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This paper investigates the absolute stability on Os of the zero solution of
Lurie-Postnikov systems with impulses and structural perturbation. A
number of absolutely stable on s theorems of the Lyapunov type for
Lurie-Postnikov systems are proved, extending and generalizing previous
work on the subject. These results are applied to some fourth-order Lurie-
Postnikov type systems decomposed into two systems.

Key words: Absolute Stability on s, Matrix-Valued Lyapunov Func-
tion.

AMS subject classifications: 34D10, 34D20.

1. Introduction

A system of the Lurie-Postnikov type can be considered complex for the great
number of its nonlinearities and/or for the nonstationarity and rich structure of its
form.

A system can be considered large scale due to several intrinsic features, among
which are included:

(a) high dimensionality,
(b) manifold of the system structure (networks, trees, hierarchical strueture,

etc.),
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(c) multiple connections of the system elements (sub-systems, interconnection
in one level and between different levels of hierarchy),

(d) manifold of the elements nature (machines, automata, robots, people-opera-
tors),

(e) recurrence of change of the system composition and state (variability of
the system’s structure, connections and composition),

(f) multiple criteria of the system (difference between local criteria for sub-sys-
tems and global criteria for a system in the whole, i.e., their inconsisten-
cy).

A direct analysis of a dynamic property (such as stability, controllability, observa-
bility, optimality and robustness) of large-scale Lurie-Postnikov systems can be cum-

bersome, or even impossible. In the framework of stability analysis, this means that
the direct Lyapunov method, the most general and powerful for stability analysis, can-
not be effectively applied to large-scale Lurie-Postnikov systems, due to the lack of an

algorithm for the construction of a set Lyapunov function. This problem can be
somewhat diminished by the application of matrix-valued Lyapunov functions which
admit a broader class of auxiliary functions suitable for the investigation of stability
problems.

The aim of this paper is to apply some general results from [6-9] to the stability
analysis of large-scale Lurie-Postnikov impulsive systems under structural perturba-
tion. Sufficient conditions for absolute stability on , are established.

2. Large-Scale Impulsive Lurie-Postnikov System

We consider the large-scale impulsive system

(1)

c x(xr(x)) i- l,2,...,s, t-rk(x), k-1,2,...

where

o’i- lfig(O’ig E [0, Kig] C_ n +,

e [0, c_ n +,

Aig’ Jkig are constant matrices, x Rhi, n1 + n2 q-...-t- ns n, gig’ big’ are con-

stant vectors and Kig Kig are positive constants, all of the appropriate dimensions.

The matrices S}), SI)and the structural set s are &scribed in Appendix 1. The
independent subsystems corresponding to system (1) are obtained by replacing x in
(1) with xi, where xi= (O,...,O, xri,O,...,O)r e Rni:
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dx
dt Aiixi + qiifii(ii)’ t 7 7-k(xi)

Ax Jx + b.9(*.), r(x’),

where

aii c xi, rii-d xi(vc(xi)), i- 1,2,...,s.

In order to simplify system (1), we introduce the designations

fi(xi) Aiix + qiifii(’Yii), dii cxi, t 5 vlc(xi), k- 1,2,...

+ S!)qii[fii(rii fii(ii)]’aie cxi’ t =/= rk(xi), k 1,2,...;

() g+ b,(’Y5), -(), , 2,...

+ bii[gii(i)- gii(i)], t rk(x), k 1, 2,

Then system (1) becomes

dx
dt fi(xi) + Fi(x’S)’ t rk(X), S E s 1,2,...,s k 1,2,...

Axi- gi(xi) + Gi(x), t-r(x), k- l,2,.., i- l,2,...,s.
(3)

3. Matrix-Valued Lyapunov Function

Together with system (1) and subsystems (2) we consider the matrix-valued function

U(x) -[uij(xi, xj)], uij uji i- j 1,2,...,s (4)

the elements of which are determined as

uij(xi, xj) xPijxj, i,j- l,2,...,s (5)

where x i xj R a Pii are symmetric, positive definite matrices, and Pij are

constant matrices for all i, j- 1,2,...,s.
It is known (see [1, 3]) that the functions (5) satisfy the estimates

(a) Am(Pii) II i II 2 _< () <_ AM(Pii)II [[ 2, (6)
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where Am(Pii are the minimal and AM(Pii are the maximal eigenvalues of the
1/2 Tmatrices Pi{, and AM (PijPij) is the norm of the matrices P{j.

