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Approximation-solvability of a class of nonlinear implicit variational inequalities
involving a class of partially relaxed monotone mappings - a computation-oriented
class in a Hilbert space setting- is presented with some applications.
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1.  Introduction

Recent prolific growth in applications of variational inequalities to problems arising from
applied mathematics, mathematical programming, optimization and control theory,
engineering sciences, and others, by any measure, has been outstanding.  Verma [14],
motivated by the ongoing research on the approximation-solvability of variational inequalities,
specially by the works of Cohen [2, 3], Marcotte and Wu [10] and Zu and Marcotte [18],
introduced a class of partially relaxed monotone mappings and applied them to the
approximation-solvability of nonlinear variational inequalities using a general class of iterative
algorithms expressed as variational inequalities in a Hilbert or a Banach space setting.  The
notion of the partial relaxed monotonicity is weaker than the existing notion of cocoercivity [4
10] studied by Marcotte and Wu [10], Zu and Marcotte [18], and others in context of the
approximation-solvability of a class of variational inequalities in .  The notion of the��

cocoercivity is also referred to the Dunn property [4].
 This paper is concerned with the approximation-solvability based on an iterative algorithm
- a modified version of the algorithm [10] characterized as an implicit variational inequality -
of a class of nonlinear implicit variational inequalities involving a class of partially relaxed
monotone mappings in a Hilbert space.  An application to  space is also discussed.  To��

learn more details about the general variational inequalities and related algorithmic
applications, see [1-18]).
 Let  be a real Hilbert space with the inner product  and norm .  Let� ��� �� � � �
	
� � � 
 � � � be any mapping and  a closed convex subset of .  We consider a class of
nonlinear implicit variational inequality (abbreviated as NIVI) problems:  determine an
element  such that� � ��

�	�� �� ��� � � � � � � � �� ������ � �  for all 
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which is equivalent to a projection formula

� � � �� � 	�� �� ���� � � �
� �

where  is the projection of  onto , and  is a constant.� � � � �� �
 Now we need to recall the following auxiliary results, which are crucial to the development
of the work on hand.
 Lemma 1.1:  An element  is a solution of the NIVI problem  if and only if� � � �����

� � � �� � 	������ � �� � � for ,

where  is a mapping and  is the projection of  onto .	
� � � 
 � � � ��

    An element  is a solution of the NIVI problem  ifLemma 1.2: � � � �����

�	������� � �� � � � � �� for all 

 cocoerciveA mapping  is said to be -  [15] if for all , we have	
� 
 � ��� � ��

� � � � � � � 	���� 	��� � � � �	���� 	����� �� � �� � �    � �

where  is a constant.� � �
 Alternatively, a mapping  is called -  [4, 10] if there exists a constant	
� 
 � � cocoercive
� � � such that

�	���� 	����� � �� � � 	���� 	��� � ��� � � ��   for all 

  is called -  if for each , we have	 ! ��� � �strongly monotone

�	���� ����� � �� � ! � � � � � ! � ��  for a constant 

This implies that
� 	���� 	��� � � ! � � � � � �

that  is,  is - , and when , it is .  The mapping  is called	 ! ! � � 	expanding expanding
monotone if

�	���� 	����� � �� � � ��� � � � for all 

 A mapping  is called -  (or - ) if there exists a constant	 � �Lipschitz continuous Lipschitzian
� � � such that

� 	���� 	��� � " � � � � � ��� � ��  for all .

 [10]  Lemma 1.3: For any two elements , we have��# � �

� � � � ���#� � �� �$%� � # � �  

 partially strongly monotone partially relaxedNext, we recall the notions of -  and - -! !�
monotone mappings that seem to be computation-oriented and are tailored to approximation-
solvability of nonlinear variational inequalities and related fields.
 A mapping  is said to be -partially strongly monotone if there exists a constant	
� 
 � !
! � � such that
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�	���� 	����& � �� � ! � � � � � ����& � � �  for all 

 For ,  is said to be -partially monotone, and when   is -strongly! � � 	 � & � �� 	 !
monotone.
 A mapping  is called - -partially relaxed monotone if there exist constants	
� 
 � !�
��! � � such that

�	���� 	����& � �� � � � & � � � � ! � � � � � ����& � � ��    for all 

 The mapping  is referred to -partially relaxed monotone if there exists a constant 	 � �� �
such that

�	���� 	����& � �� � � � & � � � ����& � � ��   for all 

  [14]  Consider an -cocoercive mapping .  For each ,Example 1.1: � 	
� 
 � ����& � �
we have

�	���� 	����& � �� � �	���� 	����� � ��� �	���� 	����& � ��

� � 	���� 	��� � � �	���� 	����& � ���  

� ' � 	���� 	��� � � ��$ ��	���� 	����& � ��(� � 

� � ��$% � � & � � ��   (by Lemma 1.3).

That means, every -cocoercive mapping  is -partially relaxed monotone.� �	 ��$% �
 For the general class of relaxed monotone mappings introduced by Verma [14-16], we have
the following implications

the -partial strong montonicity!
)

the - -partial relaxed monotonicity� !
)

the -partial relaxed monotonicity.�

2.  Solvability of NIVI (1.1)

We now consider the approximation-solvability of the NIVI problem (1.1) based on a
modified version of the iterative algorithm [10], which is represented by an implicit
variational inequality.
   For an arbitrarily chosen initial point , we consider an iterativeAlgorithm 2.1: � � ��

algorithm generated as follows (for :* � ��

� 	�� �� �� � � � �� � � � � �� � � � � �

+

� 	�� �� �� � � � �� � � � � � � � � � ��� �* * *� � * *� �  for all  and for 

 Algorithm 2.1 is equivalent to the projection formula
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� � � �� � 	�� �� ���*� � * * *
� �

where  is the projection of  onto .� � ��

 Before we discuss our main result on the approximation-solvability of the NIVI problem
(1.1), we need to recall the following auxiliary result.
 Lemma 2.1:  For , we have#�, � �

�#�, � � ��$ ��� # � , � � � # � � � , � ��   

 Now, we present (based on Algorithm 2.1), the approximation-solvability of the NIVI
problem (1.1) involving a combination of -partially relaxed monotone and monotone�
mappings in a Hilbert space setting.
 Theorem 2.1:  Let  be a real Hilbert space and  a nonempty closed convex subset of� �
� 	
� � � 
 � �.  Let  be -partially relaxed monotone in its second variable and -�
partially monotone in its first variable.  Suppose that  is -Lipschitz continuous in either	 -
variable,  a solution of the NIVI problem  and the sequence  is generated by� � � ����� '� (� *

Algorithm .  Then we have: ��
  The estimate�.�

� � � � � " � � � � � � �� �  � � � � � � �*� � �  * �  *� � *  ��

  The sequence  converges to  for .�/� '� ( � � 0 0 �$ * � � �
 Proof:  First, we compute the estimate and then show the convergence of the sequence
'� ( � �* � * to , a solution of the NIVI problem (1.1).  Since  satisfies Algorithm 2.1, we have

� 	�� �� �� � � � �� � � � � � � � �� � ���� * * *� � * *� �  for all 

On the top of that,  is a solution of the NIVI problem (1.1), that is, we can have, for a��

constant  that� � �

� 	�� �� ��� � � � � � � � �� � � �� � � �  for all 

 Replacing  by  in (2.1) and  by  in (2.2), and adding, we obtain� � � �� *� �

� " � �	�� �� �� 	�� �� ��� � � �� �� � � �� � � �� * * � � *� � � *� � * � *� �

� � �	�� �� �� 	�� �� ��� � � �� �	�� �� �� 	�� �� ��� � � �� * * * � *� � � * � � � *� � �

� �� � � �� � � �*� � * � *� �

Since  is -partially relaxed monotone in the second variable and -partially monotone in the	 ��
first variable, it implies that

� " �� � � �� � � �� � � � � � � � �1�*� � * � *� � *� � *  ��

Taking  and  in Lemma 2.1, and applying to (2.3) yields# � � � � , � � � �*� � * � *� �

� " ��$ ��� � � � � � � � � � � � � � � � � �� � � � � � �� *  *� � *  � *� �  *� � *  ��

It follows that

� � � � � " � � � � � � � � � � � �  � � � � � �*� � �  * �  *� � *  *� � *  ��
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That means, we have
� � � � � " � � � � � � �� �  � � � � � � � � �%�*� � �  * �  *� � *  ��

In light of (2.4), it follows that either

lim  
* 
 2

� � � � � � �* �

or

 lim .
* 
 2

� � � � � � �*� � *

Under the first alternative,   and lim  as well.  If we consider� 
 � � � � � � � �* � *� � *
*
 2

the second one, then assume that lim  is the cluster point of a convergent� � �3 *
*��

subsequence.  Since the left-hand term of (2.4) is bounded,  must exist.  Next, the continuity�3

of the projection mapping (in light of the -Lipschitz continuity of  in either variable)- 	
defined by

� � � �� � 	�� �� ���*� � * * *
� �

ensures that  is a fixed point of the projection mapping and, as a result,  is a solution of the� �3 3

NIVI problem (1.1).  Thus the entire sequence converges to .  This completes the proof.�3

3.  An Application

In this section we consider the convergence of a symmetric projection method, similar to that
of Marcotte and Wu [10].  Let  be a mapping from  into , where 4 
5 � 5 
 � 5 � 5 � 5� �

is a closed convex subset of .��

 We consider an implicit variational inequality problem:  find an element  such that� � 5

�4 �������� � �� � � � � 5 � �1���6  for all 

where  denotes the transpose of the vector .  Based on Algorithm 2.1, we�4 ������ 4 �����6

have:
   For an arbitrary chosen initial point , a sequence  is generatedAlgorithm 3.1: � � 5 '� (� *

by an iterative scheme:

� 4 �� �� �� 7 �� � � ���� � � � � � � � 5 � �1� �� * * *� � * 6 *� �
�   for all 

where  is a fixed positive-definite matrix.7�

 In what follows,  shall denote a symmetric matrix in (3.2) for the convergence of the7�

projection method.  The symbols  and  shall denote, respectively, the� �8 9� 8 .��:� �:�
minimum and maximum eigenvalues of a symmetric matrix .:
 Since  is symmetric, it implies that (3.2) is equivalent to7�

� � � �� � 7 � 4 �� �� ���� �1�1�*� � * � � * *
7� � �

where  is the projection on the set  with respect to the norm induced� 5 � � �7 7� �

by the positive-definite symmetric matrix .7�
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 Theorem 3.1:  Let  be -partially relaxed monotone in the second variable and -4 ��
partially monotone in the first variable, and , where  is a symmetric positive-7 � 7 7�

definite matrix.  Suppose that  is -Lipschitz continuous in either variable, sequence  is	 - '� (*

generated by Algorithm  for a constant  and  is a solution1�� � � �� �

of the implicit variational inequality .  Then we have the following conclusions:�1���
  .�9� � � � � � " � � � � � � �� �  7��� � � � �*� � �  * �  *� � *  

7 7 78 .����
  The sequence  generated by Algorithm  converges to , a solution of�99� '� ( 1�� �* �

the implicit variational inequality  for .�1��� � 0 0 �$ �7�� ��8 .�

 Proof:  The proof is similar to that of Theorem 2.1.
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