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This paper develops a recursion formula for the conditional moments of
the area under the absolute value of Brownian bridge given the local time
at 0. The method of power series leads to a Hermite equation for the gen-
erating function of the coefficients which is solved in terms of the parabolic
cylinder functions. By integrating out the local time variable, this leads to
an integral expression for the joint moments of the areas under the posi-
tive and negative parts of the Brownian bridge.
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1. Introduction

1.1 Review of the Methods and Results

There is considerable literature on the integral functionals of Brownian motion, going
back to M. Kac [5]. Recently, the results and methods have been unified by M.
Perman and J.A. Wellner [9] who also give a good survey of the literature. The pur-
pose of [9] was to obtain the law of the integral of the positive part of both Brownian
motion and Brownian bridge. In short, they obtained the double Laplace transform
of the laws of A + (t): f toB + (s)ds and Ao+" fU + (t)dt, where B(s) and U(t)
are standard Brownian motion and Brownian bridge, respectively (Theorems 3.3 and
3.5 of [9]; actually they obtain the double Laplace transforms for an arbitrary linear
combination of positive and negative parts). They also found (Corollary 5.1) a recur-
sion formula for the moments. These results are obtained from excursion theory, by
conditioning on the local time of B at an independent exponential random instant,
and appealing to previous known results of Kac, Shepp, etc.

Despite the considerable scope of these results, it seems to us worthwhile also to
look at what can be done by conditioning on the local time t0 of U at x--0. In prin-
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ciple, all of the known results for the integrals of U follow from the corresponding con-
ditional law, by integrating over the (known) joint distribution of local time at zero
and the positive sojourn. This is because (a) the conditional law of the positive so-
journ S + :rF f lI’’’(U(t))dt of U, given the local time at 0, is known from P.
Lvy (see L,, Coroltary1] that paper treats a problem analogous to the present but
with the maximum replacing the area integral) and (b) given the positive sojourn S +
and the local time 0 at 0, the local time processes of U with parameters x > 0 and
x < 0 are independent and distributed as the local time processes of reflected Brown-
inn bridges with spans S + and 1- S +, respectively (the corresponding assertions
without conditioning on t0 are.false: given only S +, the local time of U at x >_ 0 is
not equivalent in law to the local time of a reflected b:idge of duration S + even if
x 0). Accordingly, we are led to look for the law of f ol U(t) ldtlo x), 0 <_ x.
What we obtain below, however, is not an explicit expre’ssion for the law, but a recur-
sion formula for the moments (as functions of x). The moments, in this case, deter-
mine the law and conversely, but experience in similar cases (for example, that of
Brownian excursion; see L. Takcs [14]) has shown that neither need follow easily
from the other. Thus, finding the explicit conditional law seems to be still an open
problem (as it is also for A0+ but to a lesser extent).
To describe our method, we consider the process defined by

x

W(x)" -(g(x), 1- / g(u)du),O < x, (1.0)
0

conditional on t(0)-a > 0, where t(x)is the semimartingale (occupation)local time
of IU(t) at x >_ 0. Thus, the second component is the residual lifetime of
above x (we note the change of notation- t(0)’-2t0 from above). Set E:
[0, c) (R) (0, 1]. It is not hard to realize that W(x)is a realization of a homogeneous
Markov process on E, absorbed at (0, 0). This process, indeed, is the subject of a re-
cent paper of J. Pitman [10] who characterizes it as the unique strong solution of
certain S.D.E., and it appears earlier in the paper of C. Leuridan [8], who obtained
the form of the extended infinitesimal generator by an h-path argument. We propose
to call this process the "Pitman process". Our requirements for this process are
rather different from those of [10]. We wish to apply the method of Kac to the area
functional

y- (u)du dv- v(v)dv IV(u) ldu
0 0 0

given t(0)-a and fF(u)du-y, where Uu is a Brownian bridge of span y_< 1.
Thus, it is the integral of the second component of our process starting at (a, y). Con-
sequently, we need to characterize this process W via its infinitesimal generator, as a
two dimensional diffusion whose semigroup has the Feller property. Much of this
may be obvious to a very knowledgeable reader, but it provides orientation and it
seems to us that the methods may be more widely of use. In any case, the reader
who can accept Corollary 1.3.5 (with A given by (1.2)) could go direction to Section
2.
We need the results of [10, Proposition 3, Theorem 4] only to the extent that there

exists a diffusion process W (X,Y) (a strong Markov process with continuous
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paths) on E U (0,0) starting at (x,y) and absorbed at the state (0,0) at time To:
inf { t > 0 "f toX(u)du y} < oc, of which the process (1.0) is a realization with x

c, y- 1, and the law of X(. for this process is weakly continuous in its dependence
on (x, y). We also rely on the stochastic differential equation of [10] to determine the
form of the generator of W, (see [8] for an alternative method).

Finally, we also need the scaling property [10, Proposition 3 (iii)]. Let px, y

denote the law of W starting at (x,y)E E. Then the equality of law

PX’u{X(" e } Px/Y/’I{v/X(" /V/’ e } (1.1)
holds.

Our main assertion concerning W is as follows.
Proposition 1.1.1- For N > O, x <_ N, let WN(t denote W(t A TN), 0 <_ t,where

TN:-inf{t:X(t)-g}, and let EN denote [O,N](R)[O, 1] with the segment {(x,O),
0 <_ x <_ N} identified to the single point (0,0) and the quotient topology. Then WN
has law that of a diffusion on the compact metrizable space EN absorbed at
{x- N} [J {y- 0}, whose semigroup has the Feller property on EN and is strongly
continuous at t- O, and with infinitesimal generator extending the operator

(02( x2--x 0 ) 2(Ev (12)Af(x,y)" 2xx2+ 4- y jox- - f(x,y) for f eCc

(interior compact support). The boundary segments {x-0, 0<y_<l} and
{0 _< x < N, y 1} are inaccessible except at t O.

Remark 1.1" It seems non-trivial to ascertain the behavior of W starting at (x, 1)
as xc (probably absorption at (0,0) occurs instantly). Hence the need for Wy.
One might hope to appeal to the fundamental uniqueness theorem of Stroock and
Varadhan (as stated, for example, in Rogers and Williams [13]), but there are insuper-
able obstacles. To wit, the operator A is not strictly elliptic, the coefficients are un-
bounded at y 0 and at x c, and A is undefined outside of E.

The proof of Proposition 1.1.1 occupies Section 1.2 below. It uses a coupling
argument, together with an extension of a strong comparison theorem of T. Yamada.
It seems of interest that this last, originally stated only for diffusions on R, extends
without any difficulty to the Pitman process on R2 (Lemma 1.2.1). Knowing that we
have Feller processes to work with, while not indispensable, makes for a neuter treat-
ment of Kac’s method in Subsection 1.3. The form which we develop is doubtlessly
familiar to many specialists, but we give a complete proof which should be adaptable
to other analogous situations. In principle, the method applies to give Hu(x):-

-# f o Y(Xs)ds) whenever X is a Feller process absorbed on a boundary 0 atEXexp( T

time T < cx, and Y(x) is sufficiently tractable. It then characterizes H,(x) as the
unique bounded continuous solution of (A- #V)Hu- 0 with Hu 1 on 0, where A
denotes the generator of X. In other words, Hu is harmonic for the process X killed
according to #V.

In Section 2, we specialize to the case when V(x,y)-y, and X is the Pitman
process absorbed on {x-N or y-0}. We write Hu 1/ n 1( #)nan(x’Y)’
and try an expansion an Ybn k(x,y)xk. Then a scaling argument leads to

1
y3n/2bn, k (xy )kCn, k, where ca, k are constants, and the problem reduces to

determining Gn(s)" = oVa, ksk. Some power series arguments lead (tentatively)
1 s2to Gl(S -exp(])D_ 1(), where D_n(s denotes the parabolic cylinder function
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for 0 _< n. The key to the solution for n > 1 lies in Lemma 2.3, where it emerges that
Ks(s):- sGn(s solves the inhomogeneous Hermite equation (2.13) (this remains a

surprise to us).. Since the forcing term (-1/2Gn_ (s))turns out inductively to be a

finite linear combination of eigenfunctions (Go 1), this makes it possible to express
the unique bounded solutions Gn inductively in n, by a recursion formula for the
coefficients (Theorem 2.4). This is our main result, but to establish it rigorously, by
proving that the series for Ho converges uniformly and absolutely on E and satisfies
the uniqueness conditions of Kac’s method, occupies the rest of Section 2. Since the
series is not summed explicitly, we do not find Ho in an invertible form, but it yields

1
the conditional moments, namely n!y3n/2Gn(xy-’), 1 <_ n. The recursion formula
(2.17) for the coefficients is not particularly simple, but no doubt it can be program-
med on a computer if high-order moments are desired.

