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A separable spin glass model whose exchange integral takes the form

Jij-J(ilj2+12jl) which was solved by van Hemmen et al. [12]
using large deviation theory [14] is rigorously treated. The almost sure

convergence criteria associated with the cumulant generating function C(t)
with respect to the quenched random variables ( is carefully investigated,
and it is proved that the related excluded null set N is independent of t.
The free energy and hence the other thermodynamic quantities are re-
derived using Varadhan’s Large Deviation Theorem. A simulation is also
presented for the entropy when ( assumes a Gaussian distribution.
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1. Introduction

In this paper, an exactly solvable model of a spin glass which was introduced by van
Hemmen et al. [12, 13] is studied. The Hamiltonian function is given by

3N({S}’ {J}) E Jijw(i)w(j) JoE w(i)w(j) hE w(i), (1.1)
(,J) (,J)

where co(i)- +1 are N Ising spins interacting with each other in pairs (i, j) and with
an external magnetic field h. J0 is a direct ferromagnetic coupling and
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Jij JNir/j + ji] (1.2)

where the i and r/j are i.i.d, random variables with a symmetric distribution with
zero mean and variance 1. This model resembles a similar model proposed by Pastur
and Figotin in [8-10]. However, it was van Hemmen et al. who first used a large de-
viation (LD) argument to successfully solve this model. In the absence of
ferromagnetic coupling and an external magnetic field h, the Hamiltonian can also be
written as

JN({S}, {J}) NJ N- 1 N 1 (1.3)
j=l

To compute, using LD theory, the free energy defined at inverse temperature fl by

-/3f(/3) =Nli_,m-- log E
{w(i)}/N-- 1

(1.4)

it must be shown that the so-called cumulant generating function exists, defined by

C(t) lim - logV[exp(t, WN> (1.5)

where E denotes a configuration average over the Ising spins w(i), (-,-), represents
Euclidean inner product in R2 and WN are the 2-dimensional random variablesan

WN E iw(i)’" iw(i)
i=1 =1

The focus of this paper is to rigorously investigate the a.s. convergence criteria of
C(t) with respect to the common distribution of and r/. The main result is
Theorem 3.1 in which the t independency of the excluded null set associated with the
above mentioned convergence result is proved. Furthermore, we show in Proposition
3.2 that

(i) when has a general symmetric discrete distribution, then the entropy
density s satisfies

and
(ii)

S-"*e(l + 2 0)In 2 as T---,0,

when has a Gaussian distribution, s--.0 as T--0.

(1.6)

2. Definitions

Consider the configuration space h- XA (i.e., FtA --{w:A--.X}), where X is a
compact metric space, and A {1,...,N} where N is any non-negative integer. In
this particular case, we take X {- 1, 1}. Define the single spin distribution # by

P 1/2((1 + 5 1) (2.1)
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so that #({1})- #({-1})- 1/2. Here 5(_)is the Dirac-point measure. Also denote
the infinite product measure on %(A) (the Borel subsets of A) with identical one-

dimensional marginals # by u(w) 2- AI for each w E A" Define a random inter-
action (- {(I)A" A C 77} by

hw(i); Y

y(W) Jij(i)(j); Y (i, j}, (2.2)
0; otherwise

and the Hamiltonian by

(2.;)
XCA

Here, w(i) E X, and h represents an external magnetic field. In the following, we
index all quantities by N instead of A.

Let

where i (il’2"’"id) are i.i.d, random variables each with a common symmetric
distribution denoted by . Denote by _, the sequence (i)/N= 1" We assume that
E([ia [) < oc; 1 _< a _< d and that ia are i.i.d, random variables. Q is a symmetric
function of the i’s which means

:N -E Q((i; j)w(i)w(j) hE w(i)
(,j)

where (i, j) represents an index pair.
The partition function is defined by

f
2N / exp[-

9tNwhere/3 is the inverse temperature.
The range of the interactions tends to c as Ncx.

defined as

(2.6)

The specific free energy is

1 lim N1---ln %N(3, h).f(/3, h) / Ncx)

We shall prove that the above limit exists FCa.s. in the following case.

