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1. Introduction

In the last three decades, the theory of multifunctions has advanced in a variety of
ways. The theory of multifunctions was first codified by Berge [8]. Applications of
this theory can be found in economic theory, noncooperative games, artificial intelli-
gence, medicine, and existence of solutions for differential inclusions (see Aubin and
Ekeland [2], Klein and Thompson [15], Aubin and Frankowska [3], and the references
therein). Recently, Heilpern [11], Butnariu [9], Albrycht and Maltoka [1], Papageor-
giou [20], Ozbakir and Aslim [19], Tsiporkova-Hristoskova, De Baets and Kerre [22-
24], and Beg [4-7] have started the study of fuzzy multifunctions and hemicontinuous
fuzzy multifunctions. The aim of this paper is to study properties of vector-valued
fuzzy multifunctions. The notion of sum fuzzy multifunction, and upper demicontin-
uous fuzzy multifunction are given, and some of the properties of these fuzzy multi-
functions are investigated.

2. Preliminaries

Let X be an arbitrary (nonempty) set. A fuzzy set (in X)is a function with domain
X and values in [0, 1]. If A is a fuzzy set and x E X, the function A(x)is called the
grade of membership of x in A. The fuzzy set Ac, defined by AC(x)= 1-A(x), is
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called the complement of A.
A(x) <_ B(x) for each x E X.

and

Let A and B be fuzzy sets in X. We write ACB if
For any family {Ai} I of fuzzy sets in X, we define:

f’ Ail (x)= inf Ai(x
ieI J ieI

[ U IAiJ (x) sup
I

The family v of fuzzy sets in X is called a fuzzy topology for X (and the pair
(X, 7") a fuzzy topological space)"

(i) v contains every constant fuzzy set (function) in X;
(ii) U ie iAi 7- whenever each A 7-(i E 1); and
(iii) Afl B 7" whenever A, B E r.

The elements of r and their complements are called open and closed, respectively. A
neighborhoods of a fuzzy set A of a fuzzy topological space X is any fuzzy set B for
which there is an open fuzzy set V satisfying A C V C B. Any open fuzzy set V that
satisfies A C V is called an open neighborhood of A. A fuzzy set A in (X, r) is called
fuzzy compact if and only if open covering of A has a finite subcovering. Similarly,
we can define fuzzy Hausdorff spaces.
A net (x;) e A in a fuzzy topological space (X, 7") converges to a point x (denoted

by xx): if given a neighborhood V of x, there exists a "0 E A such that x,x E V
whenever , >_ "0" A point x belongs to the closure of a fuzzy subset C of X if there is
a net in C converging to x. In general, a net in a fuzzy topological space may con-

verge to several points but in a fuzzy Hausdorff space, the convergence is unique.
A single-valued map f from a fuzzy topological space X to a fuzzy topological

space Y is called continuous at some x E X if f- I(V) is a neighborhood of x or each
neighborhood V of f(x). (Here f-l(v)is the fuzzy set in X defined by
[(f- I(V))(z)- V(f(x))]. For further details, we refer to [8, 10, 16-18, 25-27].

3. Fuzzy Multifunctions

A fuzzy multifunction f from a set X into a set Y assigns to each x in X, a fuzzy
subset f(x) of Y. We denote this assignment by f: X--,Y. We can identify f with a

fuzzy subset GI of X x Y and [f(x)](y) G](x,y).
If A is a fuzzy subset of X, then the fuzzy set f(A) in Y is defined by

[f(A)](y) sup [Gl(x,y A A(x)].
xX

The graph Gf of f is the fuzzy subset of X x Y associated with f,

G] {(x,y) X x Y:[f(x)](y) 0}.

by
Definition 3.1" The upper inverse fu of a fuzzy multifunction f: XY, is defined

[fU(A)](x) inf [(1-Gl(x,y)) V A(y)].
yCY
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by
Definition 3.2: The lower inverse fg of a fuzzy multifunction f" X---+Y is defined

[fg(A)](x) [Gi(x,y) A A(y)].
yEY

Definition 3.3: The fuzzy multifunction f: XY is fuzzy closed valued if f(x) is a
closed fuzzy set for each x. The terms fuzzy open valued and fuzzy compact valued
are defined similarly.