In Section 3, we derive closed form expressions for the moments of the areas of the
absolute value and the positive part of a Brownian bridge in terms of the coefficients
in Section 2. These are not as simple as previously known recursion (see [9]), but
they are simpler (perhaps) given the coefficients of Section 2. Anyway, they provide
more checks on Section 2, and the method leads in Theorem 3.6 to integrals for the
joint moments of the areas of the positive and negative parts of Brownian bridge.
These can be done explicitly in the simplest cases, but the general case (which hints
at orthogonality relations among the parabolic cylinder functions) is beyond our capa-
bility.

1.2 Proof of Proposition 1.1.1

Let us show first that TN A TO tends to 0 uniformly in probability as (x,y) tends to
the absorbing boundary {x N} U {y 0} of Eg. There are really two separate pro-
blems here: one as x increases to N and the other as y decreases to 0. For y > 5 > 0
as x---,N the coefficients of A near {x = N} are bounded, in such a way that one can
read off from the meaning of A the uniform convergence in probability of TN to 0.
Unfortunately, to make this rigorous seems to require comparison methods as in
Lemma 1.2.1 below (adapted from the one-dimensional case). Once the comparison
is established, the convergence reduces to a triviality for one-dimensional diffusion
with constant drift and need not concern us further.

The problem as y---0 is more interesting, and here it suffices to show that TO
tends to 0 in probability as y0 / uniformly in x (for W, not for WN). For c > 0,

1 1
let E:-{(x,y) eE’xy 2}, and let R-inf{t>0"XtY}. Thus Ris
the passage time to E, and it is a stopping time of W. We show first that T0 A R

1 1
(dYy-7_ _XtY7 < _e fortends to 0 uniformly in x. Indeed, since
k dt]

< T0 A Re, we have for the process starting at

> e(To A R). Thus T0 A Re < 2e 19 uniformly in as asserted. Consequently,
we see by the strong Markov property at time T0 A Re, that it suffices to show that
T0 is uniformly small in probability for (x,y) E {y < e} as 0 +.
To this effect, we use the scaling (1.1) noting first that the process Y(. may be
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included on the left if we include yY(./V@)on the right. Indeed, Yt-Y- f toXsds,
*/X/, 1

which for P is equivalent to y-fov/X(/v/)d, whiCh equals y(1-

fto/V/-Xsds -yY(t/v/-) as asserted From this, it is seen that the PX’U-law of T0

equals the P -law of y2 To, and since xy 2< and y2< it is enough to

show that lim px’I{To > N}- 0 uniformly for x < e small. Here we can use the

fact discussed in [10], that the P’l-law of X is that of the local time of a standard
Brownian excursion. As such, it does not return to the starting point 0 until ’time’

To, i.e., To is the excursion maximum value. Consequently, for small e > 0,
1

Then denoting the event in bracketspO, l{xtY 2 reaches e before Yt reaches 1/2} > .
1

by Se, and setting U(e)- {inft > 0: X Y2te} <_ oc, we have by the strong Markov
property

P’I{To > N} k E’I{pX(U(e))’Y(U(e)){To >
1

E,I(p(e’I){y-ff(U(e))To >
1 el NV}">_ Pe’I{T0 > Nv}P(Se) >_ -P {TO >

Since this uniform in e (small), the assertion is now proved.
To derive the form (1.2) for the infinitesimal generator, it is enough to take n.= oc

and consider the semigroup of W acting on the space %b(E) of bounded, Borel
functions. Then from [10, p. 1], for (z, y) E E with y > 0, the PZ’U-law of W is that
of the unique strong solution of

dXu (4- X2u/Yu)du + 2V/XudBu; dYu X.du; (Xo, Yo) (x,y), (1.3)

where the solution is unique up to the absorption time To at (0,0).
2 0formula for u < To, we have PX’U-a.s. for f Cc(EN)

Then by It6’s

f(W(u)) f(x, y) + / fz(Wv)2xvdBv

0

+ / [2fzx(Wv)Xv + fx(Wv)(4 2Xv/Yv)- f(Wv)Xv]dv.
0

(1.4)

Since fz vanishes near y- 0, we can take expectations to get

u-l(E’Z(W,)-Z(x,y))
u

u E’/ (2f(W,)Xv + f(W,,)(4 Xv/Yv)- fu(Wv)Xv)dv.
0

Let e- dist.(bdry E to supp f)> 0, where distance and boundary are Euclidean
(without identifying the line y- 0) and let C- {(x y) E:dist((x,y)suppf)< -}3
Starting at (x,y) E-g, the process must first reach g before reaching suppl.
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Thus as u0 + in (1.5) we get 0 uniformly for such (x, y) provided that

limu-lpa’b{sup IWs-(a,b) >}-0 uniformly for (a,b) eC. (1.6)
u--O s < u

Similarly, for (x,y)e C, (1.5) tends uniformly to Af(x,y) provided that (1.6) holds
for every c > 0. Thus the assertion (1.2) for the (strong) infinitesimal generator
follows if we show that (1.6) holds for all c > 0. Reducing e if necessary, the coeffi-
cients of A are uniformly bounded on an -neighborhood Ca/3 of C, and the "local
character" assertion (1.6) is familiar for diffusion, at least in one-dimensional. Unfor-
tunately we lack a reference for dimension exceeding one so for the sake of complete-
ness we sketch a proof by reduction of A to the one-dimensional case (fortunately A
is ’almost’ one-dimensional). Indeed, the a.s. identity Y(t)-b- f toX(u)du t<
To, shows that it suffices to prove (1.6) with Xs-a in place of IWs-(a,b) l.
To this end, choose constants 0 < c < d such that c < 4- x2/y < d holds on .., and
let X(1) Cres, X(2) .e/

-" be the solution of (1.3) starting at a but with c (rasp. d) replac-
ing the coefficient 4- x2/y (using a single Brownian motion B throughout).

Lamina 1.2.1: For (a,b) E E, we have X1)-<Xt-<X(2)t p’(a,b).a.s, for all
t< T:- T(E e/3) (the passage time of W to E e/3)_

Proof: The diffusion coefficient a(x)- 2V/ is the’same for all three processes,
and satisfies (r(x)-cr(y))2 <4 -y Taking, for7,21) x I, where f o+x-ldx c.
example, the semimartingale -Xt, suppose we have shown that its local time at
0 vanishes. Then we can repeat the proof of Yamada’s comparison theorem from [11,
IX (3.7)], using Tanaka’s formula for continuous semimartingales [11, VI (1.2)], to
get E(X ^ T- X2) T) + <--O, which suffices for the proof. The case of X X") is
analogous, so it remains to see that the local times vanish at 0. The proof of [11, IX
(3.4)] goes through without change in both cases, completing the arument.a,o X!i)Now to derive (1.6), note that because it is known that P {sups<u
a[ -}-o(u) i-1 or 2, uniformly on , it follows from Lemma 1.2.1 that
pa’b{sups < u ^ T Xs a > } o(u) uniformly on as well. But since Yt-
b < t(a + sups <t Xs a I), we have if t < e(6a + e)- 1 and sups <t Xs a < ,

Iw,-(a, < < t < T. Thu Conversely, <
(6a+e)--r, {sups<^TlWs_(a,b) >]C {sup,<u^TlX,-al >},andifM
is an upper bount of a on e, then for u<e(6M+e)-l, {sups<u^TlWs_
(a,b) >} has probability o(u) uniformly on e. Since pa’b{sd-Ps<TIWs--
(a, b) } > } 1, this gives probability of o(u) for {sups u Ws-
(a,b) > ;u < T} t3 {u > T}, uniformly on e, and this is not increased if e replace
{u> T} by {sup<ulW-(a,b) >;u>_ Z). Thus P’b{sup<,lW-(a, b) > ) o(u), un-formly on as required.

