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Sufficient coefficient conditions for complex functions to be close-to-convex har-
monic or convex harmonic are given.  Construction of close-to-convex harmonic
functions is also studied by looking at transforms of convex analytic functions.
Finally, a convolution property for harmonic functions is discussed.
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1. Introduction

Harmonic functions are famous for their use in the study of minimal surfaces and also play
important roles in a variety of problems in applied mathematics.  Harmonic functions have
been studied by differential geometers such as Choquet [2], Kneser [7], Lewy [8], and Rado
[9].  Recent interest in harmonic complex functions has been triggered by geometric functions
theorists Clunie and Sheil-Small [3].
 A continuous function  is a  in a domain� � � � �� complex-valued harmonic functions
� �� � � � if both  and  are real harmonic in .  In any simply connected domain, we can write

� � 	 � 
 � �
��

where  and  are analytic in .  We call  the  and  the  of .	 
 	 
 �� analytic part co-analytic part
A necessary and sufficient conditions (see [3] or [8]) for  to be  and � locally univalent sense-
preserving in  is that  in .� ��	 ��� � � �
 ��� �� �

 Denote by  the class of functions  of the form (1) that are harmonic univalent and�� �
sense-preserving in the unit disk  for which  .  Thus� � ��� �� � � 
� ����� � ���� 
 � ��

we may write

1Dedicated to KSU Professor Richard S. Varga on his seventieth birthday.
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	���� � � � � 
���� � � � ���� �� �

��� ��


� �
� �  and  

 Note that  reduces to , the class of normalized univalent analytic functions if the co-� ��

analytic part of  is zero.  Since  for , the function� 	 ���� 
 � �
 ��� � � �� � � �� �

 ��

�� � � �� �
 � �� � �
 

� ! is also in .  Therefore, we may sometimes restrict ourselves to ,� �� �

the subclass of  for which .  In [3], it was shown that  is normal and � � �� � �� � � ���� �
 ��
!

is compact with respect to the topology of locally uniform convergence.  Some coefficient
bounds for convex and starlike harmonic functions have recently been obtained by Avci and
Zlotkiewicz [1], Jahangiri [5, 6], and Silverman [14].
 In this paper, we give sufficient conditions for functions in  to be close-to-convex��

harmonic or convex harmonic.  We also construct close-to-convex harmonic functions by
looking at transforms of convex analytic functions.  Finally, we discuss a convolution property
for harmonic functions.
 In the sequel, unless otherwise stated, we will assume that  is of the form (1) with  and � 	 

of the form (2).

2.  Convex and Close-to-Convex Mappings

Let ,  and  denote the respective subclasses of ,  and  where the images of� � � � � �� �� �
! !

�� �� � � � � � � are convex.  Similarly, ,  and   denote the subclass of ,  and  where the� �� �
! !

images of  are close-to-convex.  Recall that a domain  is convex if the linear segment�� �� �
joining any two points of  lies entirely in .  A domain  is called close-to-convex if the� � �
complement of  can be written as a union of non-crossing half-lines.  For other equivalent�
criteria, see [4].
 Clunie and Sheil-Small[3] proved the following results.
 Theorem A:  If  are analytic in  with  and  is close-to-	�
 �	 ��� � � �
 ��� � 	 � 
� �� �

convex for each , , then  is harmonic close-to-convex.� �� � � 
 � � 	 � 
�

   If  is locally univalent in  and  is convex for some ,Theorem B: � � 	 � 
 	 � 
� � � �
� � " 
 �� , then  is univalent close-to-convex.

