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Controllability of the quasilinear stochastic evolution equation is studied
using semigroup theory and a stochastic version of the well known fixed
point theorem. An application to stochastic partial differential equations
is given.
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1. Introduction

The fixed point technique for finite and infinite dimensional Banach spaces is widely
used and is one of several methods with which to examine the controllability of non-
linear systems. The controllability of classical nonlinear systems is examined by
means of the Schaefer theorem (Anichini [2]) and the Schauder theorem (Yamamoto
[11]). Several authors have extended finite dimensional controllability results to
infinite dimensional controllability represented by the evolution equations with
bounded and unbounded operators in Banach spaces (for example, see Balachandran
et. al [4] and Dauer and Balasubramaniam [5]).

Semigroup theory gives a unified treatment of a wide class of stochastic parabolic,
hyperbolic and functional differential equations. Much effort has been devoted to the
study of the controllability of such evolution equations (Rabah and Karrakchou [9]).
Controllability of nonlinear stochastic systems has been a well known problem and fre-
quently discussed in the literature (eg. Astrom [3], Wonham [10], and Zabczyk [12]).
Stochastic control theory is a stochastic generalization of classical control theory.
The purpose of this paper is to consider the controllability of quasilinear stochastic
systems represented by the evolution equations with bounded linear operators in
Hilbert spaces. The Banach fixed point theorem is employed to get suitable
controllability conditions. The considered system is an abstract formulation of the
stochastic partial differential equations discussed in Fuhrman [6].
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2. Preliminaries

Consider the stochastic equation

dx(t) dw x(O) t J -[O, tl].dt t- Ax(t) (Bu(t) + f(x(t)) + r(x)--{, Xo, (1)

Here A is the infinitesimal generator of an analytic semigroup T(t), t > 0 in a Hilbert
space X. State variable x(t) takes on values in Hilbert spaces X and F. F is assum-
ed to be separable. The control function u is given in L2(j; U), a Hilbert space of ad-
missible control functions with U a Hilbert space. B is a bounded linear operator
from U into X. Let (gt, f, ft, t > 0, P) be a complete probability space furnished with
a complete family of right continuous increasing sigma algebras {ft} satisfying ft C
ff for t> 0. The process {w(t),t > 0} is an F-valued fit-adapted Brownian motion
with P{w(0)- 0}- 1, and x0 is an X-valued fo measurable random variable. For
any Banach space K, let L2(fl, K denote the space of strongly measurable K-valued
square integrable random variables equipped with the norm topology

II II L2(fl, K {E II ]1 }1/2 where E stands for integration with respect to the

probability measure P. L2( K) is a Hilbert space if K is Hilbert space. For conven-
ience we shall denote L2(fl, K) as the class of K-valued fro measurable square integr-
able random variables. Let M(J,K) denote the space of fit-adapted stochastic pro-
cesses defined on J. M(J,K) takes on values in K, has square integrable norms, and
is continuous in t on J in the mean square sense. This is a Banach space with respect
to the norm topology

II ’ II M(J :) f sup E II (t)II ,1/2 C M(J,K). (2)
[,t_J

Assume the following conditions"
(i) For 0 _< c < 1/2, Xa -[D(Aa)] is a Banach space with respect to the graph

topology induced by the graph norm given by

(ii)

(iii)

For the function f from Xa to X, there exists a constant C > 0 such that

II f()- f(ff)II x -< C II - II and

II f()II x _< C{1 -t- II II } for all , " C Xc. (4)

For functions r from Xa
that

to L(F,X), there exists a constant C > 0 such

(iv)

II (a)- ()II L(F,X) <-- C II - II and

II (4)II (r,x) <- C{1 + l[ II }.
The linear operator W from U into X which is defined by

(5)
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1

Wu / T(t1 s)Bu(s)ds
0

has an invertible operator W- 1 defined on X\kerW (See Jousis and Wexler
[7]); there exist positive constants N1, N2 such that

II B II 2 N1 and II w-11[ 2

_
N2"

Then for every x0 E L(,Xa), w an F-valued St-adapted Brownian motion hav-
ing a nuclear covariance operator Q E Ln+ (F), and conditions (i)-(iii), there exists a

unique solution x M(J, Xa) of equation (1) which satisfies the following stochastic
integral equation (see Ahmed [1])

x(t) T(t)xo + J T(t- s)[(Bu)(s) + f(x(s))]ds + / T(t- s)r(x(s))dw(s)
0 0 (7)

Definition: The stochastic system (1) is controllable, if for some control u(t) on J,
the solution of (1) such that X(to) xo and x(t) x, where xI and t are the state
and preassigned terminal time respectively. If the system is controllable for all x0 at
t to and for all xI at t tl, the system is called completely controllable on J.

