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In this paper we study an abstract stochastic equation of second order and
stochastic boundary problem for the telegraph equation in a strip. We
prove the existence of solutions, which are d-periodic (periodic in distribu-
tion) random processes.
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1. Introduction

Let H be a separable Hilbert space, A E C(R,(H)) be a periodic function, and
a E R. Let w {w(t)" t R} be an H-valued Wiener process. Consider the following
abstract stochastic boundary problem for the telegraph equation

u" tt aui(t )- uxztt, x) + x (t, x) A(t)u(t, x) + g(x)w’(t), (t, x) e Q;

u(t, O) u(t, r) O
(1)

where 0 denotes the zero element in H and Q: Rx[0,r],g:[0,r]C. We are
interested in d-periodic time variable t and a w-adapted solution u for problem (1) in
the sense defined below.

The existence of periodic solutions for deterministic partial differential equations
are intensively studied, see for example, the well-known book [19]. The problem of
the existence of stationary and d-periodic solutions to stochastic ordinary differential
equations is also well-known, see the books [7, 13], and the survey [8] for more
references. During the past years, it has become apparent that it is natural and more
adequate in many applications to consider an input source for partial differential
equations as random source or a random disturbance. Thus the problem of
investigating stochastic partial differential equations is of importance, see [3, 9, 18],
where the problems of this kind were studied. We prove the existence of d-periodic
solutions for stochastic boundary problem (1).
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2. Periodic Solution for Ordinary Stochastic Equation

First, we recall some standard notations and terminology. Let (H, (.,.), II II) be a

complex separable Hilbert space, 0 the zero element in H, and (H) the Banach
space of bounded linear operators on H, with the operator norm denoted also by the
symbol I1" II. The adjoint of D E (H) will be denoted by D*. For an H-valued or

(H)-valued function, the continuity and differentiability means correspondingly the
continuity and differentiability in the norm. Let I be the identity operator.

In what follows, we shall consider all random elements on the same complete
probability space (,,P). The uniqueness of a random process, satisfying some
equation, means its uniqueness up to stochastic equivalence. We consider only H-
valued random functions which are continuous with probability one. All equalities
for random elements are assumed to hold with probability one.

Definition 1: Let v > 0 be fixed. A random H-valued process {x(t)’t R} is
called a d-periodic (in distribution) with period r if

where (H) is the Borel a-algebra in H.
Let w: {w(t):t R} be an H-valued Wiener process with P{w(0)- 0 } 1.

Note that for any {Zl,Z2} C H and 0 < s < t,

E((w(t),zl)(W(S),Z2) s(z2, WZl)

with a nuclear operator W and

E II w(t) w(s) [[ 2 t s trW, {s,t}C_R.

Let 5t" r(w(v)- w(u): u _< v _< t), E R.
To prove the existence of periodic solutions for problem (1), we first consider the

following stochastic differential equation

x’(t) A(t)x(t) + w’(t), R, (3)
where A C(R,(H)), and

Vt e R, A(t + r)- A(t).
Definition 2: An H-valued continuous zbt-adapted random process {x(t): t R} is

called a nonanticipating solution of equation (3) if for every t E R, the random ele-
ment x(t) is bt-measurable E II x(t)II 2 < + c, and for every s < t with probability
1,

x(t)- x(s) / A(u)x(u)du + w(t)- w(s).
8

The last integral is a Riemann integral of H-valued continuous function with
probability one.
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Let U: R(H) be the unique solution of the following problem"

U’(t)- A(t)U(t),

U(0)- . tER;

It is well-known that for every t E R, the operator U(t) is invertible and

Let

u(t) u(t- ,-)u(-)’, t e n, , e z,

II u(t)U(to)-ll[ exp II A(s)II d to < t.

o

G(t,s)" U(t)U-I(s), {s,t} C R.

