LINEAR FILTERING WITH FRACTIONAL BROWNIAN MOTION IN THE SIGNAL AND OBSERVATION PROCESSES

M.L. KLEPTSYNA

Russian Academy of Sciences Institute of Information Transmission Problems Moscow 101447, Russia marina@sci.lpi.ac.ru

P.E. KLOEDEN

Johan Wolfgang Goethe Universität Fachbereich Mathematik D-60054 Frankfurt am Main Germany kloeden@math.uni-frankfurt.de

V.V. ANH

Queensland University of Technology School of Mathematical Sciences Brisbane 4001, Australia v.anh@fsc.qut.edu.au

(Received December, 1997; Revised July, 1998)

Integral equations for the mean-square estimate are obtained for the linear filtering problem, in which the noise generating the signal is a fractional Brownian motion with Hurst index $h \in (3/4, 1)$ and the noise in the observation process includes a fractional Brownian motion as well as a Wiener process.

Key words: Linear Filtering, Fractional Brownian Motion, Long-Range Dependence, Optimal Mean-Square Filter.

AMS subject classifications: 93E11, 60G20, 60G35.

1. Introduction

We consider the linear problem with the signal θ_t and the observation ξ_t defined by the linear equations

$$\theta_{t} = \int_{0}^{t} a(s)\theta_{s}ds + B_{t}^{h}, \ \xi_{t} = \int_{0}^{t} A(s)\theta_{s}ds + W_{t} + B_{t}^{h}, \tag{1}$$

Printed in the U.S.A. ©1999 by North Atlantic Science Publishing Company

85

where the noise generating the signal is a fractional Brownian motion (fBm) B_t^h with Hurst index $h \in (3/4, 1)$ and the noise disturbing the observation of the signal consists of both a standard Wiener process W_t and the fractional Brownian motion B_t^h . The coefficients a(t) and A(t) are bounded measurable functions and the noise processes B_t^h and W_t are independent.

Fractional Brownian motion B_t^h with Hurst index $h \in (1/2, 1)$ is often used to model the long-range dependence in random data commonly encountered in many financial and environmental applications [7, 9]. It is a zero mean Gaussian process having the correlation function

$$\Gamma^{h}(t,s) = \frac{1}{2} \left(t^{2h} + s^{2h} - |t-s|^{2h} \right), \quad 1/2 < h < 1.$$
⁽²⁾

It is known that B_t^h is not a semimartingale (see e.g. [4, 6]), so neither is the signal process θ_t nor the observation process ξ_t , and the martingale approach to filtering expounded in [6] is not applicable here. In particular, as shown in [8], we cannot uniquely determine an innovation process corresponding to ξ_t . Nevertheless, we can derive an explicit expression for the conditional expectation of the signal

$$\widehat{\boldsymbol{\theta}}_t \triangleq \mathbb{E}(\boldsymbol{\theta}_t \mid \boldsymbol{\xi}_s, \boldsymbol{0} \leq s \leq t),$$

using a theorem on normal correlation in [5] provided we restrict the Hurst index h to the interval (3/4, 1). We formulate this results as a theorem in the next section and present its proof in Section 3. Finally, a simple example is provided in Section 4 to illustrate the result.

2. The Optimal Filter

Let \mathfrak{F}_t^{ξ} be the σ -algebra $\sigma(\xi_s, 0 \le s \le t)$ and note that $\widehat{\theta}_t = \mathbb{E}\left(\theta_t \mid \mathfrak{T}_t^{\xi}\right)$. Define

$$K(t,s) \stackrel{\Delta}{=} \mathbb{E}(\boldsymbol{\theta}_t \boldsymbol{\theta}_s), \ \ \widetilde{K}(t,s) \stackrel{\Delta}{=} \mathbb{E}(\boldsymbol{\theta}_t B^h_s).$$

Then it follows directly from the first equation of (1) that K(t,s) and $\widetilde{K}(t,s)$ satisfy the system of integral equations

$$K(t,s) = \int_{0}^{s} a(l)K(t,l)dl + \widetilde{K}(t,s), \qquad (3)$$

$$\widetilde{K}(t,s) = \int_{0}^{t} a(l)\widetilde{K}(l,s)ds + \Gamma^{h}(t,s).$$
(4)

With these we can obtain an explicit closed-form representation of the optimal meansquare filter for system (1).