(2.7)
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3. Separable Interactions

Let h 0, d 2, and consider a separable quadratic interaction of the form

Q(i; j) J[SilSj2 + jli2]" (3.1)

Define the observables

and define their distribution by the image measure FN [2, 3] where

FN(A)- P,(q I(A)), (3.3)

for all A e %(R2), under the measurable map qN- (qlN, q2N):N--+2"
=N depends on the random variables i" The partition function (2.6) becomes

N(/, 0) 2N / eNKqlq2:N(dq)
where K flJ and the specific free energy can be written as

Notice that

(3.4)

2
Let {Yn E Rd;n- 1,2,...}, where d E +, be a sequence of random variables defined
on some probability space (, ,). We define the cumulant generating function by

C(t) =nli_,ml-ln E[e(t’ Yn)] t Rd, (3.6)

where F denotes the expectation with respect to P, and (-, -) denotes the Euclidean
inner produce in d. Our aim is to show the existence of C(t) -a.e., k/t and then to
use Cramr’s Theorem [14, 4] to find a candidate for the rate function I(ql,q2 which
would be the Legendre-Fenchel transform [4] of C(t). Then we discuss the PCa.s.
convergence of (3.6) considering the bounded and unbounded distributions for , and
also show that the null set, where this convergence is not valid, is independent of t.
We then apply Varadhan’s Theorem [14] to evaluate the limit (3.5).

3.1 Evaluation of the Free Energy

Lemma 3.1" Assume E(es II II) < oo for all s > 0 and M > [ II II ]. Define closed
sets

Then

P( li_,supAn) 0. (3.8)
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(11 II Euclidean norm in d.)
Proof: II II are independent random variables with the same distribution.

Cramr’s Theorem, we have a large deviation property for Xn with rate function
By

where

I(x) sup {sx- C(s)}, (3.9)
s>0

C(s)- lnE(es ]1Q [[ ).
C(s) < c by the assumption.
bound that

For An closed, it follows by the large deviation upper

limsupln[P(An) < -inf I(x) IM.ncx x> M

This implies that ’e > 0, Sn0 E N such that

n >_ n0:=lln P(An) <_ IM +

=vP(An) <_ e- n(IM-e).

(3.11)

(3.12)

Since An is closed an E[ II 113 An, we have IM > I (El I[ { II 3) 0, Choose e < IM
and we get

-n(IM-eE e(An)-< E e < c. (3.13)
n _> no n >_ no

Now it follows from Borel-Cantelli’s Lemma [6] that

Theorem 3.1"
t>0.

(a)

P(lim supAn) 0. (3.14)

Let d 2, {i be i.i.d, random variables with E(e I] Q ][) < oo for all
Then
for every t (tl, t2) E 2 and _-a.e. the function

N[<t, qN())C(t) lim ln e ]Pu(dw) (3.15)
N-.-,cx V

FN

exists and is independent of .
For _-a.e., the distributions :N
(LDP) with rate function given by

satisfy the Large Deviation Principle

I(q) sup {(t, q} C(t)}. (3.16)

(c) The specific free energy of the spin glass model defined by the Hamiltonian
(2.5) with the separable interaction (3.1) exists -a.e. and is given by

1 ( sup {Kqlq2- I(ql,q2)} +ln2).f(fl)
ql’ q2

(3.17)
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Proof: (a)

Write

C(t) =Nlimoln exp

ftN
i=1

N

----Nlimoo--E In cosh ((t, i)).

