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Sufficient conditions for controllability of semilinear integrodifferential sys-
tems in a Banach space are established. The results are obtained by using
the Schaefer fixed-point theorem.
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1. Introduction

Controllability of linear and nonlinear systems represented by ordinary differential
equations in finite-dimensional space has been extensively studied. Several authors
have extended the concept to infinite-dimensional systems in Banach spaces with
bounded operators. Naito [8, 9] studied the controllability of semilinear systems
whereas Yamamoto and Park [13] considered the same problem for parabolic equa-
tion with uniformly bounded nonlinear term. Lasiecka and Triggiani [5] studied
exact controllability of abstract semilinear equations. Chukwu and Lenhart [3] dis-
cussed the controllability of nonlinear systems in abstract spaces and Naito [10] esta-
blished the controllability for nonlinear Volterra integrodifferential systems. Do [4]
and Zhou [14] investigated the approximate controllability for a class of semilinear ab-
stract equations. Recently Balachandran et al. [1, 2] established sufficient conditions
for the controllability of nonlinear integrodifferential systems in Banach spaces by us-
ing Schauder’s fixed-point theorem. The purpose of this paper is to study the con-
trollability of semilinear integrodifferential systems in Banach spaces by suitably
applying the Schaefer fixed-point theorem.

2. Preliminaries

Consider the semilinear integrodifferential system
t t

£(1) = Al(t) + / F(t = s)a(s)ds] + (Bu)(t) + £(1, (1), / o(t,5,2(s))ds), ¢ € J = [0,8],
0 0
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z(0) = z,, (1)

where the state (- ) takes values in a Banach space X and the control function u(-)
is given in L2(J ,U), a Banach space of admissible control functions with U as a
Banach space. Here A is the generator of a strongly continuous semigroup, B is a
bounded linear operator from U into X, and ¢:J XxJ x X—X and f:J x X x X—X
are given functions. F(t):Y—Y and for z(-) continuous in Y, AF(-)z(-)€
LY([0,4], X). F(t)€ B(X),t€J and for some z € X, F'(t)z is continuous in t €
[0,b], where B(X) is the space of all bounded linear operators on X, and Y is the
Banach space formed from D(A), the domain of A endowed with the graph norm.

We need the following fixed point theorem due to Schaefer [12].

Schaefer Theorem: Let S be a conver subset of a normed linear space E and
0€S. Let F:S—S be a completely continuous operator and let

((F)={z € S;z = AFz for some 0 < A < 1}.

Then either ((F') is unbounded or F has a fized point.
The system (1) has a mild solution of the following form [11]:

t s
z(t) = R(t)zo + / R(t — )l (Bu)(s) + f(s,(s), / g(s,7ra(r))dr) ds,  (2)
0

0

where R(t) is a resolvent operator [6].
In order to study the controllability problem of (1), we consider the following
system as in [7]:
t

&(t) = AA| z(t) + / F(t—s)z(s)ds [+ A(Bu)(t)
0

t

+/\f(t,:c(t), / g(t,sx(s))ds)), Ae(0,1), tel, (3)

0
z(0) = x,.

Then for system (3), there exists a mild solution of the form

t s
z(t) = AR(t)zy, + /\/ R(t —s) (Bu)(s) + f(s,z(s), / g(s,7,z(r))dr) |ds.

0 0

Definition: System (1) is said to be controllable on the interval J if for every
zg,z; € X, there exists a control u € L2(J,U) such that the solution z(-) of (1)
satisfies z(b) = z;.

We assume the following hypotheses:

(1)  The resolvent operator R(t) is compact such that

max || R(t) || < M,
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where M| > 0.
(#1)  The hnear operator W from L%(J,U) into X, defined by

b

Wu= / R(b— s)Bu(s)ds

0

has an invertible operator W ~! defined on L?(J,U)/kerW and there exist
positive constants M,, M4 such that || B|| < M, and [|W ~ < M.
(7ii) For each t € J, the function g(t,s, ): X—X is continuous and for each
z € X, the function g(-, -,z):J x J—X is strongly measurable.
(tv)  For each t € J, the function f(t, -, :): X x X—X is continuous and for each
z,y € X, the function f(-,z,y): J—»X is strongly measurable.
(v)  For every positive integer k, there exists h, € L!(0,b) such that for a.a.

teld,
¢

sup f(t,:c(t),/g(t,s,x(s))ds) < hy(t).

