II M(t2).

This contradicts (3.18). Thus our claim is true and we are finished.
Remark: Let H tt and suppose a,/ AC([0, 1],R) t3 el([0, 1], R) with a’,

ACloc((O, 1),l), are respectively lower and upper solutions of (3.8) (i.e.,
f(t,a)>O a.e. on [0,1], a(0)<0, a(1)<0 and "+f(t,3)<O a.e. on [0,1],
fl(0) > 0, fl(1) _> 0) with a(t) <_ fl(t) for t [0, 1]. Its easy to check that

v and M
2 2

satisfy (3.12), (3.13) and (3.14)in this case. Of course, (3.10)is satisfied with 7- 0.
Consequently a special case of Theorem 3.3 is the result in [3, 10].
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