3. Main Result

Theorem 3.1" Suppose the conditions (i)-(iv) are satisfied, then system (1) is com-

pletely controllable on J.
Proof: Using the hypothesis, define the control

tt(t) W- 1IxI

1

T(tl)xo / T(tI s)f(x(s))ds
0

1

T(tI s)r(x(s))dw(s)](t).
0

(8)

It will be shown that, when using this control, the operator defined by

T(t1)xO((x)(t) T(t)xo + / T(t #)BW- l[x1

tl 0 tl

/ T(t1 -s)f(x(s))ds- / T(t1 -s)r(x(s))dw(s)](#)d#
0 0

+ j T(t-s)f(x(s))ds + / r(s-s)r(x(s))dw(s)
0 0

(9)
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has a fixed point. This fixed point is a solution of equation (1). Clearly (x)(0)=
x0, which means that the control u steers the quasilinear differential system from
initial state x0 to state xI in time tI provided a fixed point of the nonlinear operator

can be obtained.
First we show that maps M(J, Xa) into M(J, Xa). Without loss of generality,

we assume that 0Ep(A). If 0p(A), add the term 71 to A which gives A.-
A+TI and 0Ep(A.). This simplifies the graph norm to IIlla- IIAall for
e D(Aa). Since T(t), t > 0 is an analytic semigroup and Aa is a closed operator,

there exist numbers C1 > 1 and Ca such that

sup I[ T(t) II 2L(X) G C and II AaT(t) II L(X) G Cat- , for t > 0. (10)
t.Y

Further, a + b + c 12 < 9(la 12 + bl 2 + c 12) for any real numbers a, b, c. Hence,
for x M(J, Xa) with x(0)- Xo, we have

[[ (x)(t) [[ 2 < 9 sup E( [I T(t)Xo [I 2) + 9E [[ / T(t- #)BW- l[x1 T(t1)x0
tJ

a

0

I 1

/ T(t1 -s)f(x(s))ds- f T(t1 -s)a(x(s))dw(s)](#)II
0 0

0 0

< 9sup E( I] AaT(t)xo [I 2_X) + 9NIN2 / II AaT(tl #)]l 2L(x)d#
t6_J

0

1 1

[E I] Xl ]12 + E II AaT(tl)xo ]] 2X)+ (i [I AaT(tl- s)1] 2L(x)ds)E /
0 0

II

1

II AaT(tl s)r(x(s))dw(s) I[ 2X]

0 0

+ 9TrQ S E( II AaT( s)a(x(s))II 2L(F,x))ds
0-- 9C1E( II II (9N1N2C)I(1 2a)t}- 2a
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[E li li + CIE( II o II ) + 4[c6]/( 2))1( -)(1 + sup E II ()II )
0<s<t

+ TrQ{[2(CsC)2]/(1 2c)}t1 2s){1 -t- sup EII
0<s<t-- 9([CsC]2/(1 2c)}t2(1 -s){1 -1- sup E II x()II 2}

0<s<t

+ 9TrQ{[2(CsC)2]/(1 2c)}t1 2s){1 + sup E
0<s<t

x [E( II Xl II 2) + C1E( II o II 2) + (TrQ) + 9r/(TrQ) (11)

where TrQ represents the trace of the operator Q and

r/(TrQ) {[CsC]2/( 1 2Ct)}{tl + 2TrQ}t1- 2s){ 1 + II x II M(I, Xs)}.2

Hence

(12)

sup II ()(t)II 2 < fo e M(J Xs) t e J
tEJ

To complete the proof, it remains to be shown that (b E C((O, tl),L2(f2, Xc)). Let
t E (0, t1), h > 0 and t + h J. For analytic semigroups, there exists a constant

7 > 0 such that

II (T(h)- I) II x < 7h II A II x for all e D(Az)

and for all >_ 0 and X, T(t) 1)(A) for t> 0 (see Pazy [8], Theorem 6.13).
Thus for t > 0, the closedness of As, the fact that T(t) commutes with As on D(AS),
and by choosing fl > 0 such that 0 < c +/ < 1/2,

< 9E( [[ (T(h)- I)T(t)ASxo II 2)
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tl
+ 9E 11 i (T(h)- I)AaT(t- #)BW- l[x T(t1)xo i T(t s)f(x(s))ds

0 tl 0

i T(tl s)r(x(s))dw(s)](#)II 2ad#
t+h

0 tl

+ 9E IIi ZaT(t + h #)BW- l[x1 T(tl)x0 i T(tl s)f(x(s))ds

tl 0

i T(tl s)r(x(s))dw(s)](#) II 2ad#
0

t+h

+ E II J (T()-I)A’T(t- s)f(.(s))ds I1 +s II i A’T(t-t-h-s)f(.(s))ds I1
0

0

t+h

+ 9E II f ZaT(t + h- s)r(x(s))dw(s)II (f,x)

2 2 nh2tf [l/(t tt)]2(a +n)dtt< 97h2f II AOT(t) II E II Aazo II o + 9N1N27Ca +
0

[E( II Xl II ) + C1E( II o II ) + {[C.C]:/( 1 2ci)}{tl + 2TrQ)t 2c,

t+h

x {1+sup
O<s<tEII(s)II}I+gNNCI" [1/(t-t-h-#)]2ad#

[E( II Xl II ) + C,E( II o II ) + {[cc]21( 1 2c)}{tl + 2TrQ}ti 2

1

2 nE f (t- : + ) )d.x {1 + sup E II ()II }] +7c+ nh [1/ s)]2( II f(x(s))II
0<s<t

0

t+h

+ 9CE II f [l/(t + h- s)]2c’ II f(x(s))II d.

