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1. Introduction and Statement of the Main Result

The present paper is devoted to the stability of nonlinear nonautonomous differential
systems with delaying argument. Stability of systems of nonlinear differential equa-
tions with delay has been discussed by many authors, cf. [6, 8, 9], etc. The basic
method for stability analysis is the direct Lyapunov method. By this method, many
very strong results are obtained. But finding Lyapunov’s functionals for nonautono-
mous retarded systems is usually difficult. In this paper, we investigate the stability
of nonlinear nonautonomous differential systems with delaying argument, whose lin-
ear parts have slowly varying coefficients and whose nonlinear parts have linear
majorants. Our approach is based on the extension of the "freezing" method for
ordinary differential equations, which in the linear case, was developed by V.M.
Alekseev [1, 10, 7] (see also [5, Section 3.2]). The method was extended to nonlinear
ordinary differential equations in the paper [2]. In [4] the "freezing" method has been
generalized to linear differential equations with delay.

Consider in a complex Euclidean space Cn with the Euclidean norm [1" II c the
equation

[c(t) Ao(t)x(t + Al(t)x(t- hi)--...-- Am(t)x(t- hm)
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+ F(t,x(t),x(t-hl),...,x(t-hm) ( dx/dt;t > 0), (1.1)

where hk are positive constants, and Ak(t are variable n n-matrices with the proper-
ties

II Ak(t)- Ak(s) I] cn__,Cn <- qk t- s (qk const >_ 0;t,s >_ 0;k 0,...,m)

and
m

s _>o k-0

(1.2)

(1.3)

In addition, F: [0, cx)x camden is a continuous function satisfying the condition

II F(t, Zl, Zm) II Cn

m

k II zk II Cn(k -const _> 0;t _> 0; zk E cn, k 1,..., m).
k=l

(1.4)

A solution of (1.1)is an absolutely continuous function x:[- r/, c)---Cn, which satis-
fies this equation on (0, ec) almost everywhere with the initial condition

x(t) O(t) for r _< t 0, (1.5)

where

r max hkk=l m

and (I)(t) is a given, continuous vector-valued function. The existence and continua-
tion to infinity of solutions to (1.1) for all continuous (I)(t) is assumed. For condi-
tions for solution existence see for instance, [6, 8, 9].
We will say that the zero solution of equation (1.1) is absolutely stable in the class

of nonlinearities (1.4), if there is a positive constant M0 independent of a concrete
form of F (but dependent on qo," qm), such that

II (t)II cn

_
Mo sup II ()II c( O)
e[-,0]

for any solution x(t) of (1.1) with the initial condition (1.5). Let A be a constant
n x n-matrix, and let ,k(A) (k- 1,...,n) denote the eigenvalues of A including their
multiplicities. The following quantity plays an essential role hereafter"

g(A) (N(A)- I,k(A) I2)1/2
k=l

where N(A)is the Hilbert-Schmidt (Frobenius) norm of A, i.e., N2(A)
Trace(AA*). The relations g2(A) < N(A)- TraceA2 I, and
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g(A) < V//2N(A*- A) and g(Aei + zI) G(A) (0 E R,z C) (1.6)

are true cf. [3, Section 1.1]. In the following I denotes the unit matrix. If A is a

normal matrix: A*A AA*, then g(A) O. For a fixed s > 0 let K(s, p) be the char-
acteristic matrix-valued function of equation (1.1). That is,

m

g(s, p) B(s, p)- pI where B(s, p) E Ak(s)e- phk (P e C).
k=0

To formulate the result, set

v)) (v e C), =0E p))

where d(K(s, p)) is the smallest modulus of eigenvalues of the matrix K(s, p):

d(K(s, p)) min "k(K(s,
k= 1 n

Throughout the following it is assumed that all the zeros of detK(s, p) for every s > 0
belong to a half-plane C(- a0) {z G C: Rez < -a0} with a positive %. Let

m m

q qk, 7 7k"
k-0 k=l

In addition, denote
m

f’, r’ + sup E euhk II Ak(s) II Cn,
s_>0 k=0

ru sup sup r(K(t. u + iw)). and gu 2V/,P(V.F + 1)
t>0 wR

u

with a non-negative number u. Now we are in a position to formulate the main
result of the paper.

Theorem 1.1: Let conditions (1.2), (1.3) be satisfied. In addition, for a positive
number

u < Co, (1.7)

let the inequality

u(? t/- 1 q_’ t/- 2) < 1 (1.8)

hold. Then the zero solution of equation (1.1) is absolutely stable in the class of non-

linearities (1.4).
The proofs are presented in the next section. Theorem 1.1. is exact" if (1.1) is a

linear stable equation with constant matrices Ak(t)- Ak, then u--0 and
condition (1.8) is always fulfilled.