The last statement of Proposition 1.1.1 pertaining to {x- 0} is known for pO, u

since then X has the law of an excursion local time (see [10]). For px, u it then
follows from tPO’y and the strong Markov property at the passage time to x. It
remains to discuss the Feller property of the semigroup. Since W was shown to be

(,u)absorbed at (0,0) for P uniformly fast as y--,0+, it is clear that we must
identify the segment {(x, 0), 0 < x < N} with (0, 0) in order to preserve continuity on
the boundary of EN. It is well-known and easy to check that the absorbed process
WN is again a diffusion (on EN). Let TtN denote its semigroup on %b(EN). Then
by the above remarks, for f EC(EN) and t>0, lim(x,u)(Zo, uo)Tf(x,y)-
f(xo, Yo) uniformly for (xo, Yo) absEN, where EN is compact with absEN:--
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{(N,y), 0 < y _< 1} U {(0,0)}. Actually, the segment {0, x < N, y 1} has yet to be
discussed but it is obViously inaccessible except at t- 0, and there is little difficulty
now in seeing that limt__.0 + TtNf(x,y)- f(x,y) uniformly on EN for f E C(EN)
since limu__,0 + f(x, y) f(0, 0) uniformly on 0

_
x

_
N (here we can resort again to

P’{IXthe comparison argument as in Lemma 1.2.1 to show that ]imt__,0 +
x > c}--0 uniformly on EN- {y

_
c}). In other words, we have strong continuity

of TtN at t= 0, and it remains only to show that, for f e C(EN) and t> 0, TtNf is
continuous on EN absEN.

By the scaling property (1.1), we have

TtNf(x,y)- EX, uf(WN(t))- EX/V/, I
f /rXN/v/-(t/ x/), yYN/u t/ x/)). (1.7)

By strong continuity of TtN, we have for > 0 and any t1 _> 0,
limt -t PX’u{[WN(t)- WN(t2) > e} 0, uniformly in (x,y) and t1. Also, since

2 ,l
absorption occurs umformly fast near the absorbing boundary, it is seen that for
N1 < N2 < M fixed, limN N 0 + Pz’I{IwN (t)- WN (t) > e} 0, uniformly

27" 1 1
in t and x EN for a meirlc generating the topology of EM.1Now let (xn, yn)---,(x, y) EN -absEg, and for each n define two independent pro-
cesses Wv and WN on the same product probability space, where Wv(0 -(xn, yn)
and WN(0) (x, y). Let

1 1

Tn: -inf{t _> O" Xv(t)(Yv(t)) 2 XN(t)(YN(t)) 2},

where (Xv Yv)- Wv, etc. Since 0 < YN(O)- YN(t)< Nt, it is seen (for example,
using Lemma 1.2.1) that limn_,oTn 0 in law, and of course, each Tn is a stopping
time for the usual product filtration hn(t). Then we have, if Ill < c,

Exn’Unf(WN(t))- EX’Uf(WN(t))l < 2cP{Tn >_ t}
n T+ E(Ewy( n)f(t-Tn)-EWN(Tn)f(t-Tn)); Tn<t) l.

(1.8)

As noc, the first term on the right tends to 0. Setting
1 1

Zn(Tn): XV(Tn)(YV(Tn)) 2- XN(Tn)(YN(Tn)) 2,

the difference in the second term becomes by (1.7)

EZn(Tn),I f v/Yv(Tn)XN/v/Yv(Ti
t TN /v/YV(Tn) ), Yv(Tn)

YN/v/yv(Tn)((t-- Tn)/v/Yv(Tn) f (analogous)]
(1.9)

where (analogous) has the scale factor YN(Tn) in place of Yv(Tn). Now since

Tn-0 in probability, it is clear that Yv(Tn)y and YN(Tn)--,y in probability, and
then by the remarks following (1.7), we see that the difference (1.9) tends to 0 in pro-

bability, viz. each term converges in probability to EZn(Tn)’lf(x/XN/v/(t/x/),

yYN/f:.(t//r))V as n--oc, and since it is also bounded, (1.8) tends to 0 and the
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proof is complete.
Remark 1.2: It is possible, but tedious, to show that the law of a Feller diffusion

on EN absorbed at (x- N} 12 (y- 0} and with strong generator satisfying (1.2)is
thereby uniquely determined. For an indication of a proof, we observe that for 0 < e
small, the coefficients of A satisfy a Lipschitz condition on EN ; [,N- ] (R) [, 1),
in such a way that they may be extended from N,o R2 ac satisfy the conditions
of [13, V, 22]. Thus if (1.2) for the operator A determined by the extended
coefficients is assumed on R2, there is a unique diffusion on R2 which gives the
unique solution to the "martingale problem." By optional stopping, this process
absorbed on {x- } 12 {x- N-e} 12 {y- e} solves the martingale problem on N,e,
and it is the unique such solution because any such can be extended to a solution on
R2 using the strong Markov property on the boundary. It remains only to let
e- en--0, and to form the projective limit of these diffusions to obtain the law of

WN uniquely.

1.3 A Form of M. Kac’s Method for Functionals of an Absorbed Process

We turn now to establishing a variant of Kac’s method for obtaining the law of func-
tionals of WN. For this we need to introduce a "killing" of WN according to the de-
sired functional. But as an introduction to the problem we first make some observa-
tions about invariant functions of WN. Let us call an f E C(EN) "WN-harmonic" if
f(WN(t)) is a PX’y-martingale for (x,y) EN. We claim that f is WN-harmonic if
f e C(EN)VC2(Ev) and Af 0 on EV (the interior of EN). Suppose first that
f e Cc2(v) (compact support). Then f is in the domain of the strong generator and
by Dynkin’s Formula we have Ex’YI(WN(t)) f(x,y)+ Ex’YfoAf(WN(s))ds-
f(x,y). Thus the martingale property follows by the Markov property of WN. Now
supposing only f e 2(E), set EN, [,N ] (R) [, 1 ] and note that by stan-
dard smoothing argument there is an fee c2(Ev) with f-f on EN It follows
by optional stopping that, for (x,y) EN,, f(WN(t ATe) is a px’,"Y-martingale
where

T" inf{t _> 0" WN(t {x or N- e} 12 {y e}}.

Now f is uniformly bounded and, by continuity of paths we have limT- Tabs:---0

inf{t > 0:WN(t e absEN} for (x,y) e EV. It follows that for (x,y) e Ev,
f(WN(t/ Tabs) is a PX’Y-martingale. Since WN(t WN(t/ Tabs) and the result
is trivial for (x,y) absEN, this finishes the argument except for px,1. But, of
course, the Markov property for p,l shows that f(WN(t / )) is a martingale given
{WN(S),S _< } for every > 0, and along with right-continuity of WN at t- 0 this
suffices trivially.

lemark 1.3.1" The converse assertion that if f is WN-harmonic then Af-0 on

E is probably valid, but it is not needed for the purposes here. For applications it
is the solutions of Af-0 which give the "answers." We note also the expression
f(x,y)- E’Yf(W(Tabs)), which follows for WN-harmonic f by letting tcx under

Now fix a Y(x,y) C + (EN) and let Eg,/x- EN 12 {/k}, where /k is adjoined to
EN as an isolated point. For each pz, y, (x,y) EN, let e be an independent
exponential random variable adjoined to the probability space of WN, and introduce:
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Definition 1.3.2: The process WN killed according to V is

WN(t); < T( X)
WN’v(t)

A; t >_ T(A)

where T(A)- im[t:[ f0t A Tabsv(WN(s))ds >e, with the inclusion of an extra path
(WN, v(t)- /k, Vt

_
0): wA, and PX{wA=I.