+ 9TrQTCa+22 h2ftE(i [1/(t- s)]2(c + f) II (("))II 2L(F,x))ds
0

t+h

+ 9TrQC2aE( f [l/(t + h- s)]2< II (())II (F,x))a
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.((zc.+)/d)
_

9((’)’cg)/t)2h29E II 0 II + 9NllV2t [ -_ 2)
h29tl 2.- 2

+ C2a/( 1 2c)h2(1 -s)}{E ][ Xl ]l 2a + C1E ]] Xo II 2a +

9,((cc. + )/d):-t- (1 2a 2)
h2ft2(1 -s- f)(1 + sup EII x(s)]l )

sJ

9(CCs)2h2(1 s)

(1 2c) (1 + sup E l[ x(s)II )+
sJ

9TrQ((7CCs + )/t)2

+ ( )
h( -( + sup E II ()II )

+ (1 2) + sup E II ()II ) (13)
s6J

for t 6 (0, tl). Thus letting h0, the desired continuity is followed and hence maps
M(J,X) into itself.
Now we prove that for sufficiently small 1, defining the interval J is a contraction

in M(J,X). Indeed for , e M(J,X) satisfying (0)= (0)= 0, it can easily be
seen that

where

sup E II (o)(t)- (Oy)(t)I1

_
Ksup E II (t)- y(t)II 2

tJ t6J
(14)

Ks (9N1N2C2)/(1 2a){[CsC]2/(1 2a)}(t1 + 2TrQ}t(1 2s)

+ 9{[CSC]2/(1 2c)}{tl _[_ 2TrQ}tl 2s).

Thus for sufficiently small tl, Ks < 1 and (I) is a contraction in S, and by the Banach
fixed point theorem, has a unique fixed point x E M(J, Xs). Any fixed point of
is a solution of (1) on J satisfying (apx)(t)= x(t) X for all x0 and t1. Thus, the
system (1) is completely controllable on J.

4. Example

Consider the following nonlinear stochastic partial differential equation of the form

Otx(t, -;x(t,)dt + f(, <x(t, ),hi>,... <x(t, ),hn>)dt

+ (Bu)(t)dt + E ksin(k)d/k(t)’ e (0, r), > 0
k=l

(t, 0) (t, ) 0, > 0
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x(0,.) x0(.) E X H L2(0,r). (15)

Here

(2)

(3)

O2
Let domA H2(0, r) t H(0, r) and (A) -(), E (0, 7r) G domA,

and let B be a bounded linear operator from the control space U into H.
Define the function F:H--H by choosing hl,h2,...,hn H and a function

f" [0, 7I"] X ln--+n, (, Yl, Y2,’" ", Yn)"-f(, Yl, Y2"" ", Yn)" Set

(Fg)(,) f((,,(9, hl),(9, h2),...,(9, hn)),, G [0, r],9 G H,

where (-,.) is the usual scalar product in H.
Also for Yl, Y2,"’, Yn J and i- 1, 2,..., n, assume

of of ff’O’OYi’OOy
are bounded and continuous on [0, r] x Rn such that

and
f(o, v2,..., v,) v2,..., v,) o

[Of/OYi](O, Yl, Y2," Yn) [Of/OYi](r, Yl, Y2," Yn) O.

(4) The functions ek()- X//rsink, (0, r) form an orthonormal basis of
H consisting of eigenvectors of A which corresponds to the eigenvalues
ck -k2, k- 1, 2,..., etc. k(t) are standard real independent Wiener
processes. Take a sequence of numbers (Ak) and define the operator Q by
setting Qek kek, k 1,2, Assume that ’k > 0, sup.k cx,

k
supk.-1/2e- tk2 < x, for t > 0.
k

Then (15) has an abstract formulation of the following nonlinear stochastic
equation in a Hilbert space with a constant, but possibly degenerate, diffusion term

dt Ax(t) + f(x(t)) + (Bu)(t) + Q1/2dw’t’ > 0dt (16)

x(O) xo H.

The linear operator A is the infinitesimal generator of a strongly continuous
semigroup eAt, t >_ 0 in H, Q is a continuous linear self adjoint nonnegative operator
inH, and the operators defined by

Qtx / eSAQeSA*xods, xo G H,t J
0

(17)

are trace class. Further B is a bounded linear operator which maps from the control
space U into H, function f’HH is Lipschitz continuous and w(t), t >_ 0 is a
cylindrical Wiener process in H. Then (16) has the following unique solution (see,
Fuhrman [6]),
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x(t) etAx0 + j e(t -s)A[(Bu)(s)+ S(x(s))]ds + I e(t -S)AQ1/2dw(s)"
0 0

(18)

Hence by Theorem 3.1, for T(t) etA, the system (1) is completely controllable on J.
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