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Sufficient coefficient conditions for complex functions to be close-to-convex har-
monic or convex harmonic are given. Construction of close-to-convex harmonic
functions is also studied by looking at transforms of convex analytic functions.
Finally, a convolution property for harmonic functions is discussed.
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1. Introduction

Harmonic functions are famous for their use in the study of minimal surfaces and also play
important roles in a variety of problems in applied mathematics. Harmonic functions have
been studied by differential geometers such as Choquet [2], Kneser [7], Lewy [8], and Rado
[9]. Recent interest in harmonic complex functions has been triggered by geometric functions
theorists Clunie and Sheil-Small [3].

A continuous function f = u + iv is a complex-valued harmonic functions in a domain
D C C'if both u and v are real harmonic in D. In any simply connected domain, we can write

f=h+7, (1)

where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f.
A necessary and sufficient conditions (see [3] or [8]) for f to be locally univalent and sense-
preserving in Dis that | h'(2) | > | ¢(2) | inD.

Denote by Sy the class of functions f of the form (1) that are harmonic univalent and
sense-preserving in the unit disk A = {z: | z | < 1} for which f(0) = f,(0) — 1 = 0. Thus
we may write
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o0

h(z)=z+ Zanz” and g(z) = anz”. (2)
n=2

n=1

Note that Sy reduces to S, the class of normalized univalent analytic functions if the co-
analytic part of f is zero. Since K'(0)=1> |¢(0)| = | b1 | for f € Sy, the function
(f —bif)/(1— | by |?)isalsoin Sy. Therefore, we may sometimes restrict ourselves to S%,,
the subclass of Sy for which b = f>(0) = 0. In [3], it was shown that Sy is normal and S,
is compact with respect to the topology of locally uniform convergence. Some coefficient
bounds for convex and starlike harmonic functions have recently been obtained by Avci and
Zlotkiewicz [1], Jahangiri [5, 6], and Silverman [14].

In this paper, we give sufficient conditions for functions in Sy to be close-to-convex
harmonic or convex harmonic. We also construct close-to-convex harmonic functions by
looking at transforms of convex analytic functions. Finally, we discuss a convolution property
for harmonic functions.

In the sequel, unless otherwise stated, we will assume that f is of the form (1) with h and g
of the form (2).

2. Convex and Close-to-Convex Mappings

Let K, Ky and Kf, denote the respective subclasses of S, Sy and S7, where the images of
f(A) are convex. Similarly, C, Cy and C3, denote the subclass of S, Sy and S, where the
images of f(A) are close-to-convex. Recall that a domain D is convex if the linear segment
joining any two points of D lies entirely in D. A domain D is called close-to-convex if the
complement of D can be written as a union of non-crossing half-lines. For other equivalent
criteria, see [4].

Clunie and Sheil-Small[3] proved the following results.

Theorem A: If h,g are analytic in A with | K'(0) | > | ¢'(0) | and h + €g is close-to-
convex for eache, | €| =1, then f = h +7 is harmonic close-to-convex.

Theorem B: If f = h + G is locally univalent in A and h + €g is convex for some e,

| €| <1, then f is univalent close-to-convex.

A domain D is called convex in the direction ¢ (0 < ¢ < ) if every line parallel to the
line through 0 and e’ has a connected intersection with D. Such a domain is close-to-convex.
The convex domains are those convex in every direction. We will also make use of the
following result, which may be found in [3].

Theorem C: A function f = h +q is harmonic convex if and only if the analytic func-
tions h(z) —e®g(z), 0 < ¢ < 2w, are convex in the direction ¢/2 and f is suitably
normalized.

The harmonic Koebe function kg = h+7g € Sy, is defined by h(z) — g(z) = z/(1 — 2)?,
¢'(z) = 2zl (z), which leads to

_1,2,1.3 1,2,1.3
h(z) = T, g(2) = 225

The function &, maps A onto the complex plane minus the real slit from — 1/6 to — oo.
The coefficients of k, are a, = (2n+1)(n+1)/6 and b, = (2n — 1)(n — 1)/6. These
coefficient bounds are known to be extremal for the subclass of 57, consisting of typically real
functions (e.g., see [3]) and functions that are either starlike or convex in one direction (e.g.,
see [12]). It is not known if the coefficients of k, are extremal for all of S%,.

Necessary coefficient conditions were found in [3] for functions to be in Cy and Ky, We
now give some sufficient condition for functions to be in these classes. But first we need the
following results. See, for example, [13].
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Lemma 1: [fq(z) = z+ Y . ,c,2" is analytic in A, then q¢ maps onto a starlike domain
if> > on e, | <1andontoaconvex domainsify .- on? | c, | <1.

3. Main Results

Theorem 1: [f f = h +7G with

Z;nlanwz;nlbnlgl, 3)

then f € Cy. The result is sharp.
Proof: In view of Theorem A, we need only prove that h +eg, |e| =1, is close-to-
convex. It suffices to show that

_ hteg _ anteby \ on
t(Z) T l4eby T z+ Z ( 1+eby " eC.

n=2

Since

ay+eby,
1+eby

o [
Z < E |an‘+|’n 1

n=2

if and only if (3) holds, ¢(z) maps A onto a starlike domain and consequently ¢(z) € C.