Using the matrix-valued function (4) and the constant vector r/- (1, 1,..., 1)E
Rs+, we construct the function

v(, ) u() (7)

and consider its total derivative

where
DV(x, rl) ITDu(x)rl,

DU(x) [Duij(xi, xj)], i, j 1, 2,..., s

(8)

along the solutions of system (1).
Lemma 1- If the estimates of (6) are satisfied, then for the function (7) the two-

sided inequality

uTAu <_ V(x,) <_ uTBu Vx G Rn (9)

holds true, where

A [ij], B ij, i, j l, 2, ., s

-ii- m(Pii), ii- AM(Pii)

1/2 T
-ij -ji (ij ji AM (PijPij)

Proof: The proof of Lemma 1 follows from Lemma 1 in [7].
Corollary 1: /f inequality (9) is satisfied, then

and for

Am(A) II II 2 v(, ) AM(B II II 2

VxeRn
(10)

Am(A >0, AM(B)>0,

AI(B)V(x,o) <- I] u ]]2 _< Ar l(A)V(x,rl).
(11)

Lemma 2- If for system (1) the matrix-valued function (4) is constructed with
the elements (5), then for the derivatives of functions (5) along with solutions of (1)
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for t vk(x), k- 1,2,... the estimates

(a) (DxiUii)Tfi(xi) <_ fl!l)II xi II 2 Vxi E .Rhi, i- 1,2,...,s;

i=1 z=l j=2
j>

{(Dxiuij)T(fi(xi) + Fi(x,S)) + (Dxjuij)T(fi(xi) + Fj(x,S))}
S

i--1 i=1 j=2
j>i

V(xi, j) Ri xR , Vss,

are satisfied, where p}l)’ and p}2)(S),’ i-1,2,...,s are maximal eigenvalues of the
matrices

T iT *cii’T’PiiAii + AiiDii + Piiqiil,ii(cii) + (qiilcii( TPii;

=i+1

)T S(2). k* ci))]Pie}+ [(sli)Ai + ei ui i
T T T

j=2
j>

respectively, Pij(S), < j, i- 1,2,...,s, j- 2,...,s are the norms of the matrices

=1
8

l=j+l

j-1

+ i j j jt j j
=1
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8

i=i+1

+ 1/2{Pii (S!)Aij)+ (S!)Aij)Tpii + Pii(S!)qijkj(c’j)T)

T },+ (S.)qjiki(c}i)T)Tpjj + Pjj(qjjkjj(cjj)T) + (qjjkjj(cjj))Tpjj

respectively.
Here

kidki 0

= l,2,...,s, j = l,2,...,s,

for aij(S!})qij)Tpijxj > O, i,j- 1,2,...,s,

in other cases;

T

k;
kij for rriiqiiPiix > O, 1, 2,..., s,

T--kij for (riiqiiPiix < O, 1, 2,...,s.

The proof is carried out the same way as in Lemma 2 in [7].
Lemma 3: If all conditions of Lemma 2 are satisfied, then for (8)

DV(x,,) <_ ztTOu, V(x,S) e RnxOs
where

O-- [Oij], i,j-- l,2,...,s, Oii-- p!l) + p!2)(S*),

Oij Oji Pij(o*), o* s, 7 j, i,j 1,2,...,s

is the constant matrix such that

and

The proof of this lemma is similar to that of Lemma 3 in [7].
Corollary 2: /f inequalities (10) and (11) are satisfied, then for (12)

DV(x, rl) <_ { m(O)A41(B)V(x, o)

m(O)Anl(A)V(x,,)
for AM(O < O,

for AM(O > O.