Definition 3.4: A fuzzy multifunction f:XY between two fuzzy topological
spaces X and Y is"

(a) upper hemicontinuous at the point x, if for every open neighborhood U of
f(x), f’(U) is a neighborhood of x in X. The fuzzy multifunction f is
upper hemicontinuous on X if it is upper hemicontinuous at every point of
X;

(b) lower hemicontinuous at x, if for every open fuzzy set U which intersects
f(x), I(U) is a neighborhood of x. As above, f is lower hemicontinuous
on X if it is lower hemicontinuous at each point of X;

(c) continuous if it is both upper and lower hemicontinuous.
For a more detailed account of the concepts outlined above, the reader is referred

to Beg [5, 6] and Tsiporkova-Hristoskova, De naets and Kerre [23, 24].

4. Fuzzy Topological Vector Spaces

Let E be a vector space over K, where K denotes either the real or the complex num-
bers. Let A1,A2,...,An be fuzzy subsets of E, with AlxA2xA3x...xAn denoting
the fuzzy subset A in En defined by

A(xl,x2,...,Xn) min{A(x),A2(x2),...,An(xn) }.

If f:En--+E is defined by f(xl,x2;...Xn) x + x2 +... + xn, then the fuzzy set f(A)
in E is called the sum of the fuzzy sets A1,A2,...,An, and it is denoted by A +
A2... + An. For a fuzzy subset A of E and t a scalar, we denote tA as the image of
A under the map g: EE, g(x) ix. If a is a fuzzy set in K and A a fuzzy set in E,
then the image in E of the fuzzy set axA, a fuzzy subset of KE[(a A) (t,x)=
min{a(t),A(x)}] under the map h:K x EE, h(t,x)= tx, is denoted by cA. A fuzzy
set A in E is called convex if for each E[0,1], [tA+(1-t)A] (x)< A(x). The
convex hull of a fuzzy set B is the smallest convex fuzzy set containing B, and is
denoted by Co(B).

Given a topological space (X, 7-), the collection w(7-) of all fuzzy sets in X, which
are lower semicontinuous, as a function from X to [0,1] equipped with the usual
topology, is a fuzzy topology of X. The fuzzy topology w(v) is called the fuzzy
topology generated by the usual topology 7-. The fuzzy usual topology on K is the
fuzzy topology generated by the topology of K.

Definition 4.1" A fuzzy linear topology on a vector space E over K is a fuzzy
topology 7- on E such that the two mappings:

f:ExE--,E, f(x,y) x + y, and
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h: K E--E, h(t, x) tx,

are continuous when K has the usual fuzzy topology, with K x E, E x E being the
corresponding product fuzzy topologies.
A linear space with a fuzzy linear topology is called a fuzzy topological vector

space.
Lemma 4.2: In a fuzzy topological vector space X, the algebraic sum of a compact

fuzzy set and a closed fuzzy set is closed fuzzy set.
Proof: Let A be a compact fuzzy subset and B be a closed fuzzy subset of X. Let

a net {x,x + Y,X} in A + B satisfy xx + yx--z. Since A is compact fuzzy set, we can

assume (by passing to a subnet) that xA-x E A. The continuity of the algebraic
operations imply"

y) (x + y)- x,x--z- x y.

Since B is a closed fuzzy subset, therefore, yEB. So z=x+yA+B. Hence
A + B is a close fuzzy set.
Lemma 4.3: In a fuzzy topological vector space X, the algebraic sum of two

compact fuzzy sets is a compact fuzzy set.
Proof: Similar to Lemma 4.2.
Theorem 4.4: Let K be a compact fuzzy subset of a fuzzy topological vector space

X. Suppose K C U, where U is an open fuzzy subset. Then there is a neighborhood
W of origin such that K + W C U.

Proof: For each x K, there is a neighborhood Vx of origin such that
x + Vx C U. Choose an open neighborhood Wx of origin so that Wx + Wx C Vx for
each x. Since K is a compact fuzzy set, there is a finite set {Xl,X2,...,xn) of points
with K C [.Jni l(Xi + Wx Set W n W For every x K there is some x." i=1 x
satisfying x x + Wx. F)r this xi,

+ w + + w) c + x; + wx

C x + Vxi C U.