Noting carefully that there is no "killing" (passage to A) on absEN, so that
T(A) for pz, y if (x, y) e absEN, we have:
Threm 1.3.3: With the initial probabilities px, y from WN, (x,y) eEy,

WN, V(t becomes a Feller process on EN, A, strongly continuous at t- O, with con-

tinuous paths except for (possibly) a single jump from EN to . The (strong) in-

finitesimal generator is given by Avf:- A(f)-Vf for f C2c(E,A), (x,y) EN,
and Avf(A O. The process is absorbed on absEg A.
Prf: (Sketch) The killing formula used here goes back to G.A. Hunt, and is

well-known to yield a strong Markov process from the Feller process WN. In proving
the strong continuity and the Feller property, the main thing to use is that the
killing occurs uniformly slowly on EN, i.e. limpX’y{T(A) < ) 0 uniformly on EN.0

This not only suffices to derive the strong continuity at t 0 from that of WN, but
it also preserves the main point of the coupling argument used to prove the Feller
property, namely, that thecoupling time Tn( ) tends to 0 in lw when in its
definition WN is replaced by WN, V. But a difficulty arises with the analog of (1.9)
since, for general V, WN, y does not obey the scaling property (1.7). Instead, we

have to introduce the killing operation on the paths (YN(Tn)Xn
((t-T,)/4Y(T)), etc.)in (1.9)starting at (X(T,),Y(T)), and analogously
without superscript n. But there will be no change in the result if we use the same

process W starting at (Z(T), 1)in both terms of the difference. In other words, we

base the two futures after Tn on a single process W(t) (using the probability kernel

Zn(Tn)PZn(Tn)’ to define the conditional law of the future at Tn given n(Tn),
in the usual way for Markov processes). This implies that in introducing the killing

1

operations into the two terms we use the path with scale factor (Y(Tn)) for the
1

first, and (YN(Tn)) for the second, but the same path W(t), W(O)- (Zn(Tn),l),
for each. Then convergence in probability of the scale Mctors to y implies that the

(t-Tn) ATkilling functionals converge in probability to f0 absv(fiXN/(s/fi),
yYN/,(s/))ds, i.e. their difference converges to 0. If we use (as we may)the

same exponential random variable e to do the killing for both, it is clear that, with
conditional probability near 1, either both are killed by time t-Tn or neither, in
such a way that the Feller property holds for the semigroup T’ v of WN, V"

Turning to the assertion about the infinitesimal generator of T’ v, note first that

f() 0 for f G C(E%, y)" We have

t-l(TtN, Vf f) t-1 N -1(T f f) E (f(WN(t)); WN, v(t)
on EN, while the same expression is 0 at A. The first term on the right converges to

A(f) uniformly on EN. Using (1.6)as before, we may assume IWN(t)--(x,y) < ,
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with error o(t) uniformly on e as t-.0. Then f(WN(t)) may be replaced by f(.x,y)
for small t, uniformly.on ET, and we are left with f(x,y)t-lp(x’y)

(fotA’’absV(WN(s))ds > e). This’vanishes outside supp f, and P(X’U)(Tabs < t)
o(t) uniformly on supp f. Thus we can extend the integral to t, and then

p(X,U V(WN(s))ds > e 1- EX’Yexp V(WN(s))ds
0 0

Ex’y V(WN(s))ds + o(t)
o

tv( , + o(t),

uniformly on EN. This completes the proof, the last assertion being obvious.
We come now to the key method (of Kac).
Theorem 1.3.4: Continuing the otation of Theorem 1.3.3, for # > 0 and (x,y) E

EN set H. (x,y)- EX’Yexp(-#foabSV(WN(s))ds). Suppose there-exists anH G
(EN) NC(EN) with A(H)-#VH=O on EN and H=l on absEN. Then H-

Ht on EN. (x,yProof: We have Hu(x,y P ){WN, uV reaches absEN before time T(A))-
P(X’U){T(A) c}, when T(A) is defined for #V in place of V. Clearly, Hu 1 on

absEN, and if we set Hu(A --0 then Hu is harmonic for the process WN, uV at
least if it is continuous. Indeed we have Hu(x,y EX’UH (WN V(TabsAT(A))),
and it follows by the Markov property of WN, uV that Hu(WN, uv(t)) is a px, y_

martingale for (x, y) EN.
On the other hand, if we set H(A) 0, then H Hu on absEN t.J A, and we claim

that H (being continuous by assumption is harmonic for WN, uV. As in the discuss-
ion above for WN, this is taken to mean that H(WN, uv(t)) is a PX’U-martingale,
(x,y) EN. The proof is much the same as above for WN (see (1.10)) only now the
martingale has a (possible) jump. In short, using ENe = [e,i- e] (R) [e, 1 c] as
before but H in place of f with H = H on EN, e, H C2c(EN) and He(A = 0,
optional stopping of the martingale He(Wg, y(t)) for (x,y) G EN, e shows that

H(WN, uv(tATe, uV)) is a PX’U-martingale, where Te, uy: =TeAT(A). Now

e--,01imTe,"V Tabs A T(A), and e01imH(WN, uy(t ATe, uV)) H(WN, uV(t)) except on

the PX’U-nullset where Tabs --T(A). By dominated convergence of conditional ex-
pectations, H(WN, uV(t))is PX’U-martingale if (x,y) EN The assertion is trivial
for (x,y) EabsENUA and letting tcx) we have H(x,y)-EX’UH(WN, uV
(Tab A T(A))). This is the same as with Hu in place of H, so the proof is complete
(except if y- 1, but that case now follows from the continuity of H, which implies
that Hu extends by continuity to y- 1).
What we need for Section 2 below is a form of Theorem 1.3.3 applying to the case

N- cx, or rather, to the limit as N---,. This means replacing WN by the process
W of (1.0) ff. We first modify the definition of E slightly, by identifying the line
{(0,x),0 _< x < oc} with (0,0), so that Eu C E with the relative topology. We do
not compactify E; however, we know from [10] that on E P(X’U){T0 < oc} 1,

2
where TO is the passage time to (0,0) as before. Moreover, since 4--_< 4 on E, it
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follows as in the comparison Lemma 1.2.1 that Px’Y{X

_
X2),.t

_
To}- 1 for

d2(x,y) e E, where X2) is a diffusion with generator 2x2 + 4d-- on R +. For X2)

there are no "explosions" (oc is inaccessible) ([6, 4.5]) and it follows by comparison
that as N--<x, px, y {X reaches N before To) tends to 0 uniformly on compact sets
of E. It follows easily that the semigroup T of W preserves Cb(E (but of course, it
is not strongly continuous at t 0), and its infinitesimal generator has the form Af
for f e 2c(E), A as in (1.2), just as for TtN.

For Y e b+ (E) (bounded, continuous on E) we define Wy from W just as in
Definition 1.3.2 for WN, V, where Tabs is replaced by T0. The scaling (1.7) remains
valid for T (only it is a little simpler here without absorption at N), and the
coupling argument remains valid to show that the semigroup T of Wv preserves

Cb(EI; Likewise, the argument after (1.9) for the generator of tN’V go’es through
for T[. Thus we see that Theorem 1.3.3 carries over to Wy with only the changes
noted: the generator is Ayf for f e c2(EA) and the process is absorbed on

(0, 0) U A. We also have the analog of Theorem 1.3.4TaS follows:
Corollary 1.3.5: Set Hv(x,y)= EX’Vexp(-#fV(W(s))ds), (x,y)e E, with

Y e Cb+ (E), # >_ O. Suppose there exists an H E Cb(E gl C2(E0) with A(H)-
#VH-O one and H(O,O)- l. Then Ho- H onE.

Proof: There is nothing really new here, but it recapitulates the former proof.
We have Ho(x,y)-PZ’U{To<T(A)) where T(A) corresponds to #Y, and so

gu(x,y) is Wuv-harmonic (if we set Hv(A)--0 apart from continuity
considerations. On the other hand, H is continuous by assumption (and we set
H(A) 0). Since g Hv on (0, 0) U A and gv(z, y) Ex’ vg (Wvv(To A T(A))),
it suffices to show that H(x,y)-EX’UH(Wvv(ToAT(A))), (x,y) e E. We note
from the definition that if we absorb W#v on {x-N), for (x,y) Eg we get a

process with PX’V-law the same as WN,#V (actually, #V restricted to (x,y) EN).
The proof of Theorem 1.3.4 shows that H(WN, vV(t)) is a PX’U-martingale. Now for
(x,y) e E, WN, vV and Wov )coincide for g sufficiently large, (depending on
the path), so it follows by bounded convergence of conditional expectations that

H(Wuv(t)) is a martingale for px, v. Then letting tc we obtain the assertion.