(12)

(13)
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The proof follows from Lemma 3 and Corollary 1.
Lemma 4: For the function (7) for t-rk(x), k- 1,2,... due to system (1), the

estimates
TV(x + Jk(x), r])- V(x, ,) <_ uk Auk, (14)

* T *V(x + gk(x), rl) <_ uk A (15)
hold true, where

T
ttk --(1] Xl(7"k(X))]]’ ]] X2(Tk(X))11 "’" II Xs(Tk(X))II);

A [wij], wij wji i, j 1, 2,..., s;

A*-[ij], [ij-[ji, i,j-l,2,...,s;

1/2[C c)T ,.wii- )M(ii), wij- "M k"ij"’ij), j, i, j- 1 2 ..s;

Tii- "M(tii)’ ij- "lM/2(tijtij), j, i,j- 1,2,...,s;

ii PiiJkii + JkiiPii + JkjiPjjJkji + Pii bikig(c)
3 =1 t=1

+ b .ok*.(d.,)T PjjJkji3 3 3

3 =1 g=l

* "a )T-4- PijJkji + JkjiPij -4- Pij (cj
3=1



488 A.A. MARTYNYUK and I.P. STAVROULAKIS

", ,,i T+ bik "i)T Pij (cj
-1

1,2,...,s;

TQij PiiJkij + JkjiPjj +

+ (PiJkj + J jBj) + Pij bjk ()T

8

ri,j

s T s

)T+ bigk(’*ie)T Pij bjk ( g itj, i,j-l,2,.
-1

ii Pii + Qii, qgij Pij + Qij, j 1, 2,..., s.

Here

kij if the corresponding multiplier is positive;

0 in other cases.

The proof is similar to that of Lemma 4 in [7].
Corollary 3: Under all conditions of Lemma 4 for function (7) when t-
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k 1,2,... the estimates

V(x + Jk(x), rl) V(x, q) <_ 7V(x,

where

and

AM(A)AI(B) for AM(A < 0,
3’-

AM(A)Ar I(A) for AM(A > 0,

+ _<

where

AM(A*)AI(B) for AM(A* < 0,
7*

M(A*)r I(A) for M(A*) > 0,
hold true.

The proof follows from Lemma 4 and Corollary 1.

(16)

(17)

4. Absolute Stability of Impulsive Lurie-Postnikov Systems

For system (1), the following stability problem is formulated. It is necessary to form-
ulate conditions related to the coefficients which appear in the system and also to
introduce structural perturbation, such that the trivial solution of system (1) is asym-
ptotically stable in the whole on s for an arbitrary function f of the class under con-
sideration.

In view of the results from [2, 6-9] we shall introduce the following notions.
Definition 1: The zero solution x 0 of (1) is absolutely stable under structural

perturbation (i.e., absolutely stable on s) if it is absolutely stable for each S E s in
the sense of Lurie-Postnikov [5].

The above lemmas and corollaries allow us to establish sufficient conditions for
absolute stability of the zero solution of system (1) on s"

Theorem 1: Let system (1) be such that the matrix-valued function (4) is con-
structed with the elements (5) and

(i) the matrix A in (9) is positive definite, i.e., Am(A > O;
(ii) the matrix 0 in (12) is negative semidefinite or equals to zero, i.e.,

i(O)_O;
(iii) A
Then the zero solution of system (1) is absolutely stable on
Proof: Under all conditions of Theorem 1,
(a) the function V(x, rl) (see (7))is positive definite;
(b) for the function V(x, ) and t rk(x), k 1,2,... we have

DV(x,7) <_ O VS E s, andxRn;

(c) for the function V(x, q) and t= rk(x), k 1,2,... we have

V(x + Jk(x), rl)- V(x, r]) <_ AM(A)Ar I(B)V(x, rl) Vx Rn.
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By Theorem 1 from [7] for (a)-(c) the zero solution of system (1)is asymptotical-
ly stable in the whole on s" Since here ix- Rni i- 1 2 s and x- "N’lx x,.’.,