Now we are prepared to prove the existence of d-periodic solution of equation (3).
Theorem 1" Stochastic equation (3) has a unique d-periodic with period "

nonanticipating solution {x(t): t R}, with supo < < r II x(t) II 2

Wiener process w if and only if the following inequlit

sup o II gk()G(, )j I[ 2d < / o (4)
j>l

0

< +oc, for every

is satisfied for every orthonormal basis {ej’j >_ 1} in H.
In order to prove Theorem 1, the following lemmas will be needed.
Lemma 1: If the random process x is a nonanticipating solution of (3), then for

every s < t with probability 1,

x(t) G(t,x)x(s) + / G(t, u)dw(u), ()
8

where the integral is a stochastic integral with respect to w.
Proof: Note that equality (5) is equivalent to the following:

U l(t)x(t) U- l(s)x(s) / U l(u)dw(u), s < t.
8

For every subdivision of [s, t],

we have
A" {s- to, tl,...,tn t}, Atk" tk + 1 tk, 0 <_ k

_
n- 1,

U l(t)x(t) U l(s)x(s)
n--1

E (u-l(tk+l)X(tk+l)--u-l(tk))X(tk)
k=0

n-1 n-1

E (U l(tk + 1) U l(tk))x(tk + 1) -- E U l(tk)(x(tk + 1) x(tk))
k=O k=O
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n-1

E U l(tk + 1)(/- G(tk + 1, tk))x(tk + 1)

tk+l
q- E U- l(tk) A(u)x(u)du -k" w(tk + 1)- w(tk)
k=0

k

Hence, for every s, t, the right-hand side of (6) converges in probability to

--/ u-l(tt)A(tt)’{’)d’-J- / u-l(tt)A(tt)’(’)d’nv /
as max(Atk" 0 _< k _< n- 1)--,0.

LemIna 2: If the random process x is a continuous nonanticipating solution of
stochastic equation (5), then x is a nonanticipating solution of (3).

Proof: The conclusion follows from a computation similar to the proof of Lemma
1.

Lemma 3: If the random process x is a d-periodic nonanticipating solution of
(3), then the stationary process {x(nv)’n E N} in H is a stationary adapted to {(n)"
n Z} solution of the following difference equation in H"

x((n + 1)r) U(v)x(n) + c(n), n Z,
where

(n + 1)’r -r

e(n):- / G((n + 1)r,u)dw(u) / U(r)U- l(u)dw(nT" + u), n Z,
n" 0

(7)

is a sequence of Gaussian independent identically distributed random elements in H.
Proof: The proof follows from Lemma 2. It follows by a direct computation that

the covariance operator S of the element e(0) is given by

/ U(7")U- I(u)WU- l(u)*U(7")*du.S
0

In addition, it can be proved as in [3, n. 4.1] that for the covariance operator Sx of
x(0) we have

*.
k=0 0

Lemma 4: If equation (7) has stationary and adapted to {e(n):n Z} solution
with E II x(O) 2 < + c for every Wiener process w, then for every orthonormal basis

{ej’j > 1} in H, the inequality holds
7"

II v (,la( < +
j>l

0

Proof: This is a part of Theorem 1 [7, n. 4.1, p. 93] or Theorem 4.1 [5].
Lemma 5: Let {x(n’):n Z} be a stationary and adapted to {e(n):n G Z}

solution of equation (7) such that E[[x(0)[[2< +cx and {x(t):t R} be the H-
valued process defined by
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+ / + [o, n z. (s)

Then the process x is d-periodic with period 7 and an Jt-adapted solution of equation
(3). In addition, E[[x(t)[I 2< +oc, tER.

Proof: The process x is continuous with probability 1, see [1] or [7, n.8.4.2] and
[2, 3, 11, 17] for general results. The last property follows from computations.

Proof of Theorem 1: (1) Suppose that equation (3) has a unique d-periodic with
period r and anticipating solution x such that sup0 < < r l] x(t)[I 2 < + oo for every
Wiener process w. It follows from Lemma 3 that euaion (7) has an adapted to e

stationary solution {x(nr):n E Z} with E I[ x(0)II 2 < + o. This solution of (7) is
unique. Indeed, if the equation (7) had two different stationary and e-adapted
solutions, then by Lemma 5, equation (3) has two different d-periodic solutions. By
virtue of Lemma 4, we have (4).

(2) Assume that condition (4) holds for every basis {ej:j > 1} in H. Then by
Theorem 1 [3, n. 4.1, p. 93], equation (7) has a unique and e-adapted stationary
solution {x(nr)’n Z} with E I[ x(0)II 2 < + o. Hence, by Lemma 4, we have a d-
periodic and nonanticipating solution for equation (2). By Lemmas 1-3, this solution
is unique. This completes the proof of Theorem 1.