Let us give an estimate for Fu. Let

(B)- sup sup g(B(s,
s>0 oER

-. + iw)) and d,,(K) inf inf d(K(s
s>OwER

-u+i)).
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As it was was shown in [4, 5, p. 170],
n-1 ku(B)rU<k-OE V/.dku+l(K

and

(1.9)

m

u(B) _< sup [x/f2N(Ao(s)- A;(s)) + V/E eUhkN(Ak(s))]. (1.10)
s>_O k-1

If matrix K(t,) is normal for all t> 0, , E C, then g(B(s, p)- 0 and we have the
simple expression u- d-1.

2. Proof of Theorem 1.1

Set R+ -[0, oc). The space of all continuous functions defined on a segment [a,b]
with values in Cn and the sup-norm II II c[,b] is denoted by C([a, b], Cn). Set

L(s)x(t) Ao(s)x(t + Al(S)x(t- hi) +... + Am(s)x(t- hm)

( c( +, c"); t, > 0).

For a fixed s

_
0 denote by Gs(t the Green function of the equation

s(t)-L(s)s(t)-O. (2.1)

In addition, with the notation

assume that

(t) sup II a,(t)II cs>0

0- (t)dt < OQ, 1 t(t)dt < ec.

0 0

(.2)

Consider the equation

[c(t)- L(t)x(t) f(t), (2.3)

where f e C(R+,
Lemma 2.1: Under conditions (1.2), (1.3), let the inequality

(2.4)

hold. Then for any solution x(t) of problem (2.3), (1.5) the estimate

[Iz(t) llc(+)
_< Co II II c[-,,ol / o(1 1 )- 111 f II c( +) (co const) (2.)
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is valid.
Proof: Fix s > 0 and rewrite (2.3) in the form

it(t)- L(s)x(t) (L(t) L(s))x(t) + f(t).

Setting r(t, s) (L(t)- L(s))x(t) + f(t), we get

(t) L()(t) (t, ).

A solution of the latter equation with the initial condition (1.5) can be represented as

x(t) Cs(t)+ / Gs(t- 3.)r(3., s)d3. (t > 0), (2.6)
0

where Cs(t) is the solution of the homogeneous equation (2.1) with the initial
condition (1.5). Let us use the representation of solutions of homogeneous
autonomous systems [6, 8]. We can write

0

Cs(t) Gs(t)(O) + E Ak(s) Gs(t- 7- hk)ap(r)dr.
k=O -hkThat representation and (1.3) give

II O(t)II c Cl < (:x3 (C const; t, s _> 0),

since the Green function is bounded according to (2.2). Moreover,

c _< c II <I> II ([_ ,,o], c) (c const).

From (2.6) the inequality

II x(t)II o, _< Cl -I- i (t- 3")II =(, )II cd
0

follows. According to (1.2)
m

II (, )II c _< II (Ak(3")- Ak(s))x(3"- hk) + f(t)II c
k-O

m
_

zl- -I II (- h)II c / II f II c(
k-O

Let t- s. Then, taking into account that

we get

(t- )II f(3") II cd < c(f) o II f II
0

II (t)II c < Cl -t- c(f)+ D(T- )

_
q(t- )II ( h)II cd

0 k-O
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C1 -t- c(f +

t-hk

q (t- z- h)(t- z- h)II :(z)II cdz.
k=0 -hk

Hence,

where
k=0 0

C3 C1 + c(f) + sup
t>0

Setting

t-hk

(t- z- hk)(t- z- hk) II ,(z)II cdz / c3(f),

m
0

(t- z- hk)qk(t-- z-- hk)II O(z)II Cndz"
-hk

re(x, to) max
O_t_t0

we arrive at the relations
o hk

m(to) <_ c3(f --t- re(to)E qk
k=0 0

(to- z- h)(to- z )dz

-< c3(f) + m(to)

But condition (2.4) implies the inequality

re(to) <_ c3(f)(1 )1" )- 1.

Taking into account that to is arbitrary, we arrive at the estimate

sup II x(t) II Cn <- c3(f)(1 1) 1

t>0

Clearly, c3(f) _< c5 II II c([_v,o],cn) (c5 const). That inequality yields the result.

Corollary 2.2: Under conditions (1.2) and (1.3), let the inequality

(.8)

hold with constants u > 0 and Cu independent of s. If, in addition,

(2.9)

then for any solution x(t) of problem (2.1), (1.5) the estimate

II (t)II c" b II II c[- ,o] + "- 1Cu(1 Cu u- 2)- II f II c( /)

(b,- const) (2.10)

is valid.
Indeed, under condition (2.8), we easily get
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Now the previous lemma yields the following result.
Lemma 2.3: Let the conditions (1.2), (1.3), (2.8) and

Cu(? b’-1 na’ b’-2) < 1 (2.11)

hold. Then the zero solution of equation (1.1) is absolutely stable in the class of non-
linearities (1.4).