Theorem 2.1: There exists a unique deterministic function $\Phi \in L^2([0,T]^2,\mathbb{R})$ satisfying

$$\Phi(t,s) = -\int_{0}^{s} \Phi(t,\tau) [h(2h-1) | s-\tau |^{2h-2}$$
(5)

$$\begin{split} + A(s)A(\tau)K(\tau,s) + A(\tau)\frac{\partial\widetilde{K}}{\partial s}(\tau,s) + A(s)\frac{\partial\widetilde{K}}{\partial \tau}(s,\tau)]d\tau \\ + A(s)K(t,s) + \frac{\partial\widetilde{K}}{\partial s}(t,s) \end{split}$$

such that the optimal mean-square filtering estimate $\widehat{\theta}_t$ of the linear system (1) satisfies

$$\widehat{\theta}_t = \int_0^t \Phi(t, s) d\xi_s, \tag{6}$$

for $t \in [0,T]$, where the integral is understood in the mean-square sense.

It follows from the proof of Theorem 1 that system (5) has a solution. This solution is in fact unique.

Theorem 2.2: The system of integral equations (3)-(5) has a unique solution.

3. Proof of Theorem 1

We note that the joint distribution of (ξ_s, θ_t) for all $0 \le s, t \le T$ is Gaussian, so Theorem 13.1 of [5] on normal correlation holds here. Let $0 = t_0^{(n)} < t_1^{(n)} < \ldots < t_{2^n}^{(n)} = t$ be the dyadic partition of [0, t], that is, with $t_j^{(n)} = \frac{j}{2^n} t$ for $j = 0, 1, \ldots, 2^n$, and denote the σ -algebra $\sigma\left(\xi_{t_0^{(n)}}, \xi_{t_1^{(n)}} - \xi_{t_0^{(n)}}, \ldots, \xi_{t_{2^n}} - \xi_{t_{2^n-1}}^{(n)}\right)$ by $\mathfrak{F}_t^{\xi, n}$. Then $\mathfrak{F}_t^{\xi, n} \uparrow \mathfrak{F}_t^{\xi}$ as $n \to \infty$, so

$$\mathbb{E}\left(\left.\boldsymbol{\theta}_{t}\right|\left.\boldsymbol{\mathfrak{T}}_{t}^{\boldsymbol{\xi},\,n}\right)\!\!\!\rightarrow\!\!\mathbb{E}\!\!\left(\left.\left.\boldsymbol{\theta}_{t}\right|\left.\boldsymbol{\mathfrak{T}}_{t}^{\boldsymbol{\xi}}\right)\!\!, \hspace{0.2cm}n\!\rightarrow\!\infty\right.$$

for all $t \in [0, T]$. Furthermore,

$$\lim_{n \to \infty} \mathbb{E} \left[\mathbb{E} \left(\left| \theta_t \right| \mathfrak{F}_t^{\xi, n} \right) - \mathbb{E} \left(\left| \theta_t \right| \mathfrak{F}_t^{\xi} \right) \right]^2 = 0$$
(7)

for all $t \in [0, T]$. Hence using Theorem 13.1 of [5] we obtain

$$\mathbb{E}\left(\theta_{t} \mid \mathfrak{T}_{t}^{\xi, n}\right) = \mathbb{E}\left(\theta_{t} \mid \mathfrak{T}_{t}^{\xi}\right) + \sum_{j=1}^{2^{n-1}} \Phi_{n}\left(t, t_{j}^{(n)}\right) \left(\xi_{t_{j+1}^{(n)}} - \xi_{t_{j}^{(n)}}\right)$$
(8)

for all $t \in [0,T]$, where $\Phi_n: [0,T]^2 \to \mathbb{R}$ is a deterministic function. Denote $\Phi(t,s) = \Phi_n(t,t_j^{(n)})$ for $t_j^{(n)} \leq s < t_{j+1}^{(n)}$. Then we can rewrite (8) as

$$\mathbb{E}\left(\theta_{t} \mid \mathfrak{T}_{t}^{\boldsymbol{\xi}, n}\right) = \int_{0}^{t} \Phi_{n}(t, s) d\xi_{s}.$$
(9)