The following studies will be concerned with the following stochastic equation:

x"(t) + ax’(t) A(t)x(t) + w’(t), t G R. (9)

We first give the definition of a solution for equation (9).
Definition 3: An H-valued random process {x(t):t R} is called a solution of

equation (9) if for every t G R, the random element x(t) is fit-measurable, the
processes x, are continuous with probability 1, and for every s < t, the equality

x’(s) + a(x(t)- x(s)) / A(u)x(u)du + w(t)- w(s) (10)
8

holds with probability 1.
The main result of this section is a theorem which establishes a criterion of the

existence of d-periodic solutions for equation (9).
Let H2: H x H and for Xl, x2, Yl, Y2 from H,

((Xl,Yl),(x2, Y2))2" (Xl,Yl)-[-(x2, Y2).

Then (H2,(.,.)2) is a Hilbert space. For G R, let

l(t)"
A(t)- a

where (R) is the zero operator in H and

()W
The following lemma is an immediate consequence of the above definitions.

Lemma 6: Let x be a nonanticipating solution of equation (9). Then the H2-
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valued random process

y:

is a nonanticipating solution of the following equation in H2:

y’(t) =/(t)y(t) + w’, t e R. (11)

Lemma 7: Let

y

be a nonanticipating solution of (11). Then Y2-Y’I with probability 1, and Yl is a

nonanticipating solution of (9).
Proof: The proof is obvious.
Let us consider the function U, which is a unique solution of the following

problem

U’(t)- (t)U(t), t E R;

where is the identity operator in H2. By a direct computation, we obtain the follow-
ing lemma.

Lemma 8: We have

vl

where the functions V1, V2 are the unique solutions of the equation

V’(t) A(t)Vj(t) aVj(t),

in H, with the boundary conditions

tER; j=l,2

Vl(0 I, V[(0) O, V2(0 (R), V(0) I.

Let
G(t, s): c

and let

()ej: j _> 1,
ej

for ej, j >_ 1 from H.
Now, we are prepared to prove the existence of d-periodic solutions of equation

(9).
Theorem 2: The stochastic equation (9) has a unique nonanticipating and d-



Periodic in Distribution Solution for a Telegraph Equation 127

periodic solution x with period 7 such that

11  (t)II 2 < + and sup II  ’(t)11 2 < +
O<t<- O<t<v

for every Wiener process w if and only if the following inequality

j>l
0

is satisfied for every orthonormal basis {ej’j >_ 1} in H.
Proof: Note that the covariance operator of w(1) is given by

Now, the result of Theorem 2 is a consequence of Theorem 1 and Lemmas 6-8.
Let us note that we have by (8)

8

y(nr + s)- E U(s)Ul(r)e(n- l- 1)+ (s, u)d(nr + u),
1=0 0

for n E Z, s E [0, -] with

(n+

c(n): / (((n + 1)v,u)dw(nr + u),n e Z.

(13)

3. Stochastic Boundary Problem for a Telegraph Equation

We now consider the boundary problem (1). Let us define the classes

C" {g: [0, 7r]---C g(0) g(Tr) 0} f] cl([0, 71"]),

C30: {g: [0, r]C g(k)(O) g(k)(r) 0, k 0, 1, 2} N C3([0, r]).

Definition 4: Let v > 0 be fixed. A random H-valued function

{u(t,x): (t,x)G Q) is called a d-periodic function of period 7 with respect to the time
t if

Vn G N V{(tl,Xl),(t2, x2),...,(tn, Xn) } C_ Q and v{B1,B2,...,Bn} C (H),

P {w:x(w;tk+r,xk) GBk} P {w:x(w;tk, xk) EBk}
k=l k=l

Definition 5: An H-valued random function u is a nonanticipating solution to
the boundary problem (1) with g e C, if for every (t,x)e Q, the element u(t,x)is
fit-measurable, the functions u, ut, Uxz are continuous with probability 1, and, for
every s < t, .x [0, v], we hve
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u(t, x) us(s, x) + a(u(t, x) u(t, x)) / ux(r x)dr
8

/ An(r, x)dr + g(x)(w(t)- w(s)),
8

(t, o) (t, ) 0
with probability 1.