Hence K+WCU.
Theorem 4.5: Let X be a fuzzy topological vector space. If each Ai(i
co n act, Co( [J i--1
Proof: Since the continuous image of a compact fuzzy set is a compact fuzzy set

and the

Hence C0( J

_
1Ai) is a compact fuzzy set.

Definition 4.6: A fuzzy topological vector space E is called locally convex if it has
a base at the origin of convex fuzzy sets.

For basic concepts and details regarding fuzzy topological vector spaces, we refer to
[12-14, 17, 181.
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5. Vector-Valued Fuzzy Multifunctions

When the range space of a fuzzy multifunction is a vector space, then there are

additional natural operations on fuzzy multifunctions.
Definition 5.1" If f,g’X---Y are two fuzzy multifunctions, where Y is a vector

space, then we define:
1. The sum fuzzy multifunction f + g by

(f / g)(x) f(x) + g(x) {y + z: y E f(x) and z E g(x)}.

The convex hull fuzzy multifunction co(f) of f by

(co(f))(x) co(f(x)).

If Y is a fuzzy topological vector space, the closed convex hull fuzzy
multifunction c(co(f) of f by

(cg(co(f)))(x) c(co(f(x)) ).

Lemmas 4.2 and 4.3 imply the following theorem.
Theorem 5.2: Let f,g: X-Y be two fuzzy multifunctions from a fuzzy topological

space X into a fuzzy topological vector space Y:
1. If f is closed valued and g is compact-valued, then f + g is closed valued.
2. If f and g are compact valued, then f + g is compact valued.
Theorem 5.3: Let f,g: X---Y be two fuzzy multifunctions from a fuzzy topological

space X into a fuzzy topological vector space Y. If f and g are compact valued and
upper hemicontinuous at a point Xo, then f + g is upper hemicontinuous at xo.

Proof: Let f and g be upper hemicontinuous fuzzy multifunctions at the point x0.
Suppose f(xo) + g(xo) C G, where G is an open fuzzy subset of Y. By Theorem 4.4,
there is a neighborhood V of origin such that f(xo) + g(xo) + V C G. Select an open
neighborhood W of origin with W+W C Y. Since f(xo) C f(xo) +W and

f(xo) + W is open, the upper hemicontinuity of f at x0 guarantees the existence of an

open neighborhood N1 of x0 such that f(N1) C f(Xo)+ W. Similarly, there exists an

open neighborhood N2 of x0 with g(N2) Cg(xo+W. Let N=N1AN2, then N is
an open neighborhood of x0 and

(f + g)(N) C f(N1) + g(N2) C f(xo) + W + g(Xo) + W C G.

It further implies that f / g is upper hemicontinuous fuzzy multifunctions at x0.
Theorem 5.4: Let f,g: X---Y be two fuzzy multifunctions from a fuzzy topological

space X into a fuzzy topological vector space Y. If f and g are also lower hemicon-
tinuous fuzzy multifunctions at a point Xo, then f / g is also lower hemicontinuous
fuzzy multifunctions at xO.

Proof: Suppose [f(x0) + g(x0) N U = , where U is open fuzzy subset. Then there
are y in f(xo) and z g(xo), with y + z U. Thus, there is an open neighborhood V
of origin such that y + V + z + V C U. Since y f(xo) (y + V) and f is lower hemi-
continuous fuzzy multifunction at x0, f (y + V) is a neighborhood of x0. gSimilarly, g (z/V) is aneighborhood ofx0. Hence, ifxf (y/V) N (zWV),
then If(z) + g(x)] U .
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Theorem 5.5: Let fi: X-Y (i 1,2,...,n) be (single-valued) fuzzy functions from
a fuzzy topological space X into a fuzzy topological vector space Y, and the fuzzy
multifunction I:X--Y be given by f(x)-{fl(x),f2(x),...,fn(x)}. If each fi is
continuous at a point xo E X, then the fuzzy multifunction f is continuous at xo.

Proof: Suppose f(xo)= {fl(xo, f2(xo),...,fn(xo)} C U, where V is an open fuzzy
subset of Y. Then:

n
V f/- I(U)

i=1

is an open neighborhood of x0 such that x E V implies f(x)C U. It further implies
that the fuzzy multifunction f is upper hemicontinuous.