2. Derivation of the Conditional Moments

We now specialize Corollary 1.3.5 to V(x,y)- y, writing for brevity H for H
T5 n, noted following
ds) l(O)= x) where U is a Brownian bridge of term y, and (v) the loom time at

Thus H. (x,y) is the Laplace transform whose inversion gives the law ofof U, I.ids e,(0 ) (5ve,(v)dv e,(0) 1. We do not solve (A(f v()
py)H,- 0 per st, but instead we assume an expansion H,(x,y)-
(f Y(v)dv)n, and then solve recursively for the terms. It is shown that the series

converges for R and satisfies the conditions for H. Hence the expansion is justi-
fied and the conditional moments are

Ex’y Y(v)dv E Iuu(s) lds
0 0
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and they determine the (conditional) law of (f’glUu(s) lds eu(O) x).
In order not to prejudice the notation, let us write formally

Ht(x, y) 1 + #)nan(x y), (2.0)

and try to solve for the functions an(X,y).
(1.1) that we have

First we note from the scaling property

Hu(x,y H 3(xc-l,yc-2),O < c. (2.1)
pc

Indeed, since Yv f X(u)du, we have for B2 e %E,

Px’u{(Xv, Yv) E B2} PZ/C’u/c2{(cXv, c2yv__) B2},
C C

TYvdv f Yvdv) for pz, is equivalent to c3 f Yvdv for Px/c’/c2 asand so f 0
asserted. Then we may impose

an(x y)_ c2nan(xc- 1, yc- 2), c > 0, 1 < n. (2.2)

lmark: We do not need to justify (2.2) rigorously, because it leads to the
explicit solution, which is unique and verifiable.

Recalling (Corollary 1.3.5) that the equation satisfied by Hu is

)Hu E, (2.3)AHu-(2zx2+(4-y]dz Zd- -#yHuon
we have by matching powers of #,

Aal Y; Ann+l= -Yah, 1 <_ n, (2.4)
and we are lead to guess the existence of solutions in the form

a0(x y) 1,

an(x’Y)- Z bn, k(y)xk; 1 < n
k=0

42 d when replaces t).(by formal analogy of A with the heat operator t’ Y
dx2 d

We remark that an(O,y)(- bn 0(Y)) should be the nTM moment over n! of the
3n

integral of the Brownian excursion of length y. By scaling this is cny 2 where
Mn

cn:--.-! with Mn denoting the nth moment for the integral of standard Brownian
excursion. These moments figure prominently in Takcs [13], where Mk, k <_ 10, are
tabulated (Table 4) and a recursion formula is given. Here they provide a check on
our answers. When we work out the bn k(Y) by power series method, it turns out

3

that the series of even and odd terms commence with bn, o(y -cny and bn, l(ycn.-lyn (where co -1), respectively, where at first the cn are arbitrary constants
whos4e identity is known only from the (assumed) excursion connection. However
later on, when we sum the series in terms of parabolic cylinder functions D_ n, it
emerges that the values of cn are dictated uniquely by the behavior (limit 0) of the
solution as y--0. Thus it turns out that the case of the excursion (x 0) follows as a
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consequence.
When we substitute the series (2.5) into (2.4), it emerges that there is a solution in

(an k), Cn, O_Cn Cn,1
Cn- 1. Indeedthe form b,,k(y)--Cn,ky__ 2 so that and 4

granted a solution of the form (2.5), this form for bn, k follows by the scaling (2.2).
Thus we expect

3noo (1)k

an(X,y y-TE Cn, k xy -- (2.6)
k=0

and the summation of the series reduces to identifying the generating functions

Gn(s): E c,,ksk; Go(s 1. (2.7)
k=0

Let us go through the case n- 1 directly (although it is a consequence later of
more general considerations) since (unlike n- 2) we can derive the result by direct
summation of the series, and it shows where the functions D_ n come from in this
problem.
Lemma 2.1- There exists a bounded continuous solution al(x,y on E of Aa

8
2

-y having the form (2.6)-(2.7) with c, 0 -c- M and G(s)- 1/2exp(gg)D_(),
D_I i, cv i a  Iu c io Moreover, al(*,V)-0

and this is the unique such solution.
-Y from the constant termProof: Substituting (2.5) for a into (2.4) gives bl, 1 =--(in x), and then b 0- 12bl 2 from the coefficients of x. From the scaling (2.2) we

3

-2) bl,0(y), hence bl,0(y ’y for a constant " not yet determined.need C3bl,o(yc
1

Then hi, 2 gy, and continuing in this way, each bl,2k + 1 follows from bl,2k_ 1
uniquely, as does bl,2(k + 1) from b2k (the latter all have the factor ’). Thus we get
formally

oo
-(k+lal(x,y 4 )((2k + 1)(2k 1)...1)- ly k + lx2k + 1 q_ ,y2exp

k=O

where for k- 0 the expression g ..(k +g):- 1. Now comparison with the series
expansion of the confluent hypergeometric function Mk, m ([15, XVI, 16.1]) shows
that this becomes

(X2X2 4 X2 3 X2a (X, y) :YM -4’1 1/4]] exp + yexp (2.9)

Similarly, by Kummer’s first formula [ibid, 16.11] we get
1

3 ( )( )2 4

Fy2eXpyy x2 x2

6 , -l_y) 7 -1

" exp y-S-dx 2 M-1
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and hence

al(x,y)- exPl-- x 2y 24M___1 g- ’24M 1 g- (2.10)
4’ 4’

x2Here the functions M on the right are unbounded as ---*cxz, but the expression of
y

the Whittaker function Wk, m in terms of Mk, +m from [ibid, 16.41] shows that if

" V/ then (2 10) becomes4

a(.,)- xp-- W (.)
4’ 4 1

The asymptotic expansion of W [ibid, 16.3] gives W 1 l(x)- exp (-)x 4 as
4’ 4

x2t n. s to 0 * <
y2 y2 x2
T <-ux-*0, but if x-*x then --< -*0). On the other hand, if -*cxz, while--0- < k

1 3

fixed, then (-)2y2-*0 and so (2.11) tends to 0 as asserted. As for boundedness,
2 17 13

(Y) and it onlywe have limit 0 if x-*0 with -->e>0 since x 2y4- _fi y y-,O, so

x2 xyremains to consider the case -9-70. In this case, (2.8) gives the asymptotically 43

4-’y2, where y < 1 and x-*0, so boundedness follows.
As for the uniqueness assertion, let fi’l denote the difference of two such solutions.

Then A1 -0, and it follows as in Section 1 that l(W(t))is a bounded martingale

for px,, (x,y) e E. Since Y(t)- f Tt(X(s))ds we see that as tTTo (and
we have Y(t)< (To- t)X(t) when X(t)- maxX(s), hence for a random sequence

tn-*TO. Then X(tn)/Y(tn)-*c, and so l(W(tn))-*O. Hence ffl(W(t))-*0 as t-*To,
and it follows that ffl(X, y) 0 as asserted.

It remains to express (2.11) in terms of D_ 1" By definition of G1, and using the
definition of D_ 1 in [ibid, 16.5], we have as asserted

a()-2 *xp W,_
3111 (82)

-exp (6)n 1()
Remark 2.1: From the expression of W in terms of i ([ibid, 16.41]) it follows

that W 1 i(x)--WI l(X) for x _>0. Then by [ibid, 16.2] we get Gl(S
4’ 4 ’

___s 0 _< s. This is useful below in Section 3. Using the recurrence2 2exp - erfc
vf

formula for Dn, and Do(s -exp --4-, an analogous "erfe representation" of Gn
holds for every n, but seems too complicated to be very useful.

Turning to the ease of general n, two separate substitutions into (2.4), one for even
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powers of x and one for odd, reveal that both sequences cn,2k and Cn,2k + 1 satisfy
the same recursion relation for k > 0. Namely, we have (setting c0, 0 -1; c0, k -0,
l<k),
Lemma 2.2: For any initial sequence ca:- Ca,o, 1 <_ n, the form (2.6) and (2.7)

for the solution of (2.4) implies that

(3n + k 2)Cn, k 2 2Cn- 1,k- 1 2 < k. (2 12)Ca, 1 Ca4 1, 1 _< n; and ca, k ---- 4k(k + 1)
This determines the c,,k uniquely.