To see that the upper bound in (3) cannot be extended to 1 + 6, 6 > 0, we note that the
function f(z) = z + %ﬁz” is not univalent in A.

Theorem 2: If f is locally univalent with >~ ,n* | a,, | <1, then f € Cy.

Proof: Take ¢ = 0 in Theorem B and apply Lemma 1.

Corollary: If> > ,n*|a, | <land | ¢(2)| <1/2,2 € A, then f € Cy.

Proof: The function f is locally univalent if |R/(z)| > | ¢'(2)| for z € A. Since
2> onla, | <37n*|a,| <1l,wehave ' (2) >1->",nla,| >1/2

We next give a sufficient coefficient condition for f to be convex harmonic.

Theorem 3: If

S lan |+ 0 b, ] <1, (4)
n=2 n=1

then f € Ky. The result is sharp.
Proof: By Theorem C, it suffices to show that h — g is convex in A. Set

h —
s(z) = :mbgl =z+ Z (lllu ;Iobbl”> 2"

Since

oo
[L”*E, b”’ n? ‘[Lu|+‘bu| <1

if and only if (4) holds, we see from Lemma 1 that s(z) € K and consequently f € Ky.
The function f(z)=z+ 1;;6 2", 6 > 0, shows that the upper bound in (4) cannot be
improved.
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Remark: The coefficient bound given in Theorem 3 can also be found in [5] and [14].
However, our approach in this paper is different from those given in [5] and [14].

Remark: The well-known results for univalent functions that f is convex if and only if z f’
is starlike does not carry over to harmonic univalent functions. See [12]. Hence, we cannot
conclude from Theorem 3 that (3) is a sufficient condition for f to map A onto a starlike
domain. Nevertheless, we believe this to be the case. See [5, 6, 14].

We now introduce a class of harmonic close-to-convex functions that are constructed from
convex analytic functions.

Theorem 4: If h(z) € K and w(z) is a Schwartz function, then

£(2) = h(z) + Ufzw(t)h’(t)dt ey,

Proof: Write ¢'(z) = w(z)h/(z). Now foreach e, | e | =1, we observe that

Re%:Re(l—i—ew(z))Zl— |z] >0,z€A.
Consequently, i + €g is close-to-convex and the result follows from Theorem A.

Remark: If we only require that w in Theorem 4 be analytic with | w(z) | <1, z € A,
then we may conclude that f € Cy.

Corollary: If h € I and n is a positive integer, then

z 2 =
ful2) :a[ (@) dt+6[ =212 (t)dt € C3,.

Proof: A result of Sheil-Small [10] shows that [;(h(t)/t)?dt € K whenever h € K. Set
w(z) = 2™ in Theorem 4, and the result follows.

We now give some examples from Theorem 4.

Example 1: Suffridge [15] showed for the partial sums p,(z) of e!*% = 377 (1 + 2)* /k!
that

()= Pa(0 z ok
Cu(e) = BT = 57 (FH) o+ e K.

Setting w(z) = z in Theorem 4, we see that

n n—k 1 Sk ekl 0
f&) =2 (E4) (") e an

k=1 1=0 11

Example 2: Since hy(2) = z + 2¥/k? € K, we get from the Corollary that

Zntl 2 ntk 22k+n—1

— 2 k 1 2k—1 0
fkv”(z) =z+ ERd + k4(2k*1)2 + n+1 + k%(n+k) + k*(2k+n—1) € CH

fork=2,3,...,andn=1,2,....
Example 3: Set h(z) = z/(1 — z) and w(z) = z in Theorem 4. Then

f(z) = 15 + | ghpdt = 2Rei*; +log(1 -7 ) € C3,.
0

We can actually state a more general result for which Example 3 is a special case.
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Theorem 5: Ifb(z) is analytic with |b(2)| <1/ |1— 2|2 z € A, then

() = 2 + [ bt)dt € Cx.
0

Proof: Set h(z)=2z/(1—2) and g(z)= [ b(t)dt. Then |h'(z)| =(1/]1-
2|%)> | d(2)| = | b(2)], so that f is locally univalent. Set ¢ = 0 in Theorem B, and the
result follows.

Corollary: Ifb(z) is analytic with | b(z) | <1/4, z € A, then

=+ [ b(t)dt € Cx.
0

4. Convolution Condition

The convolution of two harmonic functions fi(z) =2+ > " sa,2"+ > - b,z " and
fo(2) =243 00 A" + > 07 B,z " is defined by

A a(2) = (e f2)(2) = 24+ 3 anAns" + > b, Bz ™.

n=2 n=1

In [3], it was shown for ¢ € K and f € Ky, that (¢ + € )xf € Cx( | €| <1). We given
an example to show that C cannot be replaced by S*(«), 0 < o < 1, the family of functions
starlike of order a.

Set

z—22 22
#(2) = 2+ 22" € S*(a), h(z) = (1743’ 9(2) = (172/)22'

Then f = h+G € Ky, see [3]. Setting ¢ = 0in (¢ + ¢ )*f we obtain

oxf = ¢x(h+7G) = ¢xh = (2 + iiz”)*(z+§%z”>

n=2

= 4 U,

which is not even univalent for n > 2a/(1 — «).
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