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In this paper, we study a mixed problem with integral boundary conditions for a high order partial
differential equation of mixed type. We prove the existence and uniqueness of the solution.  The
proof is based on energy inequality, and on the density of the range of the operator generated by the
considered problem.
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1  Introduction
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where  is bounded for , and has bounded partial derivatives such��� �� � �  � ��� �� � � �
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�
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�


� � ��� � �� � � ��� 	 ��� � (5)

where  and  are known functions which satisfy the compatibility conditions given in� �
equations (3)-(5).
 Integral boundary conditions for evolution problems have various applications in
chemical engineering, thermoelasticity, underground water flow and population dynamics; see
for example Choi and Chan [6], Ewing and Lin [7], Shi [12], and Shi and Shillor [13].
Boundary value problems for parabolic equations with integral boundary conditions are
investigated by Batten [1], Bouziani and Benouar [2], Cannon [3, 4], Cannon, Perez Esteva and
Van der Hoeck [5], Ionkin [8], Kamynin [9], Kartynnik [10], Shi [12], Yurchuk [14] and many
references therein.  A method was developed in [2], [10], and [14] based on energy
inequalities.  In this paper, our objective is to extend this method to high order partial
differential equations of mixed type.

2  Preliminaries

In this paper, we prove existence and uniqueness of a strong solution of the problem stated in
equations (1)-(5).  For this, we consider the problem in equations (1)-(5) as a solution of the
operator equation

� 
 � � , (6)

where  with domain of definition  consisting of functions ,� � � � � � � �� � �� � 
 � � ���� � �
� ��
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the operator  is considered from  to , where  is the Banach space consisting of all� �  �
functions satisfying equations (3)-(5), with the finite norm
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and  is the Hilbert space of vector-valued functions  obtained by completion of � ��� � �� � �

the space  with respect to the norm� ��� � � ��� �� � � ��� ���
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where  is an arbitrary number such that .� �� � � �
 We then establish an energy inequality:
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� � � �
 � ! � 
 ��  � (9)

and we show that the operator  has the closure .� �
   A solution of the operator equation is called a strong solution ofDefinition 1: � 
 � �
the problem in equations (1)-(5).
 Inequality (9) can be extended to , i.e.,
 � � �� �

� � � �
 � ! � 
 � "
 � � �� �� �  
.

From this inequality, we obtain the uniqueness of a strong solution if it exists, and the equality
of sets  and   Thus, to prove the existence of a strong solution of the problem in# �� � # �� ��
equations (1)-(5) for any , it remains to prove that the set  is dense in .� �  # �� �  
   (2)Lemma 1: For any function  satisfying the condition , for 
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 Proof:  Starting from exp  and integrating by parts, we� �
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obtain equation (10).
   We note the above lemma holds for weaker conditions on .Remark 1: 
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  Proof:  Starting from and using elementary inequalities yields�
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   (2)Lemma 3: For  satisfying the condition in equation ,
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 Proof:  Integrating the expression exp  by parts for using�
�

�
� � $�� � � �� �� 
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�� �� ��

��� �

� � �� �

elementary inequalities and Lemma 2, we obtain expression (12).

3.  An Energy Inequality and Its Consequences

Theorem 1:  For any function  we have the inequality
 � � �� �

� � � �
 � ! � 
�  � , (13)
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where constant , with the constant  satisfying! � $�
�$	�exp max

min(
��' (��� � �� � �
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� �� � )
& �
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   DenoteProof:
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 � 
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�
� �

� �� � � where �
We consider the quadratic formula

Re exp (15)� �
� �

��

� � $�� 
+ 
������

with the constant  satisfying condition (14); obtained by multiplying equation (1) by$
exp ; integrating over , where , with ; and by� � $��+ 
 � � � ��� �� � ��� � � � � 	� � � �
taking the real part.  Integrating by parts  times in formula (15) with the use of boundary�
conditions in equations (3), (4), and (5), we obtain