< k|
=l < )

(vi)  There exists a continuous function m:J x J—[0,00) such that
Hg(t,s,2) || <m(t, )| z]]), tised, z€X,

where :[0,00)—(0,00) is a continuous nondecreasing function.
(vit) There exists a continuous function p:J—[0,00) such that

I ftzy) )l <Pl +1lyll) ted zyeX,

where Q:[0,00)—(0,00) is a continuous nondecreasing function.

(viii)
/ M(s)ds < / ROFso)

where ¢ = M (|| 2o || ) + M{Nb, Mm(t) = max{M,p(t),Lm(t,1)},

b

N = Mo oy |+ Myl |+ 0y [ p(s)( 2]
0

+ L/ m(s, 7)Q|| z || )dr)ds).
0

3. Main Result

Theorem: If the hypotheses (i)-(viii) are satisfied, then system (1) is controllable on
J.
Proof: Using hypothesis (i7) for an arbitrary function z( - ), define the control
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b 8
u(t) =W~ 1 z; — R(b)zy— / R(b—s)f(s,z(s), / g(s, 7y z(7))dr)ds |(t).
0 0

We shall now show that when using this control the operator defined by

t
(F2)(0) = R(teo+ [ R(t=s)(Bu)(o)
0

S

+ f(s,z(s), / g(s,r,z(r))dr))ds,t € J,

0

has a fixed point. This fixed point is then a solution of equation (2).

Clearly, (Fz)(b)=x,, which means that the control u steers the semilinear
integrodifferential system from the initial state z, to z; in time b, provided we can
obtain a fixed point of the nonlinear operator F'.

First, we obtain a priori bounds for the following equation:

t
z(t) = AR(t)zy + A / R(t—n)BW ~1[z, — R(b)z,
0
b 3
- / R(b—s)f(s,z(s), / 9(s,7,z(7))d7)ds](n)dn
0 0

t s
+)\/R(t——s)f(s,:1:(s),/y(s,r,:c(r))dr)ds.
0 0

We have, from the assumptions,
¢

l2(@) || < My [l +/ I R(t = n) | MaMj[ | 2y || + My || 2ol
0

b s
M, [ o)1) Il + [ mis )] 2(r) 1] yar)dsidn
0 0
t

0y [ p@0(1126) I + [ mis, )01 2(r) 1 dr)ds
0

0

t
<My llao]) + [ Vs
0
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t

+y [ p6ll6) 1] + [ ms, (] 2(7) ) dr)ds
0 0

t
<My |zl +MyNo+ 3y [ p(o)( 1 2(6)]
0

+ / m(s, 7)Q( || z(7) || )dT)ds.
0

Denoting by wv(t) the right-hand side of the above inequality, we have v(0) =
My |lzo |l + M Nb, [2() ]| <o(t) and

t
v'(t) = Myp(6)Q( 1 2() | +/m(t,f)9( Il &(7) || )d7)
0

t
< M p(t)Qy(v(t) + / m(t, 7)Qv(7))dT).
0

Let

t
w(t) = v(t) + / m(t, 7)Qv(r))dT.
0

Then w(0) = v(0) = ¢, o(t) < w(t),and
w'(t) = v'(t) + m(t, 1)Q(v(t)) < My p(t)Q(w(t)) + m(t, 1)Q(w(t))
< M()[Q(w(t)) + Q(w(?)))-
This implies that
() b o
/ T < [ﬁi(s)ds< / o e

w(0)

which in turn implies that there is a constant K such that w(¢) < K, t € J, and hence
|| z(t)|| < K, t€J, where K depends only on b and on the functions m, Q,, and Q.
Second, we must prove that the operator F:C = C(J, X)—C defined by

t
(Pa)(t) = Rit)eo+ [ R(t=m)BW ™[z, ~ RO)ny
0

b s
—/R(b~s)f(s,x(s),/g(s,r,x(r))dr)ds](n)dn

0 0
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s

t
+/R(t—s)f(s,a:(s),/g(s,r,z(r))dr)ds
0

0

is a completely continuous operator.
Let By ={x€C: ||z|| <k} for some k>1. We first show that F' maps By into
an equicontinuous family. Let € By and t;,t, € J. Thenif 0 <t <ty <b,

| (F2)(ty) = (Fz)(t) || < (| R(t) = R || |l 2o |l

£

+ / [R(t, —n) — Rty —n)|BW ~ [z, — R(b)zq
0

b s
— [ Ro-5)565,2(6), [ sts,matrin)dsimin]
0

0

t
2
+ || / R(ty —n)BW ~ 1[:01 — R(b)z,
t
b 8

— [ Be-9)562(6), [ oo, a(r)indsinin]