But the processes W_t and (B_t^h, θ_t) are independent, so

$$\mathbb{E}\left[\mathbb{E} \left(\theta_t \left| \mathfrak{F}_t^{\xi, n} \right.\right) - \mathbb{E} \left(\theta_t \left| \mathfrak{F}_t^{x, m} \right.\right)\right]^2 = \int_0^t |\Phi_n(t, s) - \Phi_m(t, s)|^2 ds$$

$$+ \mathbb{E} \left\{ \int_{0}^{t} \Phi_n(t,s) (dB_s^h + A(s)\theta_s ds) - \int_{0}^{t} \Phi_m(t,s) (dB_s^h + A(s)\theta_s ds) \right\}^2.$$

(The integration of a deterministic function with respect to an fBm here is understood in the mean-square sense, cf. [4]). Applying (7) we obtain that

$$\lim_{n,\,m\to\infty}\int_0^t |\Phi_n(t,s)-\Phi_m(t,s)|^2 ds=0,$$

so the sequence $\{\Phi_n\}$ is a Cauchy sequence in $L^2[0,t].$ Hence there exist a function $\Phi\in L^2[0,t]$ such that

$$\lim_{n\to\infty}\int_0^t |\Phi_n(t,s) - \Phi(t,s)|^2 ds = 0.$$

It then follows from [1] that

$$\lim_{n \to \infty} \mathbb{E} \left(\left| \int_{0}^{t} \Phi_{n}(t,s) dB_{s}^{h} - \int_{0}^{t} \Phi(t,s) dB_{2}^{h} \right|^{2} \right) = 0$$

and

$$\lim_{n \to \infty} \mathbb{E}\left(\left| \int_{0}^{t} \Phi_{n}(t,s)A(s)\theta_{s}ds - \int_{0}^{t} \Phi(t,s)A(s)\theta_{s}ds \right|^{2} \right) = 0,$$

so we obtain

$$\widehat{\theta}_t = \int_0^t \Phi(t,s) d\xi_s.$$

We shall now show that Φ satisfies equation (5). Let $f:[0,T]^2 \to \mathbb{R}$ be a bounded and jointly measurable function, so the integral

$$I_t:=\int_0^t f(t,s)d\xi_s$$

is well-defined and the process I_t is \mathfrak{F}_t^{ξ} -measurable with $\mathbb{E}(I_t^2) < \infty$ and $\mathbb{E}((\theta_t - \widehat{\theta}_t)I_t) = 0$. Consequently

$$\mathbb{E}(\theta_t I_t) = \mathbb{E}(\theta_t I_t)$$
$$= \mathbb{E}\left(\int_0^t \Phi(t,s)d\xi_s \int_0^t f(t,s)d\xi_s\right)$$

88

$$= \int_{0}^{t} \Phi(t,s)f(t,s)ds + \int_{0}^{t} \int_{0}^{t} \Phi(t,\tau)f(t,s)\frac{\partial^{2}}{\partial s\partial r}\Gamma^{h}(\tau,s)d\tau ds$$
$$+ \int_{0}^{t} \int_{0}^{t} \Phi(t,\tau)f(t,s)A(\tau)A(s)K(\tau,s)d\tau ds$$
$$+ \int_{0}^{t} \int_{0}^{t} \Phi(t,\tau)f(t,s)A(s)\frac{\partial \widetilde{K}}{\partial \tau}(s,\tau)d\tau ds$$
$$+ \int_{0}^{t} \int_{0}^{t} \Phi(t,\tau)f(t,s)A(\tau)\frac{\partial \widetilde{K}}{\partial s}(\tau,s)d\tau ds$$

and

$$\mathbb{E}\left(\theta_t \int_0^t f(t,s)d\xi_s\right) = \int_0^t f(t,s)\frac{\partial \widetilde{K}}{\partial s}(t,s)ds + \int_0^t f(t,s)A(s)K(t,s)ds.$$