In view of the extra k in the denominator of c,,k, we can see by induction on n
that the series G,(s) converges absolutely for all real s. But we will find Gj(s)

M. TObounded for s>0 if and only if c= .--n, j<n, and then n!a,(x,y)- EX’(foJ 3. t-Y(v)dv)n. It also can be seen from (2.12) hat whenever cj > 0 for all j, we have

ca, 2k > 0, ca, 2k + 1 < 0 for all n, k.
Taking generating functions of both sides of (2.12) leads to:

0 <_ n.

K(s)-K;(s)-(3n-4 )K,(s)- -1/2Gn l(s), 1 _< n. (2.13)

Proof: By (2.12) we have

1 , 3n-3 + (j+3) "+1Gn 8 Cn Cn -18 -" "-- 0" i" - -2-7 -’- -3 Ca’j83

8..= 1

an 1, iS’
(j + )):7 2) = c, cn ,s

c 2sk + 1 sk

1/2s-1 -1,k- lsk + l cn cn -18

8 V 8

0 0 0

$ V

 ’-11 i (Gn-l(’)-Cn-l)d’dv"
0 0

Multiplying through by s, and differentiating twice yields the assertion.
lmark: It is seen that, in fact, (2.12) is equivalent to (2.13) with the initial

conditions gn(O -O, K’n(O -cn, 1 < n.

The eigenvalue problem X"-xX’-AX- 0 is known [2, Darling and Siegert] to

x2 2
have the solutions (exp-)D_,x(x) and (exp-)D_.x(- x). For A > 0, the only

2
solutions bounded for x > 0 are c(exp-)D_.x(x). (For a discussion of the eigenfunc-
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tions of the Hermite equations, see [1]).
By change of variables of the homogeneous form of (2.13), namely

X"(s) -x’(s) (an4- 1 )X(s) (2.14)
2

has c(exp*---)D6 -(a.-1)() as unique solution bounded for s _> 0. To give a probabilis-
tic interpretation, let V(t), 0 <_ t be an Ornstein-Uhlenbeck velocity process on R
with generator F- F"- ’, and for initial value x > 0 let To inf{t > 0: V(t)

0}. Then EXe (--X)TF-- D_ 3n 1)(0) (exP’66)D- (3n 1)()" This represen-

tation of the Laplace transform of a diffusion passage time distribution is familiar ([4,
4.10]). Let us moreover observe at this point, that by the recurrence formula for Dn

[15, 16.61] we have

D n(0) X/-2 -r- l(n +2 1), 0 _< n, (2.15)

so (exP62)D_.(an- 1)()is real-valued and decreases to 0 as
Our general method now consists in solving recursively equation (2.13), dividing

by s after each step to obtain the new Gn. One method would be to apply the
resolvent operator of the Ornstein-Uhlenbeck process, but that is unnecessary because,
as it turns out, each Gn is a finite linear combination of eigenfunctions. Let us fade-
rive the expression for G1 of Lemma 2.1 to illustrate the method. Since Go 1 we
want to solve K’-K-1/2K1---- 2"1 A particular solution is K- 1 (an eigenfunc-
tion, incidentally). The only solutions of the homogeneous equation bounded for

s2s > 0 are c(expig)D_2(). The general solution bounded for s > 0 is thus 1+
s2c(exP16)D-2(), and we must choose c in such a way that division by s at 0 gives a

finite G1. Clearly there is exactly one c possible. By the recurrence formula [loc.
sit] D_ 2(z)- -zD_ l(Z)q- Do(z where D0(0 1, so we have only to take c 1

and the solution becomes Gl(S 1 s2 s-(expi-g)D-1(), in accordance with Lemma 2.1.
The general case is quite analogous, only complicated. The following is the main

result of our paper.
Theorem 2.4: For n > 1 and Gn as in (2.7) (see also (2.6), (2.0)) we have

where the coefficients dj, n are determined by dj, n -0 if j- n is odd, and otherwise

1dl, -’
dn + + 2i, n +

n
2g + iF(_n +2 1

J

+ i) 2 - dj, n N(i)defnj=nr(jT1.)3n+2-j; +2(iA(n-1))

2 +i- 1F(- q-i)
i^(n-1)

2- j dn+2j, n

=o r(--t-+J)(n+l-j);O<i<n

(2.17)



Moments of the Area 115

Proofi We proceed by induction on n. For n- 1 the assertion has been shown.
Suppose that (2.16) holds for n( >_ 1), and let us derive (2.17) for dj,, + 1" We first
require a particular solution Xp of

,,_ s 3n + 2Xp sXp -Xp 4 J (2.18)

in view of Lemma 2.3, where dn + 1, n dn + a, n d3(n 1), n O.
2 s X -X-0, so we(2.14) we have, setting X- (exp)D j(), the equation X’’-s j

can take

1 exp 4j (2.19)Xp - -(3n+2)D-j

The general solution of (2.18) bounded for s > 0 has the form c exp D tan* 2)()
+ Xp(s), so it remains to choose c such that this times s- 1 remains bounded at s-
0 (clearly c is uniquely determined), and to simplify the division by s. To this end,
we will need the following simple lemma.
Lemma 2.g: For 2 2i j,

But by

D j(z) (j- 1)- l(j_ a)- 1...(j- 2i + 1)- 1D _j+2i(z)

-z[(j-1)-lD (j 1)(z) + ((j 1)(j 3)) 1D _(_a)(z) +...

+ ((j 1)(j a)...(j 2i + 1))- 1D_ j + 2i- l(Z)]

_2-r(J+l2 2 D-j+2i(z)

-zr-l(j+l)2 2-1[’(J-1,,)D (z) q--2-21-’(j-3)2 -(j 1) 2 D_ (j_ 3)(z)

2
--i D_j+2i_l(Z)

Proof: The first equality follows by repeated application of the recursion formula
Dn + l(Z)- zDn(z + nDn l(Z) 0, starting with n 1 j ([15, loc. sit., 16.61]),
and the second then follows by repeated use of F(n + 1) nF(n).
To determine first the constant c, we only need to use (2.15). It follows that

J

223_nF/’3(n + 1)’ 3n-2, 4dj, n22
C-- \ ,]2

jn (j (3n + 2))[‘(3 +\---j

and hence

exp-i-g Gn + l(S) s-

"j=n\ JF(3(n + 1) 21 ) ()),S j, rt

4D_(an+2 -2D_j - j-(3n+2)"
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Now in the special case n-l-j, we apply Lemma 2.5 with j-5 to get
D_ 5(z)-8-1D -I(Z_) 1- z[4 -1D_iz +8-1D 2(Z)I and substituting into the
above gives d2, 2-8 ,d2,4=4- as in (2.1).... other cases n>l, we apply
Lemma 2.5 twice, once to D (3n +/- 2) with j 3n + 2 and 2i 2(n + 1), and once to
D_ j with j j and 2i j- n + 2. (Note that when j n + 2 is odd, dj, n 0 by

s and we are left withinduction hypothesis.) Then the s 1 cancels with z

exp-- Gn+l(S)- -Z F-I J1. -J+ F(3n-f-1)D2-(3n+1)()
3--rt

f3n 8 }2 -(3n-1 2 -(n+l

2 -(j-1 -(j-3

+ /’-r(n + 1)D2 -(n 4-1) j- (3n + 2)

n-2 ( )[3n 2F(3n;1)D (3n+-Z r-1 j + 1 -J+
2

( )_- JF(3nl)D (3n 1)() -t- +2F
j,l dj, n

2 n (jq_l)() j_(--_2).