Proof: Condition (2.11) implies inequality (2.3) and, in addition,

u- 1Cu(1 Cu u- 2)- 1 < 1. (2.12)

Due to (1.4) we easily get

I[ F(t, x(t h1),.. x(t hrn)) II C(_R + -- " II II C[- r, cxz)

_< ? ([I II c( +) + II II c[- ,01),
where x(t) is the solution of (1.1). Let

f(t) F(t,x(t),x(t- hl),...,x(t- hm) ).

Then (1.1) takes the form (2.3). Now the previous corollary yields

II (t)II c _<

bu I1 I16,[- r,0] + ? u 1Cu(1 Cu’ u 2) 1 II II C(/ + )11 (I) II C[- r,0l)’
where x(t)is the solution of (1.1). Let

f(t) F(t,x(t),x(t- hl),...,x(t- hm) ).

Then (1.1) takes the form (2.3). Now the previous corollary yields

II x(t) II cn <_ bu II IIc[- rt,0] + ? u- 1Cu(1 Cu u- 2)- 1 II x II C(R + (bu const).

Hence, condition (2.11) implies the inequality

]l x(t) II cn <_ bu II II c[- ,,0]( 1 -? u- 1cu(1 -cu u- 2)- 1)- 1

which proves the required result. V!
Proof of Theorem 1.1: As proved in [4, Lemma 6], the Green function of (2.1)

satisfies the inequality

Now the previous lemma yields the required result. [-1
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3. Example

Consider the scalar equation

+ (1 + a(t))](t) + b(t)9(t- 1) + a(t)y(t) + b(t)y(t 1)

f(t,y(t),y(t- 1)) (3.1)

where a(t),b(t) are positive functions with the properties

&(t) o, (t) 1, a(t) mo, b(t) rrtI

(lo, ll,mo, m1 const, t _> 0).

In addition, the function f:[0, oc)x R2tt supplies the solvability and satisfies the
condition

If(t,Y,Z) <7olYl +711zl (y, zeP;t>_O). (3.3)

To establish stability conditions, consider the scalar equation

z + a + be- z 0 (3.4)

with positive constants a, b. Putting w z + a, we have w + beae- w O.
Theorem A.5 from [6, Appendix], the condition

Due to

guarantees that all the roots of equation w + beae w-o are in the open left half-
plane. Therefore, under (3.5) all the zeros of (3.4) are in the half-plane Rez <_ -a.
Now consider the characteristic equation of (3.1)

z2 + (a + 1 + be- Z)z + a + be- z (z + a + be- Z)(z + 1) 0.

Under condition (3.5) we can assert that all the zeros of the latter equation are in the
half-plane Rez < ct with

Ct1 min(1, a). (3.6)

Clearly, equation (3.1) can be rewritten in the form (1.1) with m- 1, h 1,

and Al(t
1 0 0 0

Let us assume that the condition

b(t)ea(t) <_ r/2 (t >_ O) (3.7)

holds. Then according to (3.6) all the zeros of the characteristic function
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z2 + (a(t) + 1 + b(t)e- Z)z + a(t) + b(t)e- z

(z + a(t) + b(t)e- Z)(z + 1) 0

for any fixed t are in the half-plane

{z G C: Rez <_ co min{1,tifoa(t)} }.

Let u < Co, for example, u- Co/2. Due to (1.6) and (3.2) we easily have,

g(Ao(t) + al(t)eu- iw)
_

gu 1 + mo + mleU(co 1, t

_
0).

Moreover, (3.8) implies

,kl(K(t p)) p + a(t) + b(t)e P, .2(K(t, p)) p + 1.

Hence,

k(K(t, u + iw)) >_ min{ u + iaz + a(t)b(t)eu- iw u + ia + 1 }.

But

u + iw + a(t)b(t)e iw

/ a(t) + b(t)eUcosw)2 + (w + b(t)eUsinw)2 >_ 4- a(t) b(t)eu)2.

So

d >_ min{ tifo a(t)- b(t)eu 1 u} > O,

since under (3.7), function

a(t)-,+b(t)e -iw+E

has no zeros. According to (1.9) we get

ru <_ Mu d- l(l + dy l gu).

In addition,

II Ao(t) [I cn__,cn <- 1 + 2too, II Al(t)[[ Cn_Cn -<- ml(t 0).

So Vu <- Wu, where

Wu u + 1 + 2mo + mleu and

where
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Moreover, (3.2) implies inequalities (1.2) with q0 2/0, ql- 2/1"
Condition (3.3) yields inequality (1.4). Now Theorem 1.1 implies:

Proposition 3.1: Let conditions (3.2) and (3.7) be fulfilled.
positive v < min{1,inf > 0a(t)}, let the inequality

2v[(70 + 71)V- 1 + (10 + ll)t- 2] < 1

So " 2(/0+l1).

In addition, for a

hold. Then the zero solution of equation (3.1) is absolutely stable in the class of
nonlinearities (3.3).
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