N

gN(t’- -E In cosh((t, i))
,=1

(3.18)

and (3.19)

g(t) [ln cosh((t,

so that g(t) is independent of i. We show that there exists a null set hc such that
/t 2 and V .N’, gN(t, )g(t), i.e.,

C(t) :[ln cosh((t, i))]

_
a.e. and (3.20)

Notice that at a fixed t, X -lncosh((t,i)) are independent random variables with
identical distributions and hence it follows from the strong law of large numbers that
gN(t,

_
)-g(t) a.s. This means that for each t E D, there is a null set t such that, if

_
6 t, then

gN(t,

_
)g(t). (3.21)

Let D C R2 be a dense countable set and put

Then is also a P null set since it is a countable union of null sets. If

_
.N’, then

we have

gN(t,_)--g(t) Vt e D. (3.22)

Let > 0 be given and set lit- t’ II < e/3M for some M > IV[ II II ]. Then

gm(t,_ )-- gN(t’,_ )1 E [ln cosh((t, i))- In cosh((t’, i))]
i=1

N
(3.23)

Now suppose that has bounded distributions. Then, we can find an M such that

II ia II -< M with probability 1 (for example, i,- :t:l with probability 1/2). For

unbounded distributions we shall assume :(e II II < oc (notice that this condition is
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satisfied for Gaussian distributions). By Lemma 3.1, we have

P(lim supAn) O.

This implies that if A" limsupn__,An, then eventually
n

II II < M a.s. (3.24)
i=1

So, take N t_l A when has an unbounded distribution and get, for those

e with probability 1.gN(t,{ )-gN(t’,_)l <_

Now for an arbitrary t E N2, N U A and t’ e D with lit- t’ [I < e/3M, it follows
from (3.25) and the continuity of the function g, that,

gN(t,_)--gN(t)l <-- gN(t,_)--gN(t’,_)l

-k- gN(t’,_)-g(t’)l + g(t) g(t’) < . (3.26)

We conclude that

gN(t,_ )--g(t) Vt e N2 and PCa.s. (3.27)

(b) Since C(t) exists -a.e. for all t and is a convex function of t, we apply
Cramr’s Theorem [14, 4]. Since

(qlN, q2N) E ilw(i)’- i2w(i)
i=1 =1

is a pair of independent random variables with common distribution function
and is in the form of the averages described in Cramfir’s Theorem, we have

I(ql, q2) sup {;tlq -t- t2q2 C(t1, t2)) -a.e.
tl,t2

(c) Now []:N satisfies the LDP with rate function I(ql,q2), and qlNq2N is a

continuous function from N2N. In order to apply Varadhan’s Theorem [14] to
evaluate the limit (3.4), we need KqlNq2N t be bounded above. This follows from
Lemma 3.1"

If A, N0 N such that
N

1E [’il < M N > NO
i:1

for N>_NO Hence we get for N>_N0,

qlNq2N <-- M2 a.s. (3.28)

Finally, it follows from Varadhan’s Theorem that
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f(/) sup {Kqlq2 I(ql, q2)} + In 2 exists -a.e. (3.29)
qlq2

In the following, we determine the maximizers of the free energy functional (3.17),
the critical temperature of the spin glass phase transition, and also find expressions
for some thermodynamic quantities.

Definition 3.1: Define the specific entropy as a function of the specific internal
energy u by

(3.30)

Proposition 3.1: Let (’1,2) be a maximizer of the free energy functional (3.17)
with (1,2) and 1 1 + 2. Also take J 1 so that K ft. Then

(i) Yi -’2 -’ and " satisfies 2 E,[tanh ]. Furthermore, y has non-

ff > Zc
(ii) 2I(q = 2 E,[ln cosh ].
(iii) #f(#) En[ln cosh ] 2 + In 2.
(iv) The specific inernal energy and the specific entropy are given by

and (3.31)
s(#) En[1n cosh ] 22 + In 2
kB

respectively. (kB is the Boltzmann constant.)
Proof: Since C(t) is differentiable for all t, the maximization conditions of (3.16)

gives

aC(tl,t) aC(tl,t)
ql OtI

q2 Ot2
/ql q2"

If (’1,2) is an interior point of the essential domain of I, which we shall denote by
essdomI, then I is differentiable [4]. For (’1,2) int(essdom I) we have by (3.29),