Re exp exp� � � �
� � � �

� �
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By substituting the expression of  in formula (15), using elementary inequalities and the+ 

inequality
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Re exp ( exp� � � �
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� �
'
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�
�

�� � $�� 
+ 
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� �� �� exp . (17)� ��

�

From equation (1) we have:
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Using elementary inequalities, we obtain
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� � � $���� � �� � � ����� � � 
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where 	� - ��
 By integrating the last term on the right-hand side of expression (16) and combining the
obtained results with Lemmas 1 and 3, and the inequalities in equations (17), (18), and (19), we
get:
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� � �
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Using elementary inequalities and condition (14), we obtain:
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�� �� �� ��

� �
�
��� �

� �
�� � �� �� � �� � � ���� � �� � �� ��� � � �� ��

�

�

� . (21)

As the left-hand side of equation (21) is independent of , by replacing the right-hand side by�
its upper bound with respect to  in the interval , we obtain the desired inequality.  � .�� 	/ �

   Lemma 4: The operator  from  to  admits a closure.� �  
   Suppose that is a sequence such thatProof: �
 � � � �� �0


 1 � ��0 in (22)

and

� 
 1  �0 �   in (23)

We must show that   The fact that  results directly from� � � �� ��� � � � �� � �2� � �� �� � �

the continuity of the trace operators ���
 Introducing the operator

��
� 3 � � 3
�� �� �� ��

��3 � � � � �� ���� �� ��
� ��

�
� � �

� �

defined on the domain of functions  verifying� � � 3 � � �����
� ��
�
�

3 � �� � �� � �� � � �� � �� � �� � � �� �
 
 
 
��	 ��	 ��� ���
�3 � 3 � 3
�� �� ��

� �

� �� �

we note that  is dense in the Hilbert space obtained from the completion of  with� � � � ����� �

respect to the norm

� � 
 
3 � �� � �� 3 ������ �

�

� �

Additionally, since� � �
� � �

0 0 ��� � �� �3���� � 
 �� � �� 3���� � 
 ��� � �� 3����� � ��� � �lim lim
0 1 4 0 1 4

� �

this holds for every function , and yields .3 � � � � � � ���

 Theorem 1 is valid for strong solutions, i.e., we have the inequality

� � � �
 � ! � 
 " 
 � � �� �� �  
,    ,

hence we obtain
   (1)-(5) Corollary 1: A strong solution of the problem in equations is unique if it exists,
and depends continuously on .� � �� ��� � � �  

 The range  of the operator  is closed in , and Corollary 2:  # �� � �  # �� � � # �� ��

4  Solvability of the Problem
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To prove the solvability of the problem in equations (1)-(5), it is sufficient to show that  is# �� �
dense in .  The proof is based on the following lemma. 

   Lemma 5: Suppose that  is also bounded.  Let � �� �����
�� �� � �

���

� � � � � � �� � � �� � � 5
 ��

� �� � 6� 
 � �� � 
 � �7� 
 � � �� � � � ���� � � �  If, for  and some , we have


�
�

� ���� � �� 
 ���� � ��� � � � (24)

where  is an arbitrary number such that , then .� � 
� � � � � �
 Proof:  The equality (24) can be written as follows:

� �� � �� ���� � � � �� �� � ��  ������ �
� �

� �� � ��� 
 � � 

�� �� �� ��

� � � � �� ��

� � �
� �

� �� � (25)

If we introduce the smoothing operators with respect to  [14]  and ,� , � �8 � � �, �� � � � � � 9�
��� ��

then these operators provide the solutions of the problems

� �: �����
� � : ��� � :�����

(26)
g���� � �
���

and

� � : ��� � :�����
�: ���
��

9
9
�

�

(27)
: ��� � ��9

��	� 

and also have the following properties:  for any , the functions  and: � � ��� 	 � : � �, �:�

� �
� �

: � �, � : � ��� 	 � : � � : � � ,9 � � 9 � 9 � �
� ��� ��	� � � �� are in  such that  and .  Moreover, commutes
 


with , so  and  for .�
�� � �

	 	� �9� �
 
 
 
: � : �� 1 � : � : �� 1 �� 1 �� � �

 Now, for given , we introduce the function
��� ��

3��� �� � �� � �� �� � � � � � � � ���� � �� �� � � � � ��� �� � � �
 �
�

� � �� � �

� �

� �
� � ���
�

� �� � � � � 
 � �

Integrating by parts, we obtain

�� � ��3 � ,3 � �� � �� � 3��� ���� � ��� 
� �� ��

�

�

  and (28)�
Then from equality (25), we have

� ; 3���� � < ��� 3������ �
� �

� 
 �

�� ��

�

� (29)

where , and   Replacing in; 3 � �� � ��3 � ,3 < ���
 � � � �� ��� � ����� �� ��� � � � 
 �

�� �� ��

� �

� �

equation (29) by the smoothed function , and using the relation, � � �

���
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< ���, � , < � � � , , �� � � � � � � ��< � �
�� � � �
�
�

� �

we get � � �
� � �

�
 �
 �< �

�� �� �� �� ��

�3 9 9; ���� � < ��� 3 ���� � 3 �����
9
�

� ��
� � � (30)

By passing to the limit, we satisfy the equality (30) for all functions satisfying the conditions in
equations (2)-(5), such that  for .� � 


�� �� �� �
� ��

� � � � � ��� � � � �
�

� �

 The operator  has, on , a continuous inverse defined by the relation< ��� � ��� ���

< ���: � � � �� = = :� �� � = �� �

� � � � �

�
�

� ������ � �
� � �

�
  � �

 



�
� � � � � �� �� � � � � �� � � � �

� ! � � = � ��
���

� � � ���� ��>

�


�

�� �     (31)

where

�
�

�
� �< ���:�� � �� (32)

Hence the function  can be represented in the form   Then,� � � ��
 �
 �

�� �� ��

� � � �
� � �� , < < �

�< �
 �

�� �� ��
� �

� �� < ���< ��� , where

< ���: � = :� � ��� � = �� �

� �

�

� �

�

� �
?��

? �  �
�� �� �� ��

@��

� ?
�

� � �

�

� � �� � � � �
?�� � ?� @

? @ � ?� @

@ �


� � �� �
� �� �� � �

�

�� � �
� ! �

� �
� �

� �
� �� �� �� � �

?�� A��

?
A �  � �
�� �� �� �� �?� ��>

@��

� A
�

� � �

�
�

�
A�� � A� @ ?� �

A @ � A� @

@ �


� � �

� (33)

Consequently, equation (30) becomes� �
� �

�
 �

�� �� ��

�3 9 9 9; ���� � < ��� �3 � < 3 ������
9
�

� � �� (34)

in which  is the adjoint of the operator .< ��� < ���9
� �

 The left-hand side of equation 34) is a continuous linear functional of   Hence the� ��

��

function has the derivatives B � 3 � < 3 � � ���� ���� �� � � � ����� � � �
9 9 9 � B � B

�� �� ��� �
��

�

� �

�
� �

�

�

� � �� ��  and the following conditions are satisfied

� B � B
�� ����� ���

� �

� �
� �
 
� �� � � �� � �� � �� � � �� �� � (35)
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The operators  are bounded in   For  sufficiently small, we have < ��� � ���� < ��� �9 9
� � ���� �� �� �

�

� 8 � < ��� � ���� � � �, hence the operator,  has a bounded inverse in   In addition, � 9
�

� < ���
���

� 9

�
�

�� � ���� , are bounded operators in .  So from the equality,�

� B
�� �� �� ��

9 ?� 3 � < ��� � 3

?��

�

�

�

� � ?