0 0

tl s
+ || / [R(t; —s) — R(t, — 5)]f(s,2(s), / g(s,7yx(7))dr)ds ||
0 0

t2 ]
+ Il/ R(tz—S)f(s,w(S),/y(s,T,w(T))dT)ds Il
tl 0

< [ R(y) = R(ty) I| 1 2o

ty

[ IR =)~ ROty =) | MyMal ]2, |+ M1 2 |

b
+ Ml/ ew(b-s)hk(s)ds]dn
0

+ [ IR =D 1ML ]+ M0 2o

b
+ M, / (b s)hk(s)ds]dn
0
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ty

+ [ NRG = 5) = Rity = o)) | ag(s)ds
0

ty

Il Bty — ) [| hy(s)ds.

ty

The right-hand side tends to zero as t, —t;—0, since the compactness of R(t) for
t > 0 implies the continuity in the uniform operator topology.

Thus, F' maps By, into an equicontinuous family of functions. It is easy to see that
the family F By is uniformly bounded.

Next, we show that F'B; is compact. Since we have shown F B, is an equicontin-
uous collection, it suffices by the Arzela-Ascoli theorem, to show that F' maps By in-
to a precompact set in X.

Let 0 < ¢ <b be fixed and ¢ a real number satisfying 0 < ¢ <t. For z € By, we de-
fine

t—e

(Fa)() = RW)zo+ [ R(t=)BW ~1[a, ~ R(b)z,

b s
= [ Ro=5)16s,20), [ otormatraniasiinyn
0 0

t—e¢ s

+4 R(t—s)f(s,:c(s),[g(s,r,m(r))d‘r)ds

t—e¢

= R(t)zo+ R(¢) / R~ Y(e)R(t—n)BW ~ [z, — R(b)z,
0
b s
- / R(b—s)f(s,z(s), / g(s,T,&(r))dr)ds](n)dn
0 0
t—e s
6)/ “YOR(t —s)f(s,2(s), / g(s,m,z(r))dT)ds.

0

Since R(t) is a compact operator, the set Y (t) = {(Fz)(t):z € By} is precompact in
X for every ¢, 0 < ¢ < t. Moreover, for every € By, we have

t
| (PO - EDON < [ IR nBW 1z, - Bb)e,

t—e€
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b s
~ [ Ro-5)565,2(6), [ s(s,ma(r)ir)dsin) 1 dn
0 0

t s
+ [ 1RE=91G2(9), [ ols,mar)dr) 1 ds

t—e 0
t
b
< [ WRE=n) MM o ] + 30,6 | 2]

t—e
b

+M1/ ew(b—s)hk(s)ds]dn
0

t
+ [ 1=l hy(o)as.

t—e

Therefore, there are precompact sets arbitrarily close to the set {(Fz)(t):x € By}.
Hence the set {(Fz)(t):x € By} is precompact in X.

It remains to show that F:C'—C is continuous. Let {z,}3° C C with z, —z in C.
Then there is an integer r such that ||z, (¢)|| <r forallnand t€ J,so z, € B, and
z€B,.

By (iv),

i t
F(tyz (), / o(t,5,2,,())ds)— £ (1, 2(1), / o(t,5,2(s))ds)

0 0
for each t € J and since
t t
1720, [ a(ti5,2,(60)d5) = £(t,0(0), [ att,s,2(6)ds) ) < 2m,(0),
0 0

we have by dominated convergence theorem,

t b
|| Fz, — Fz || =sup H/R(t—n)BW'l[/R(b—s)
telJ
0 0

[F(s,2,(5), / 9(5,7,2,,(7))dr) — £(5,2(5), / 9(s, 7, 2(r))dr)lds)(n)dn
0

0

t

+ [ R(t - )/ (5,,(s), { o(s,7 2, (7))dr)
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s

— f(s,2(s), / o(s,7,2(r))dr)lds ||

0

b b s

< [ WRe=n) 00, [ O fs,z,0), [ ooz r)in)

0 0 0

s

— f(s,2(s), / o(s,7,2(r))dr) || dsldn

0

b s

+ [ NRE=9) 1 11 £26), [ atomza(r)ar)

0 0

s

— f(s,z(s), / g(s,7,z(7))dr) || ds—0, as n—oo.
0

Thus F is continuous. This completes the proof that F is completely continuous.

Finally, the set {(F) = {z € C:z = AFz,) € (0,1)} is bounded, as we proved in the
first step. Consequently, by Schaefer’s theorem, the operator F' has a fixed point in
C. This means that any fixed point of F is a mild solution of (1) on J satisfying
(Fz)(t) = z(t). Thus system (1) is controllable on J.
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