/2 aI(ql’ q2) c3I(ql, q2)
1 ffl 2 (3.32)

Differentiating (3.16),

Oq t2(1, q2). (3.33)

hence we get ta(2 2, t2(a)- 1" Differentiating (3.20) with respect to t and
t2, we have

’1 [1 tanh #(12 - 21)]

2 =[2 tanh/(1"2 + 21)]"
(3.34)

We now prove (i).
Write

t11 -- t22 1/2(tl + t2)(1 + 2) + 1/2(tl t2)(1
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and (3.35)
qlq2 (P-

wherepl-ql +q2andp2-ql-q2" Then I can be written as

sup l-l=sl p + -s2P2 C 2I(Pl, P2) --Sl,S2 "2 1 2 2 (3.36)

where 81 tI + t2 and s2 t t2. Then (3.29) becomes

-/3f(/3)- In 2 sup {#q2q2 I(ql,
ql,q2

sup (41_#p12 1 2/3P2 --/(Pl, P2) }
Pl’ P2

Since I(pl, P2)- I(p,- P2), the above infimum must be attained when P2- ql-
q- O. Substituting this in (3.34) and adding we find

2 En(r/tanh(#

Differentiating the right-hand side of (3.38) gives

dq[tanh(/3q)]
cosh

-#E- - .,

and we have

0 < #E <
cosh2(flqr/) (3.39)

Hence, E(rtanh r/) is increasing and its derivative is bounded above by E(2). It
follows that if #E(q2) > 2, then (3.38) has three solutions, two of which are non-zero.
It is easy to check that the supremum in (3.37) is then attained for Pl 2, where
is either non-zero solution. If E(r/2)_< 2, then -0 is the only solution. We
conclude that the critical inverse temperature is

(ii)
(i),

2 (3.40)

Take 1- "2-’" We can write the rate function (3.16), using (3.32) and

I(, 2/T2 E,[ln cosh/3 r/]. (3.41)

(iii) Substituting (ii)in (3.17), we get
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flf(/3) :n[ln cosh/3 r/] -/32 + In 2. (3.42)

(iv) The specific internal energy is determined by minimizing (3.30) as

and the specific entropy by

which gives

u(fl) d-(/3f(/3)) q2(/3)

kB

(3.43)

=/3(u(/3)- f(/3)) (3.44)

s() gulln cosh/5 r/] 2/52 + In 2.
kB

Remark 3.1: 1. Notice the low temperature limit of (3.38) is

(3.45)

W 1,71 (3.46)

since tanh[/qr/]sign(qr/) as/3cxz.
2. For 13 < #C, s = kBln2.
3. The solutions of for fl > tic have to be obtained by numerically solving the

implicit equation (3.38). In the following, we consider the solutions with specific
distributions in more detail.

Proposition 3.2: (a) Let 1,2 each have a general symmetric discrete distribution
and let r 1 " 2" Then, as

SkB(r/-- O) In 2 (3.47)

(b) Let 1,2 have a standard normal distribution. Then y I/v/- and s--+O as

Proof: (a) By (3.45) with kB -1 we have s(Z)- g0[lncosh/ r/]-2/2+1n2.
As Z---,oo, In cosh(/ r/) ,-,/ I’ r/I In 2. However, irrespective of Z, when r/- 0,
In cosh(/ r/) 0. To compensate, we add the term P(r/- 0)In 2. Hence, as

g0[ln cosh( r/)]--+go[fl 1 r/I] In 2 + e(r/-- 0)In 2.

Using the above and (3.46) we get

lim s(/3) e(r/- 0)In 2.