Now, f is otherwise arbitrary and the function $\frac{\partial^2}{\partial t \partial s} \Gamma^h(t,s) = h(2h-1) |t-s|^{2h-2}$, so

$$\int_{0}^{T}\int_{0}^{T}\left(\frac{\partial^{2}}{\partial t\partial s}\Gamma^{h}(t,s)\right)^{2}dtds<\infty,$$

which means the process $W_t + B_t^h$ is equivalent in an innovation sense [8] to W_t . Hence equation (5) is valid. Uniqueness follows from the linearity of the equations under consideration.

This completes the proof of Theorem 2.1.

4. Example

Consider the case $a(t) \equiv 0$ and $A(t) \equiv 0$, so system (1) reduces to

$$\theta_t = B_t^h, \ \xi_t = W_t + B_t^h. \tag{10}$$

By Theorem 2.1, the filtering estimate $\hat{\theta}_t = \int_0^t \Phi(t,s) d\xi_s$ and Φ satisfies the integral equation

$$\Phi(t,s) = -\int_{0}^{t} h(2h-1)\Phi(t\tau) |s-\tau|^{2h-2}d\tau + \frac{1}{2}\frac{\partial}{\partial s} \{t^{2h} + s^{2h} - |t-s|^{2h}\},$$
(11)

which is a Fredholm integral equation with a singular kernel. However, for h > 3/4 this kernel is square integrable and equation (11) has a unique solution. In this case,

the filtering error $\gamma_t = \mathbb{E}\left(\left|\theta_t - \widehat{\theta}_t\right|^2\right)$ is given by

$$\begin{split} \gamma_t &= \mathbb{E}\left(\mid \theta_t \mid ^2 \right) - \mathbb{E}\left(\mid \widehat{\theta}_t \mid ^2 \right) \\ &= t^{2h} - \mathbb{E}\left(\left| \left| \int_0^t \Phi(t,s) d\xi_s \right|^2 \right) \right. \\ &= t^{2h} - \int_0^t \Phi(t,s) \left[\Phi(t,s) + \int_0^t h(2h-1) \Phi(t,\tau) \mid s-\tau \mid ^{2h-2} d\tau \right] ds \\ &= t^{2h} - \frac{1}{2} \int_0^t \Phi(t,s) \frac{\partial}{\partial s} \left[t^{2h} + s^{2h} - \mid t-s \mid ^{2h} \right] ds \end{split}$$

using (11).

Acknowledgement

Partially supported by the Australian Research Council Grants A89601825 and C1960019. The authors wish to thank the referee for his many constructive comments.

References

- [1] Dai, Long-range Dependent Processes and Fractional Brownian Motion, Ph.D. thesis, Australian National University 1996.
- [2] Kleptsyna, M.L., Kloeden, P.E. and Anh, V.V., Linear filtering with fractional Brownian motion, *Stoch. Anal. Appl.* (to appear).
- [3] Kleptsyna, M.L., Kloeden, P.E. and Anh, V.V., Nonlinear filtering with fractional Brownian motion, J. Info. Trans. Problems (to appear).
- [4] Lin, S.J., Stochastic analysis of fractional Brownian motion, Stoch. and Stochastics Rep. 55 (1995), 121-140.
- [5] Lipster, R.S. and Shiryayev, A.N., *Statistics of Random Processes*, Volume II, Springer-Verlag, Berlin 1978.
- [6] Lipster, R.S. and Shiryayev, A.N., Theory of Martingales, Springer-Verlag, Berlin 1984.
- [7] Mandelbrot, B.B. and Van Ness, J.W., Fractional Brownian motion, fractional noises and applications, SIAM Review 10 (1968), 422-437.
- [8] Rozovskii, B.L., Evolutionary Stochastic Systems, Linear Theory with Applications to the Statistics of Random Processes, Nauka, Moscow 1983.
- [9] Samorodnitsky, G. and Taqqu, M..S., Stable Non-Gaussian Random Processes, Chapman and Hall, New York 1994.