We thatsee terms in D_t,_l and D _1 occur for all j n + 2i, 0 < <
3n’33;(cur for -(’ <-2,... terms in D occurn-l, while terms inD_(

1
-tn-"

only for i-0 (j-n), and there are no terms in D kfr n+ +kodd. Collecting
coefficients, we get j

n g(i)

--27+ir(n+l )j=n
2 2dj, n

dn+l+2i n+l- 2 +i [j+l"\,: O<i<n.
r --y-)() -(3n + 2))

This reduces immediately to the expression of (2.17) as required.
Remark 2.2: It is clear that dk, n > 0 for all (k,n). By simple calculations we get

for dk, n, 1 < n < 4, the values

Table 2.1. Values of dk, n

k- 1 2 3 4 5 6 7 8 9 10

n-1 1/2 0 0 0 0 0 0 0 0 0

o o 41- o o o o o o
5 0 0 00 0 4-Ag 0 . 0 8

2-70 0 0 -- 0 2 -5 0 11.2 -5 0 11
4

MnSubstitutions of (2.15) into (2.16) gives values of Gn(O (--.) equal to those of
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[14].
As a further check on the formula (2.17) let us rederive the equation G + 1(0)-

-1/4Gn(O), 1<_ n, which is clear from (2.12) of Lemma 2.2. Using the formula

Dn(z)-nDn_l(Z)-1/2zDn(z from [15, 16.61] gives D’_n(O)- -nD_n_l(O)-
n+l

-n2 2 y/F-1(n+2 2), and substitution into (2.16) and (2.17) yields (somewhat
tediously)

_J
-V/- 3n-2 2 2dn, j (3n-2+j)

jn (3n-2+j)

3n 2
1 E dj, nD j(O),asrequired.4
j--n

3n 1

We have obtained the functions an(X,y -y2Gn(xy 2) for (2.0) which, along
with ao(x,y -1, gives our solution for Hp(x,y). But to establish it rigorously we
still have to justify summation of the series. Adding (2.4), for each n we have
A( Z j

+ lo( #)Jaj( )) = #y( . o( #)Jaj( )). We will show that as n---<xz, the
series converges uniformly in (x,y)E E, in any finite interval of # and that term-by-
term differentiation of power series twice is justified (it suffices to justify differentia-
tion of n l#nGn(s) twice in s) to obtain AHu + ttyHu i.e. (2.3) as required.
Indeed, such Hu satisfies the boundary condition H. (x,o)= 1. Note that the, limit
1 is even uniform in x as soon as n= 1(-/t) Gn(s s bounded for s > 0, because

3n

of the powers y2, 1 _< n, in an(x,y). Moreover, it is not hard to see that
0 <_ Gn(s)O as sc for each n _> 1: we have remarked above that dk, n are nonnega-
tive for all k, n while by the representation as transform of Orntein-Uhlenbeck pass-
age probabilities to zero (see (2.14) ft.) it follows that 0 <_ (exP6)D_ j()0 as sx
for 0_< j.

lemark: Since Gn(s has its maximum on R + at s- 0, where Gn(O is (n!)-1
times the nth moment Mn of the integral of the Brownian excursion, it would seem
that convergence of the series could easily be proved by using the recursion formula of
Takcs [14] for the excursion moments. But this argument is circular- we do not
know that Gn(O has the required interpretation until our solution is rigorously esta-
blished.
Lemma 2.6: The series n

n 1(- #) Gn(s) converges uniformly and absolutely in
s >_ 0 for every # R and may be differentiated (twice) term-by-term for s > O.

Proof: For convergence, by the preceding remarks it suffices to show that
J

CXn llnGn(O) < Cx:). Let us set en + 1 + 2i, n + 1" dj, nD j(O) dj, nV/-2 -TF-

.(J+,--y-), from (2.15). Then (2.17) becomes

n

2-+ i-1
en + l + 2i, n + l

n+l__ir(, 2+1+i)i^(n--1) en+2j, n

r(n2+:+i) =o (n+l-j)
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2 -I’(nl/i) iA(n-1)e
n+2j’nE n+l-j’r(n2+2+ i) j=o

and of course, Gn(O E 7_ en + 2i"

Now as kcx, F(k) F2(k)22k- 1 ((k- 1)!)222k 1
1 where we used

F(k-t-1/2) V/-F(2k) --(2k-1)(2k-2)’V/- ’the F-duplication formula and [3, VII (2.6)]. So we get, as nc,

3 n i^(n-1)
an + 1(0) 2

+i j=0

en+2j, n

n/l-j

-gE 1 1< 2 en + 2j, n
i=o n+22+in+1--i j=0

=2
3 IV/ n-1 n-1

n-iv/ 1 ( 1 )1"+2+n j:o j:0 n+"i n+l-i

3

<2 -g{ 1 ’G (#1 1/2 1 ))) n(0)+ Een+2j, n ]’+ +"’+n+l
j=o

1/2Gn(0)(nnln n)
By the ratio test, we see that the series converges as required. As to the differentia-
tion with respect to s, we have (as in Remark 2.2)

--s(exP’6)D-n())-I(-)D-n()-D-n -l()l(exp6)<O,
d2[’[" s2" )) [n(n+l)D -2() +sn -n-l() D ()J texpgJD- ( -4 - D _sn--nl

( s) n(n+l)D (s)exp 4 -n- >0, and similarly

da s s n(n + l)(n + 2)D _a[ 0.

Thus we see that the (two) derivatives are bounded in absolute value by their values

at 0, which are at most n(n+l)D_n4 (0). This does not change the radius of conver

gence of the power series. Since the series of derivatives converges uniformly in s _> 0,
we have
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8

d 1
oo

#nGn du # Gnds 2
0 n=l n=l

and the second derivative is handled in the same way.
Pemark 2.3: It might be quite interesting if the recursion formula of Takcs [14]

for M,( n!Gn(O)) could be derived directly from Theorem 2.4.
Recapitulating, we have proved:
Theorem 2.7: With Gn(s as in Theorem 2.4, we have for 0 <_ n,

I( o IE Uy(s)[ds gy(0)-x -nyWGn(xY-), Ox,Oyl

where Uy is a Brownian bridge of span y and y(O) is twice its local time at O.

3. Points of Contact with Perman and Wellner [9]

As in [9], we set Ao+ -fU +(t)dt, A fU-(t)dt, where U is a standard
Brownian bridge. Thus we have f u(t)dt Ao+ A- and f U(t) dt Ao+ +
A0-: A0, where the first is Gaussian with mean 0, hence its law is easy to find,
while the law of the second has been obtained through a series of papers see [9,
Introduction]. The moments #k: EAko follow from a recursion formula of L. Shepp
(see [9, Theorem 5.1]), while #k:-E(Ao+)k follow from a recursion formula of
Perman and Wellner [9, Corollary 5.1]. By combining the above results, one can
derive the joint moments #,,. n: E((Ao+)m(Ad-)n) for m + n _< 5. For example,

1
# E(Ao+ A )2)’But for m + n > 5 the method does not suffice becausePl,1 ( 2

in the expansion of E(Ao+ -bAd) there are already four distinct joint moments

#m,n with m + n- 6 (discounting 3 symmetries) while there are only three ’knowns’
(including #g ).

All of these moments (including arbitrary (re, n) in #m,n) follow in principle by
our method, by integrating out over the local time and bridge span variables (z,p).
But if we require explicit expressions no involving integrals (i.e., that the
integrations involved be done explicitly) a surprising fact emerges" we can do the
integrations precisely for the bridge moments treated already in [9] neither more not
less. And besides, our comprehensive recursion formula of Theorem 2.4 is doubtless
more unwieldy to apply then the separate recursions noted above, which (apparently)
do not follow easily from it. Thus our results, at present, seem to provide a strong
vindication of the results of [9] for the moment problems treated here. 2

The density of el(0 (the local time of U at 0)is given by 4-1xexp(--),
x2according to P. Lvy (see [7, p. 236]), and so #- n!f4-1xexp(--)G(x)dx.