Next, suppose f(xo) r’l W - for some open fuzzy subset W of Y. If fn(xo) W,
then P-fl(W) is a neighborhood of x0, and x G P implies f(P) MW :-. It
further implies that the fuzzy multifunction f is lower semicontinuous. Hence the
fuzzy multifunction f is continuous.

Theorem 5.6: Let fi:XY (i 1,2,3,...,n) be (single-valued) fuzzy functions
from a fuzzy topological space X into a locally convex fuzzy topological vector space
Y, and I:X--Y be given by f(x)- {fl(x),f2(x),...,fn(x)}. If each fi is continuous
at some point Xo, then the convex hull fuzzy multifunction co(f) is continuous at xo.

Proof: Suppose that (co(f))(x) C U, where U is an open fuzzy subset of the locally
convex fuzzy topological vector space Y. By Theorem 4.5, (co(f))(x) is compact.
Theorem 4.4 further implies that there exists an open convex neighborhood W of
origin satisfying (co(f))(Xo) + W C U. From f(xo) C f(xo) + W and the upper hemi-
continuity of f at x0 (Theorem 5.5), there exists a neighborhood V of x0 such that
f(x) C f(xo)+ W for each x Y. So, if x V, then (co(f))(x) C (co(f))(Xo)+
W C U. This also implies that co(f) is an upper hemicontinuous fuzzy multifunction
at x0.

Next, let (co(f))(Xo)ClU :/= for some open fuzzy subset V. Pick
(i- 1, 2, n), with

n t

Ai-1 and Aifi(xo) GU,
i=1 i=1

The fuzzy function g: XY defined by g(x)- E= lifi(x) is continuous at x0 (by
definition of fuzzy topological vector spaces). This implies that there exists a neigh-
borhood V of x0 such that x V implies i= llifi(x) U.

Therefore, ((Co)(I))(x) gl U :/: for each x e V. Thus Co(I) is a lower hemicontin-
uous fuzzy multifunction at x0. Hence, co(f) is a continuous fuzzy multifunction at
X0

Theorem 5.7: Let X be a fuzzy topological space and Y be a locally convex fuzzy
topological vector space. Let f:XY be an upper hemicontinuous fuzzy multifunc-
tion at x. If (cg(co(f)))(x) is compact, then cg(co(f) is an upper hemicontinuous
fuzzy multifunction at x.

Proof: Let (c(co(I)))(x) C P for some open fuzzy set P. If (c(co(I)))(x) is com-

pact, then there is a convex neighborhood V of origin with v +
v c P (by definition of local convexity and Theorem 4.4). Lemma 4.2 further
implies that (c(co(I)))(x) + c(V)is a closed convex fuzzy set. Since f is an upper
hemicontinuous fuzzy multifunction at x, IU(f(x)+ V)is a neighborhood of x. If
z e fu(f(x) / V), then f(z) C f(x) / V, so
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(cg(co(f)))(z) C (cg(co(f)))(x) + cg(V)

c v + v c e.

Therefore, (ce(co(f)))(P) includes fu(f(x)+ V). Hence ce(co(f)), is an upper hemi-
continuous fuzzy multifunction at x.

Definition 5.8: A fuzzy multifunction f:X-+Y from a fuzzy topological space X
into a fuzzy topological vector space Y is upper demicontinuous if fU({y E Y:
h(y) < a where h is a continuous linear fuzzy single valued function from Y into K})
is an open subset of X.

Theorem 5.9: A compact valued fuzzy multifunction f:X-Y from a fuzzy
topological space X into a fuzzy topological vector space Y is upper demicontinuous if
and only if ce(co(f) is upper demicontinuous.

Proof: Let H C Y be an open half fuzzy space of the form H {y
where g:Y-K is a continuous linear fuzzy single valued function. Since g is a linear
and continuous fuzzy function,

max{g(y): y f(x)} max{g(y): y (c.(co(f)))(x)}.

It implies f(x) C H if and only if (ce(co(f)))() c H.
demicontinuous if and only if ce(c0(f) is also demicontinuous.

Hence f is upper
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