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Integral equations for the mean-square estimate are obtained for the linear
filtering problem, in which the noise generating the signal is a fractional
Brownian motion with Hurst index h E (3/4, 1) and the noise in the obser-
vation process includes a fractional Brownian motion as well as a Wiener
process.
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1. Introduction

We consider the linear problem with the signal 0 and the observation t defined by
the linear equations

Ot-- J a(s)Osds+Bh / )Osds+Wt+Bht, t A( t, (1)
0 0
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where the noise generating the signal is a fractional Brownian motion (fBm) Bth with
Hurst index h E (3/4, 1) and the noise disturbing the observation of the signal consists
of both a standard Wiener process W and the fractional Brownian motion Bth. The
coefficients a(t) and A(t) are bounded measurable functions and the noise processes

Bth and W are independent.
Fractional Brownian motion Bth with Hurst index h E (1/2,1)is often used to

model the long-range dependence in random data commonly encountered in many
financial and environmental applications [7, 9]. It is a zero mean Gaussian process
having the correlation function

Fh(t,s) 1/2 (t2h + s2h- It--sigh), 1/2<h<1. (2)

It is known that Bth is not a semimartingale (see e.g. [4, 6]), so neither is the signal
process t nor the observation process t, and the martingale approach to filtering
expounded in [6] is not applicable here. In particular, as shown in [8], we cannot
uniquely determine an innovation process corresponding to t" Nevertheless, we can
derive an explicit expression for the conditional expectation of the signal

a E(e o <_ _< t),
using a theorem on normal correlation in [5] provided we restrict the Hurst index h to
the interval (3/4, 1). We formulate this results as a theorem in the next section and
present its proof in Section 3. Finally, a simple example is provided in Section 4 to
illustrate the result.

2. The Optimal Filter

Let t be the a-algebra r(s, 0 _s _< t)and note that

g(t, s) A_ E(0t0s), . (t, s) A_ E(0tBsh).

Define

Then it follows directly from the first equation of (1) that K(t,s) and K(t,s) satisfy
the system of integral equations

K(t, s) a(l)K(t, l)dl + K (t, s), (3)
0

" (t, s) / a(l)( (1, s)ds + rh(t, s).
0

(4)

With these we can obtain an explicit closed-form representation of the optimal mean-
square filter for system (1).

Theorem 2.1: There exists a unique deterministic function ( L2([0, T]2,)
satisfying

,(t,s) / O(t, )[h(2h 1) Is -12- u (5)
0
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Oh" s) + A(s)-v (s, 7)]dv+ A(s)A(r)K(v, s)+ A(v)--(7,
OK+ A(s)K(t, s) + -f-(t, s)

such that the optimal mean-square filtering estimate 0 of the linear system (1) satis-

fies

0 ((t,s)ds (6)
0

for t E [0, T], where the integral is understood in the mean-square sense.

It follows from the proof of Theorem 1 that system (5) has a solution. This solu-
tion is in fact unique.

Theorem 2.2: The system of integral equations (3)-(5) has a unique solution.

3. Proof of Theorem 1

We note that the joint distribution of (s, Ot) for all 0 < s,t < T is Gaussian, so

Theorem 13.1 of [5] on normal correlation holds here. -et 0. t(0n)< tn)< <
t)= t be the dyadic partition of [0, t], that is, with t(n)= Ant for j 0,1,...,2n,

J 2 , ,nand denote the ,-algebra r[, ,, -, ,...,, -t(t)_l )
by St Then

for all t E [0, T]. Furthermore,

for all t E [0, T]. Hence using Theorem 13.1 of [5] we obtain

2n-1_
(Otl ,n)_ (Otl )+ n (t,tn,) (t(n)

(7)

(s)

for all t [0, T], where (I)n:[0, T]2 is a deterministic function.

n(t,t.n)) for tn) _<s< tn)+ 1" Then we can rewrite (8)as

Denote (I)(t, s)

0

(9)

But the processes W and (Bht,Ot) are independent, so

f (I).(t,s)-am(t,s)12ds
0
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+ z On(t s)(dBhs + A(s)0sds m(t s)(dBhs + A(s)Osds
0 0

(The integration of a deterministic function with respect to an fBm here is under-
stood in the mean-square sense, cf. [4]). Applying (7) we obtain that

n, limm_o / ((t’ s)- (m(t, s) 12ds O,
0

so the sequence {(I)n} is a Cauchy sequence in L2[0, t].
(I) E L2[O, t] such that

Hence there exist a function

lirn / O,(t, s)- O(t, s) 12ds O.
0

It then follows from [1] that

and

nlirn: (I)n(t s)dBhs (I)(t, s)dBh2
0 0

lim IF On(t s)A(s)Osds (b(t, s)A(s)Osds
0 0

so we obtain

0 ((t,s)ds.
0

We shall now show that (I) satisfies equation (5). Let f: [0, T]2---,R be a bounded and
jointly measurable function, so the integral

It:- f f(t,s)d
0

is well-defined and the process I, is t-measurable with -(It2) < oo and -((et-
Ot)It) O. Consequently

O(t,s)ds f(t,s)ds

0 0
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,s s 02 Fh(7 s)dT"ds/ep(t,s)f(t )ds+/ i((t,’)f(t, JOsOr
0 0 0

+ i i O(t,v)f(t,s)A(v)A(s)K(’,s)drds
0 0

+ ep(t, 7)f(t, s)A(s)-(s, 7)dvds
0 0

and

+ ep(t, 7)f(t, s)A(r 7, s)dTds
0 0

0 f(t, s)ds f(t, s)---(t, s)ds + f(t, s)A(s)K(t, s)ds.
0 0 0

02 rh(t s) h(2h 1) It s eh-Now, f is otherwise arbitrary and the function 0-- ’so

\OtOs
0 0

which means the process W + Bht is equivalent in an innovation sense [8] to Wt.
Hence equation (5) is valid. Uniqueness follows from the linearity of the equations
under consideration.

This completes the proof of Theorem 2.1.

4. Example

Consider the case a(t) 0 and A(t) O, so system (1) reduces to

(10)

By Theorem 2.1, the filtering estimate 0- f toeP(t,s)ds and (I) satisfies the integral
equation

@(t, s) f h(2h l),I,(t-) s -I -d-
0

+1/2-s {t2h +s- it-sigh}, (11)

which is a Fredholm integral equation with a singular kernel. However, for h > 3/4
this kernel is square integrable and equation (11) has a unique solution. In this case,
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the filtering error "),t-z([Ot-’tl2)is given by

%- (I

t2h
_

((l, s)ds
0

_2h_ / O(t,s) O(,s)+ h(2h-1)q(,’)ls-rl 2h-2dr ds

0

0
using (11).
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