"ffsx Rn"
Theorem 2: Let system (1) be such that the matrix-valued function (4) is con-

structed with the elements (5) and
(i) the matrix A in (9) is positive definite, i.e., m(A) > O;
(ii) the matrix 0 in (12) is negative definite, i.e., M(O) < O;
(iii) the matrix A* in (15) is positive definite, i.e., AM(A* > 0;
(iv) the function rk(X), k 1,2,..., satisfy the inequality

sup( min rE + l(g)- max rk(z)]- 0 > O.
k \ x E Rn x Rn ]

If for some 7 > O, the inequality

,M(A*)AM(B) In < 0
M(O m(A -7,

is satisfied, then the zero solution of system (1) is absolutely stable on
The proof follows from Lemmas 1-4 and Theorem 2 in [7].
Theorem 3: Let system (1) be such that the matrix-valued function (4) is con-

structed with the elements (5) and
(i) the matrix A in (9) is positive definite, i.e., Am(A > 0;
(ii) the matrix 0 in (12) is positive definite, i.e., AM(O > 0;
(iii) the matrix A* in (15) is positive definite, i.e., AM(A* > 0;
(iv) the functions Vk(X), k 1,2,..., for some 01 > 0 satisfy the inequality

max vk(x minrk_ l(X) < 01, ] 1,2,
xRn x

If for some 7 > 0 the inequality

m(A) m(A)
M(

In m.(h,)>_ 0x + 7,

is satisfied, then the zero solution of system (1) is absolutely stable on
Proof: The statement of Theorem 3 follows from Lemmas 1-4 and Theorem 3 in

Example: Let system (1) be a fourth-order system of the Lurie-Postnikov type de-
composed into two subsystems determined by the following vectors and matrices:

Aii
1 -4

i= 1,2, (18)

(1 0)A12 A21
0 1 1) (19)qi

1

(1)C
r

0
i,,r 1,2;
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Jkii diag{- 1, 1}, Jk12 Jk2l diag{0,1; 0, 1},

i,l,r 1,2;

S!)-diag{1,1}, S!)-s! diag{1,1},

u<_s!})<_l, i,j,r-l,2, iej.

(20)

For this example, the elements of the matrix-valued function (4) are taken in the
form

uii(xi) xTi I2xi, 1,2;

tt12(X1 X2) U21 (Xl, x2) xT1O, lI2x2,

where 12 dig{ 1, 1}
Let also r/ (1, )E R2+. It is easy to verify that the matrices

A- ,B- (21)
-0,1 1 0,1 1

are positive definite because

Am(A 0, 9 and AM(B =1,1.

For such a choice of the matrix-valued function (4), we have

3, 75 3, 35

3,35 -3,75

-0,917 0,502
A-

0,502 -0,917
(22)

It is easy to check that matrices 19 and h are negative definite. Therefore, all condi-
tions of Theorem 1 are satisfied and the zero solution of system (1) specified by vec-
tors and matrices (18) is absolutely stable on
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Appendix 1

In order to describe the structurally variable, large-scale system (1) let the following
notation be introduced. The structural parameters Sij:[O, oc)--,{0,1 ) are binary
valued functions of t, or sij’[O, oc)--,[O, 1], and represent the (i,j)-th element of the
structural matrix S of the i-th interconnected subsystem

S [Silli, si2Ii,...,sinli], I diag{1, 1,..., 1} G Rni Rhi.

Notice that it may be, but need not be, required that sij(t 1 implies sik(t --0 for
all k j.

Let

ninjS diag[S,S2,...,Ss] Oij G R j.

Matrix S(t) describes all structural variations of system (1) and will be called the
structural matrix of system (1). The set of all possible S(t) will be denoted by s
and referred to as the structural set of system (1):

On {S:S diag[S1, S2,...,Ss] S --[SilIi, si2Ii,...,sinli]}, ij G {0, 1}.

For a detailed discussion of this notion, see [2] and references in this monograph.