� 9 ? 9 �� ? 9

�� ?
� � � �� �8 � < ���� � � � � �� �� � � ��

� (36)

We conclude that the function  has the derivatives , . Taking into3 � � ��� � � ��9 � 3
�� ��

� 9

�
� �

account equations (36) and (35), we have

� �
� ��8 � < ���� � � �� � � �� � ��� � � �9 ?� 3 � < ��� � 3

�� �� ��
?��

�

�

���

�

� 9 ? 9 �� ? 9

� ? �� ?
� � �� (37)

and

 . (38)
� �
� ��8 � < ���� � � �� � � ��� � � �9 ?� 3 � < ��� � 3

�� �� ��
?��

�

�

���

�

� 9 ? 9 �� ? 9

� ? �� ?
� � ��

Similarly, for  sufficiently small, in each fixed point , the operators � �� � .�� �/ � � � ��� < ���
��

� 9

�
�

are bounded in , and the operator  is continuous inversible in .  And so� ��� 8 � < ��� � ���� �
9� �

from equations (37) and (38),  satisfies the conditions39�

� 3
�� ���

� 9

�
� 
 � �� � � �� � ���

� 3
�� ���

� 9

�
� 
 � �� � � ���. (39)

So, for  sufficiently small, the function has the same properties as   In addition, � 3 B � 39 9
� ��

satisfies the integral condition in equation (28).
 Putting exp  in equation (29), where the constant  satisfies
 � �$ �3 � � �� � $� �

� �

� 9�
�  �  �

$ �  � % �� �



�
�

�
 and using equation (27), we obtain

� � �
� � �

9 �
 � 
 �

�� �� �� ��

�3exp exp (40)�$��3 ; 3���� � � < ��� � � $�� ���� � < ��� ������

�

�

9

� �

Integrating each term in the left-hand side of equation (40) by parts and taking the real parts,
we have

Re exp exp� �
� �

�
 � 
 $ � 

�� �� � �� ��

�

< ��� � � $�� ���� % ��� �� � � $���� � �� ����
� ��

� � ��

�

� � � $���� � �� ������ � � 

� �� �� ���

�� exp (41)� ��

�

��

Re exp (42)� � � �� < ��� ���� % � � $���� � �� ������� �
� �

�
 � 

�� �� � �� ��

�3 � 
�9 �

�

�

��
�

�

�

�
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Now, using inequalities (41) and (42) in equation (40) with the choice of  indicated above, we$
have 2Re exp ; then for , we obtain 2Re exp ,� �

� �
9�$��3 ; 3���� � � 1 � �$��3; 3���� � �� �

i.e., 2Re exp 2Re exp .� �
� �

��$���� � ��C3C ���� � �$��3,3���� � �

 Since Re exp , we conclude that ; hence , which ends the�
� �$��3,3���� � � 3 � � � �


proof of this lemma. �

   Theorem 2: The range  of  coincides with .# �� � �  
 Proof:  Since  is a Hilbert space, we have  if and only if the relation # �� � �  

� �
� �

�

���

� � 
 � � 

�� �� �� ��

� �
��� � �� 
����� � �� � �� � � � 
 �� � ���

�

� �� �� �� �
� �
�

�

�

�

� �

�

(43)

for arbitrary  and , implies that ,  and .
 � � � ��� � � �  � � � � � � �� � � � �

 Putting  in relation (43), we obtain   Taking
 � � �� � �� � �� 
����� � ��� �
� ��


 
� � � � � � �� �
��� �� ��� ��� ��� ��, and using Lemma 5, we obtain , then .

 Consequently,  we have"
 � � �� �

�
�

�

���

� � 
 � � 

�� �� �� ��

� �
��� � �� � � � 
 �� � ��� ��� � ��

� �
�

�

�

�

� �

�

� (44)

The range of the trace operator  is everywhere dense in Hilbert space with the norm�� � � �� �

� �� �� � � � 
 
�
�

�

���

�
�� ��

� �
� ��� � �� � � �� ��� � ��

�

�
�

�

� �

hence .� � � � ��� ��� � �
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