This yields
Proposition 3.1: For 0 < n, we have with dj, n from Theorem 2.4
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3n-2-1J ( )2
3--n

x2 1Proof: Noting again that exp(--)- Do(x x Dl(X), we have

0 0

(l+j)-l] (DID" D jD’l’)dy
0

= (1 + j)- 1(OLD’_ j D_ jD’l]
where we used [15, p. 350] for the second equality. Now by substituting for the two
derivatives (see Table 2.1ff.) this becomes by (2.15)

(1 + j)- 1(_ jD1D J_ 1 D_ jDo] (1 + j)- 1D_ j(0)__ 1)2

and substituting these values into Theorem 2.4 completes the proof.
Remark: Using the values of dj, n from Table 2.1 for n _< 4, we get values

19 in agreement with Table 1 of [9]
(which continues to n- 10).
To handle the moments #_ (or #- analogously) we note from [10] as in (1.0),

that the pa, U_law of X is the same as that of the (spatial) local time process of [B[
at the time when it reaches a at 0, conditional on that time being y. Suppose that in
this statement we replace [B[ by the reflected Brownian motion obtained from B by
excising the negative excursion, i.e., B(z(t)) where f(t)I(o oo)(B(u))du t. Since
this has the same law as B[, it also has the same local tme process (equality in
law). But now the time when the local time at 0 reaches a is, in terms of B, the
time spent positive at the instant T(a) when the local time of B at 0 reaches a. The
local time of B(z(t)) at z_> 0 at time T(a)is the same as that of B (since the
negative excursions do not contribute). Thus pa, is also the law of the local time of
the process of positive excursions of B (holding the value 0 during the negative
excursions) at T(c) given that the time spent positive equals y at the instant T(a).
Since it is entirely defined from B(z(t)) is not hard to see that this remains true if
the time spent negative at this instant, say z, is also given, in such a way that up to
time y + z, B is in law a Brownian bridge of span y + z given that its local time at 0
is a and its time spent positive is y. But here y+z may be fixed (>_y), and in
particular we may set y + z- 1. Thus we have shown the following (see also [10,
Corollary 18])"
Lemma 3.2: The law Pa’u of (1.0) ff. is also the law of the local time process in

parameter x >_ 0 of the standard Brownian bridge U conditional on its local time at 0
being a and its time spent positive being y.

Next we need the law of time spent positive by U conditional on local time a at 0.
This is easily recognized as the time spent positive by B at time T(a) given T(a)-
1. As noted by P. Lvy, this is the law of T() given Tl()+T2()- 1, where
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Ti() are independent copies of T(), i- 1 or 2, and we have:
Lemma 3.3: (See also [7, Corollary 1]) The above law has density

(4X-)- la(y(1- y)) 3(2exp

Combining the two lemmas with Theorem 2.4 gives the following theorem.
Theorem 3.4: For n > O, we have (with dj, n from Theorem 2.4)

n 1
2 2n + 3nV/-V/’ n i=OEdn +2i, n(n + 1-(n- 1) 1-,(n, +12,,,+i) r(3n2+ )r(-+n i)

Remark: We are unable to simplify this further (see calculations below). Mean-
while we have checked it against [9, Table 1] for n- 1, 2 and 3, where it gives #1+

1/4V/ /z2-t- _1 and #3+ 71
7-6, 4096, as required.

Proof: We have to integrate out x and y in the product

xexp 4X/) ix(y(1 y))-gexp 2y(1 y)
yGn xy

where Gn(= ep() 3n-2 sE j n dj, nD_ j(7)" Fixing j: n + 2i, 0 n 1, and
thsetting (42)- dj, n aside until the end, the term becomes

exp]-6-D- (n -4- 2i) 2
x2 y2 (1 y) exp 8y(1 y) y

dydx
0 0

= 8 z2 exp D_(n + 2i)(z) y’n(1 y)-Texp- 2( 1 y)dy dz

0 0

8 z2 exp D (n + 2i)(z) J V 2 (1 + V)
0 0

z2v dv dz,2 exp ----- (3.2)

u Here the inner integral is a Laplace transformwhere we used z then v-_.
in , and it is found in [12, p. la, #]. The result is that (a.2) equals

%/r3n+12F("-I-1) f zD-3n-I(Z)D
0

_n_2i(z)dz.

Next we use zD_ 3n- 1(z) D
T1 A-T2, where T has the form

3n(Z) (3rt + 1)D 3n 2(z) to write (3.2)

T1-cIf D_n_2i(z)D-3n(z)dz
0
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Cl / D 2idz2(n i)
D n 2iD 3n 3nD n

0

2(n i)
3riD n 2iD 3n 1 "[- (rt q- 2i)D n 2i 1D 3n

(ncl’-i)2-2n-i-1/2(-l(3n/F-l(n’-2i+l-2 )-- -1(3n+2 l)F-l(n+2i))’2

where we proceeded much as in Proposition 3.1 above. Similarly (replacing D_ an by
D an ) we obtain

T2- -Cl(3n+l)ff D_n_2i(z)D-3n-2(z)dz
0

=--(n--iw1)Cl(3n+ 1)2.2n-i-((3n)-lF-l()F-l(n +2i2 +1)

--(n + 1)-1F-1(an2+ 1)r-l(n+2 2i))
--n i+ 12 F-1 F-1 n+2i+2 1

_Fl(3n-+-llF-l(n+2i I l(n 2i 1 )2 2 +3F-l(/F- + - )2

/K3n + 12 3nCombining with cI V z F(--+ 1), we obtain finally

T1 + T2

’V/-n-2i+ll[( -l(n 2i 1 )F-l(3n+ 1)F-1( +2i)]-(n i/l)(n-i)n+)F + + )-F(+I n
2 2 2

(where the second term comes from combining the second terms of T1 and T2) and
multiplication by (4vf2-)- ldj, n yields the assertion.

Finally, we consider the mixed moments #re, n" In addition to Lemmas 3.2 and
3.3 this requires:
Lemma 3.5: Given that the local lime at 0 of a Brownian bridge U is a and that

the time spent positive is y, the conditional local time processes of U in paramelers
x >_ 0 and x <_ 0 are independent.

Proof: The easiest way to see this is to use the well-known fact that the two corres-
ponding local time processes of B at time T(c) are independent (but also see [10,
Corollary 18]). As in Lemma 3.2, conditioning their integrals to equal y and 1-y
respectively gives the joint law of the conditional local time processes of U, and it
obviously preserves the independence.

From this lemma we see that the conditional local time process of U has law
p,up,l- v, where p,v governs the local time with parameter x >_ 0 and p,l-v
that with parameter -x, x > O. In this way, one obtains:

/am, nTheorem 3.6: For m > n > O, we have (with dj, n from Theorem 2.4) m!!m- n- d mdn I(il,i2) whereEi loEi2-0 rn+2il, +2i2, n
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I(il,i2) 2vi (cosO)am+l(sinO)an+l
0

(ix D_m_il(rCosO)D_n_i2(rsinO)e
0

4 r2dr dO.

Note: Of course, for m = 0 or n 0 this is subsumed by Theorem 3.4.

Proof: We need only multiply (3.1) by (1- y)W-Grn x(1- y)- The exponen-
tials combine in a factor exp-x2(16y(1- y))-, and routine changes of variables
(set x- 2V/-z- 2V/1- yv) reduce the double integral to the expression of I(il,i2)in
Cartesian coordinates (z, v). The polar coordinate form given here seems slightly sim-
pler.

While we do not know how to integrate I(il,i2) in general, we can reduce it for
1 s2the case m-n- 1 by use of Remark 2.1 to the effect that Gl(S s exp(N-)erfc

1

(s8 2). Since the integration is, even there, a bit unorthodox, we shall conclude by
presenting it. In this case, the combined exponent of exp reduces to 0 in the analog

3 1

of (3.1) with n- 1 and an extra factor (1- y)Gl(X(1- y) ) (using the erfc repre-
sentation of G1) and we are left with altogether

l_/i ( i(oo1 _1/2)( --51) )1,1 X
2 erfcx(8y) erfcx(8(1 y)) dy dx

0 0

0 0 D(tl,t2)x2dxdy)dtldt2,
1

where D(tl,t2): {x(8y) 2 < tl,x(8(l_y)) 2 < t2 } ClE. By simple algebra we

have D(tl, t2) {x2(8t1) < y < 1 x2(8t2)- 1} Cl E, so the y-section of D at x is

x2 x2void unless -g-(t 1- 2+ t-2)_< 1, in which case it has length 1--g-(t1- 2+ t2-2). The
integral becomes

exp( t t) x2 --g-(t- 2 + t- 2)dx dt1 dt2
0 0 0

where L x/tlt2(t + t22) , and integration over x gives

0 0
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Expressing this in polar coordinates, it equals 4 (fe-r2r4dr)focos3Osin3OdO,
and by routine calculus it yields #, (120)- 1 as expected.
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