 A domain  is called convex in the direction   if every line parallel to the� � � 	�� " � �
line through 0 and  has a connected intersection with .  Such a domain is close-to-convex.#�� �
The convex domains are those convex in every direction.  We will also make use of the
following result, which may be found in [3].
   Theorem C: A function  is harmonic convex if and only if the analytic func-� � 	 � 
�

tions , , are convex in the direction  and  is suitably	���� # 
��� � " � �  � ��� � 	 �
normalized.
 The harmonic Koebe function  is defined by  ,$ � 	 � 
 � 	���� 
���� � �
 � ���

�
! ���


 ���� �	 ���� � , which leads to

	���� 
���� �
�� � � � � � �

�
��� �
���


 
 
 

� % � %

� & � &

& &,  

 The function  maps  onto the complex plane minus the real slit from  to .$ � 
 % ��! �
The coefficients of  are  and .  These$ � � ��� � 
��� � 
� % � � ��� � 
��� � 
� %! � �

coefficient bounds are known to be extremal for the subclass of  consisting of typically real�!
�

functions (e.g., see [3]) and functions that are either starlike or convex in one direction (e.g.,
see [12]).  It is not known if the coefficients of  are extremal for all of .$!

!��

 Necessary coefficient conditions were found in [3] for functions to be in  and .  We� �� �

now give some sufficient condition for functions to be in these classes.  But first we need the
following results.  See, for example, [13].
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 Lemma 1:  If  is analytic in , then  maps onto a starlike domain'���� � � ( � '��
��� �

� �

if  and onto a convex domains if � �� �
��� ���� �

�� �( � " 
 � �( � " 
�

3.  Main Results

Theorem 1:   If  with� � 	 � 
�

� �� �

��� ��


� �� �� � � � �� � " 
� �&�

then .  The result is sharp.� � ��
   In view of Theorem A, we need only prove that , , is close-to-Proof: 	 � 
 � � � 
� �
convex.  It suffices to show that

)���� � � � � � �	� 


� � 
� �

�

���

� � � ��
� �

�


 


� ��� � �

Since

� �� �� �

��� ���

� � �

� � 
��� �

���� ���� ��� " " 
� �


 


� ��
�

if and only if (3) holds,  maps  onto a starlike domain and consequently .)��� )��� �� �
 To see that the upper bound in (3) cannot be extended to , , we note that the
 � � �
 


function  is not univalent in .����� � � �
�
�

�
 �

 Theorem 2:  If  is locally univalent with , then .� � �� � " 
 � ���
���

�
� ��

   Take  in Theorem B and apply Lemma 1.Proof: � � �
 Corollary:  If  and , then .��

���
� �

�� �� � " 
 �
 ��� � " 
 ��� � � �� ��
   The function  is locally univalent if  for .  SinceProof: � �	 ��� � � �
 ��� � � �� � �
� � �� � " � �� � " 
 	 ��� � 
 � � �� � * 
 �� � �� � �

��� ��� ���� � �
� �, we have .

 We next give a sufficient coefficient condition for  to be convex harmonic.�
 Theorem 3: If

� �� �

��� ��


� �
� �� �� � � � �� � " 
� �+�

then .  The result is sharp.� � ��

 Proof:  By Theorem C, it suffices to show that  is convex in .  Set	 � # 
�� �

,���� � � � � �	�# 


�# � 
�# �

�

���

� �# � ��

� �

 


� �
��

� �

��� �
Since

� �� �� �

��� ���

� � �# �

�# � 
��� �

� ��� ���� ��� " " 
� �
�

�

 


�
� �

�

�

if and only if (4) holds, we see from Lemma 1 that  and consequently .,��� � � �� ��

 The function , , shows that the upper bound in (4) cannot be����� � � � � �
�
�

�

� 


improved.
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   The coefficient bound given in Theorem 3 can also be found in [5] and [14].Remark:
However, our approach in this paper is different from those given in [5] and [14].
   The well-known results for univalent functions that  is convex if and only if Remark: � �� �

is starlike does not carry over to harmonic univalent functions.  See [12].  Hence, we cannot
conclude from Theorem 3 that (3) is a sufficient condition for  to map  onto a starlike� �
domain.  Nevertheless, we believe this to be the case.  See [5, 6, 14].
 We now introduce a class of harmonic close-to-convex functions that are constructed from
convex analytic functions.
 Theorem 4:  If  and  is a Schwartz function, then	��� � - ����

����� 	���� - �)�	 �)�.) � ��    �
�

� !��

 Proof:  Write .  Now for each , , we observe that
 ���� - ���	 ��� � � � 
� � � �

/ # � / #�
 � - ���� * 
 � �� � � � � � �	 ���� 
 ���
	 ���

� �

�
�

� �, 

Consequently,  is close-to-convex and the result follows from Theorem A.	 � 
�
   If we only require that  in Theorem 4 be analytic with , ,Remark: - �- ��� � � 
 � � �
then we may conclude that .� � ��
 Corollary: If  and  is a positive integer, then	 � ��

� ���� .) � ) 	 �)�.) � ��

� �

� �

	�)�
)

�
��� � !� �� �        

��

 Proof:  A result of Sheil-Small [10] shows that  whenever .  Set� �

�
��	�)� )� .) � 	 �� �

- ���� �� in Theorem 4, and the result follows.
 We now give some examples from Theorem 4.
   Suffridge [15] showed for the partial sums  of  Example 1: 0 ��� # � �
 � ��  $1�


�� $�
$��

�
that

� ���� � � ��
0 ����0 ���

0 ��� $1

�

$�



 $� �
�
�

��$
2��



21

��

2��



21

�� ��
�  

 .�

Setting  in Theorem 4, we see that- ���� �

����� � ��� � � ��

$�


�$�
�� �$��

�$�
�1
!�

�
��$
2��



21

��

2��



2


$ $�


 ��

   Since , we get from the Corollary thatExample 2: 	 ���� � � �  $ �$
$ � �

� ���� � � � � � � � � �$��
� 
 � �� �
$ $ ��$�
� ��
 $ ���$� $ ��$���
�

$ �$�
 !
& + � +

��
 ��$ �$���

��

for  and .$ � ��&�3 � � � 
���3
   Set  and  in Theorem 4.  ThenExample 3: 	���� � �
 � �� - ���� �

����� � .) � �/ # � �
 � � � � ��� ) �

�� �
�)� 
��

�

�

!�    
� log ��

 We can actually state a more general result for which Example 3 is a special case.
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 Theorem 5:  If  is analytic with , , then���� ����� � � 
 �
 � � � � �� �

����� � ��)�.) � ��

��

�

�

�    ��

 Proof:  Set  and .  Then 	���� � �
 � �� 
���� ��)�.) �	 ��� � � �
 �
 �� �

!
�

� � � � �
 ��� � � ����� � � � �� � , so that  is locally univalent.  Set  in Theorem B, and the�
result follows.
 Corollary:  If  is analytic with , , then���� ����� � " 
 + � � �

�

��

�

�

� ��)�.) � ��    ��

4.  Convolution Condition

The convolution of two harmonic functions  and� ���� � � � � � � ��
 � �
� �
��� ��


� �� �
� ���� � � 4 � � 5 ��� � �

� �
��� ��


� �� �  is defined by

� ���6� ���� �� 6� ����� � � � 4 � � � 5 � ��

 � 
 � � � � �

� �

��� ��


� �� �

 In [3], it was shown for  and  that .  We given� � � � �� � �� � � � � �6� � � � � " 
�
�

� �

an example to show that  cannot be replaced by , , the family of functions� � �7 � � � " � 
6

starlike of order .�
 Set

� ����� � � � � 7 � � 	���� 
���� �
�
�� �
��� �
���

� 6 ���  � ��  ��
�

, , 
� �

� �

Then , see [3].  Setting  in  we obtain� � 	 � 
 � � � � � �6�� �
� � � ���

� � �6� � 6�	 � 
 �� 6	 � � � � 6 � � �� � � � 	�
� ��

�� �

� �
�

���

�
�

� � � � ��
� ����
�
���� �

��
�

which is not even univalent for .� � �  �
 � �� �
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