(b) Denote q IT o by qo" Then from (3.46)

1__E f 02/2 dr/ 1 (3.48)

Next we show that
(i) lira inf/__+os(/3 > 0:

lim infs() li_m inf{g,[ln cosh( r/)] 2/T2 + In 2}
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and
(ii)

> liminf{E,[/qo r/I -ln2]- 23qo2 + ln2}

lf(flqo:n[ ]- 2flqo2) 0,

(3.49)

given 5 > 0, (5 < ln2), limsup os(3) < 5:
Denote f(r/,/) In cosh(/qor) and g(r/, ) qor/] In 2.
Choose z(5) such that f(r/,/)- g(r/, 3)< 5 for all > x(5)/. This implies
that

x(5) .l---Lln 1zqo e 1

We divide the range N of 7 into the two intervals Ix, -[-x/l,x/] and
c thenIV’z,/" Approximating f(7,/7) by g(r#,/7) on Izz,

lim sups(3)- lim supE[ln cosh(x/qor/)1 2q2o + ln2}
< lim supEn[I qor/V/’ ln2 + 5]-2qo2 + ln2} (3.5)

On Ix, H, we have by (3.45)

lim sups() _< lim sup [ In 2 +1 ln(1 +e

2flq02 + ln2} (3.51)

where r/- (1 / 2)/V/ which also has a standard normal distribution. We
evaluate the right-hand side of the above inequality taking # as the Gauss-
ian measure:

i (limsups(/7) _< limsup In 1 + e #(d7)
Ix, .

_< limsup ln(1 +e2V/q)- (.52)

Thus limsupocs(/3 < 5 for any 5 > 0 for all r/E N.
From (i) and (ii)it follows that lim3os(/3 -0. V1

Example 1: Let 1,2 have the same symmetric discrete distribution given by
tl,2 -i; E {- L,- L + 1,...,L} with probability PL, where

1 (3.53)PL 2L + 1"

Then we have
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[(1 + 2 r])
1 + 2L- nl _.p,(1 + 2L)2 (3.54)

and by Proposition 3.2, we find SIT =0 ln2/(1 + 2L).
The entropy, computed using (3.45) at several values of L for the above discrete

distribution as well as the case where (’s have a Gaussian distribution, is plotted as a
function of the temperature T in Figure 3.1. In the next section, we compare this
entropy with a simulation of this model using the method of coincidence counting [7].

0.7 ,,
0.6

,.’

0.5

,o

0.4 ,..,.,....’"’""
..’ .....

0.:3

0.2

0. .." .....
0
0 2 4

...................... L=2L=I..... L=3........ 1-----5
Gaussian

6 8 10
T

Figure 3.1: Entropy computed via (3.45) for a standard normal distribution
and for discrete distributions (3.53)

4. Entropy of the Model for Discrete Distributions

We consider the symmetric discrete distribution which was introduced in Example 1
for L- 3. The method of coincidence counting is used for computing the entropy in
a Monte-Carlo simulation [1] introduced by S.K. Ma [7]. The method involves count-
ing the number of states coinciding with a given state where a state is a configuration
of the Ising spins. Two states are "coincident" if they do not differ by more than m
spins (m 0,1,...), (when m = 0 the states are identical), and their energies are
approximately the same. A detailed discussion about the algorithm can be found in

We compute the analytical result for 12 Ising spins for this distribution by generat-
ing all possible 212 configurations, and compare this with our simulation (see Figure
4.1). We also plot the entropy in the thermodynamic limit as was done in Figure 3.1
It becomes clear that 12 spins are still far removed from th thermodynamic limit.
Indeed, 12 Ising spins are not sufficient to obtain a non-random limit for the entropy.
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With L 3, we have 7 possible random values for to appear in a sequence of 22
elements (each spin is connected to 11 others, and each bond has two -values). In
fact, there are fluctuations in the simulation as well as the analytical result (for 12
spins) between different runs of the program. These random fluctuations cause the
slight discrepancy between the simulated and the analytical graphs.

0.7

0.6

0.5

0.4

0,3

0.2

0.1 Simulation
Analytical result

Exact result in thermodynamic limit

0
0 2 3 4

T (Temperature)

Figure 4.1: Comparison of entropy simulated using the method of coincidence
counting for 12 Ising spins with the analytical results for N- 12 and in the

limit N---,c.
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