Let k E N and let Vlk V2k be unique solutions of the following equation in H:

V’k(t (A(t) k2I)Vjk(t) aVjk(t), t E R; j G 1, 2,

the boundary conditions

Define

where

v(0)-, v(0)-o, v(0)-o, v(0)-.

k(t,8): k(t)l(8), {8, t}

_
r,

V2k
Uk--

VlkV2k

Now we prove the main result of this paper.
Theorem 3: The following two statements (i) and (ii), are equivalent:
(i) For any Wiener process w and a function g C, the boundary problem

(1) has a unique nonanticipaling d-periodic of period v with respect to t
solution u(t,x):(t,x) Q} such that

supE [[ u(t, x)II 2 < + c, supE [[ ui(t x)[[2 < + ocz;

(ii) For every orthonormal basis {ej:j >_ 1} in H, the following inequality
holds:

)sup II Uk()U()G(,) II 2d / [1 G(, )y I12d < + .
j>l,k>l /=0

[0,, o 0

Proof: Let us show that (ii)implies (i). Note that for each g e C, we have

g(x) gksinkx, x e [O,
k=l

for some {gk" k >_ 1). The last series converges uniformly over [0, r].
It follows from (ii) and Theorem 2 that for every k >_ 1, the following stochastic

equation
vk(t) vk(s) + a(vk(t)- vk(s))

/ (A(r) k2I)vk(r)dr + (w(t) w(s), e R (14)
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has a unique nonanticipating d-periodic of period r solution {vk(t )" E R} with

sup
O<t<r

By (13) we know that

II v(t)[I < + o, sup
0<t<r

v (n+) )(+ ):
v( + ,)

8

E Uk(s)Ulk(7")e(n --l-- 1) + Gk(s u)dw(nr + u),
/=1

0

(15)

for n E Z, s G [0, r]. Consider the random function

u(t, x)" vk(t)gk sin kx, (t, x) G Q.
k=l

By (ii), the series for u converges on Q with probability 1.
continuity of u, we have to show that the series

EE (sup ’[vk(t)gkl’)k-1 te[b,c]

To establish the

for b < c, c-b _< 7 is convergent. The convergence of this series follows from the
well-known submartingale type inequality for stochastic integrals, see [1, 10, 14] and
from the existence of the moments for Gaussian elements [15, 16]. The continuity of

t!the random functions ut, u can be established by using similar argumentsXX

Differentiating u with respect to t and x and using (14) we can verify that u is a
solution of problem (1). The proof of the uniqueness is the same as that in the proof
of theorem 2.

Let us show now that (i)implies (ii). Let k N and the Wiener process w be
given. Let u be a unique nonanticipating d-periodic solution of (1) of period v with
respect to t such that

supEllu(t,x) 112< +oo, supEIIu(t,x) 112< +oo
Q Q

for g(x)- sin kx, x [0, r]. Define

vk(t)’- J u(t,x)sinkxdx,
0

tER.

It can be easily verified that vk is a continuous nonanticipating d-periodic of period r,
H-valued process such that

sup E II v(t)II 2 < + c, sup E
O<t<Tr O<t<-

By virtue of Parseval’s identity, see for example [7, p. 146], it follows that
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sup  EIIvk(t) ll =
0_<t_<,r k=l

< +c and sup EE0_<t_<" k=l

From Definition 5, we also have

v(t) v’k(s + a(vk(t vk(s))

/ (A(r)- k2I)vk(r)dr + (w(t)- w(s), t e R, (16)

with probability 1. The process vk is a unique solution of (14), because if the
equation (14) would have two different nonanticipating d-periodic of period r

solutions, then one could construct following the method described in part (ii)(i) of
the proof, two different nonanticipating d-periodic solutions of problem (1). Hence,
Theorem 2 applies. This leads to the following conclusion. The inequality

j> lk> 1 /=0; [o,;] o

S )II / / II II
0

is satisfied for every orthonormal basis {ej: j >_ 1} in H.
completes the proof of Theorem 3.

Thus, we have (ii). This
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