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1  Introduction

During the past decade, considerable attention has been given to boundary value problems and
initial value problems for partial differential equations with piecewise constant delay by several
authors including Wiener and Debnath [9-11]. In all of these papers, the major focus was to
investigate the influence of certain piecewise constant time delays, continuous time delays and
discontinuous time delays on the solutions of partial differential equations.  These results have
also been extended to equations with positive definite operators in Hilbert spaces. A class of
initial value problems for partial differential equations with piecewise constant argument
(EPCA) in partial derivatives.   A class of loaded partial differential equations that arise in
solving certain inverse problems has been studied within the general framework with piecewise
constant delay.  An abstract Cauchy problem for partial differential equations with time delays
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in a Banach space has also been examined by Wiener and Debnath [11].  Subsequently, Wiener
and Debnath [12] have studied boundary value problems for the diffusion equation with
piecewise continuous time delay.  This study included boundary value problems for three types
of equations: delayed, alternately advanced, and retarded type and most importantly, equations
of neutral type.  These equation included loaded and impulsive equations as special cases and
hence their importance arises in control theory and in certain biomedical models.  Recently,
Wiener and Heller [13] have made a detailed study of diffusion equations of neutral type with
piecewise constant time delay. This study reveals many interesting features including os-
cillatory and periodic properties of the solutions.  On the other hand, Wiener and Debnath [12]
have examined the oscillatory properties of the wave equation with discontinuous time delay.
 In addition, several authors including Mishev and Bainov [8], Fu and Zhuang [4], Cui et
al [2], Bainov et al [1], Li and Cui [6], Debnath and Li [3] have studied the oscillation
problems for the partial differential equations of different types.  Very recently, Li and Debnath
[7] have investigated the theory of oscillations of a system of hyperbolic partial differential
equations with continuous distributed deviating arguments.  They have obtained sufficient
conditions for the oscillation of the system of delay hyperbolic partial differential equations
with examples.  In spite of the above studies, hardly any attention was given to the problem of
oscillation of a system of certain neutral delay parabolic differential equations.  The main
objective of this paper is to study this problem.  Sufficient condition are proved for the
oscillation of systems of neutral delay parabolic equations with some examples.

2  Formulation of the Problem

In this paper, we study the oscillation of systems of neutral delay parabolic differential
equations of the form
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, , and the integral in (2.1) is the Riemann-Stieltjes
integral.
 In this paper, we always suppose that the following conditions hold:
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problem (2.1), (2.2) (or (2.1), (2.3)) is said to be oscillatory in the domain   if# � � � �! ��
at least one of its nontrivial component is oscillatory in .  Otherwise, the vector solution#
����� is said to be nonoscillatory.

3  Oscillation of the Problem (2.1), (2.2)

Theorem 3.1:  If the neutral differential inequality
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 Hence all the conditions of Theorem 3.3 are fulfilled.  Then every solution of problem
(3.12), (3.13) is oscillatory in .  In fact, such a solution is cos sin ,� � �� � �! �  ����� � � �
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4  Oscillation of the Problem (2.1), (2.3)
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��� �� �

� �

���� ��� �  �
��� �  � �

�:�	�
 in 

 on 

where  is a constant.  It is well known that the least eigenvalue  of problem (4.1) is positive� �  

and the corresponding eigenfunction  is positive on . ����
 Theorem 4.1:  If the differential inequality
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� �7 ���� ���7 �� � � � * ���7 �� � �� ����7 ���� �� �

�� 	 �� 	

� �  � �

8

� � � �

�:���

� 0 ��� �7 �� ��� ��� � � -  ���

�� 	

�

�

� � �   

� � � �

has no eventually positive solution, then every solution of problem ,  is oscillatory in���	� ���5�
#.
 Proof:  Suppose to the contrary that there is a nonoscillatory solution ����� �
. ������  ������$ � �����/ + ����� + )  	 � 
 �

6  of problem (2.1), (2.3).  We assume that 
for , .  Let sgn ,  , then ,� 1 � 1  � � 	���$ �
 �  ����� 9 ����� �  ����� 9 ����� )   � � � � � �� �
����� � � �� �! � � � 	���$ �
 � 1 ��  	  , .  From (H5) and (H7), there exists a number  such
that , ,  and  in ,9 ����� )  9 ���� � � )  9 ���� � � )  9 ���� ��� �� )  � �� �! �� � � � � � � 	� � � �

� � 	���$ �
 � � 	���$ ��( � � 	���$ �� � � 	���$ ��;  ; .
 Multiplying both sides of (2.1) by  and integrating with respect to  over the domain��� �
�, we obtain

�
��� �� � �

� � �

 ����� ����� � ���  ���� � � ����� � � ���  ����� ������ � � � � �

�

�� 	

 � �  � �
� � ���  ���� � � ����� � � ����� ����� ����� �:�5�� �
 �

�� 	 �� 	

��� � � � �   �
� �

� �  �
� � ����� � ���� ��� �� ���� � ����� �
 �

�� 	 �� 	

�

�

��� � �     � �
�

    

� �  � �

where , .� 1 � � � 	���$ �
	

 Therefore, we have

�
��� �� � �

� � �

9 ����� ����� � ��� 9 ���� � � ����� � � ��� 9 ����� ������ � � � � �

�

�� 	

 � �  � �
� � ��� 9 ���� � � ����� � � ��� 9 ���� � � ������ � �� 
 �

�� 	 �� 	

��� � � ��� � �

�� 	��, �

� �
� �

� �  � �    �
�
�

�

  � � �����9 ����� ����� � � ����� �9 ���� ��� �� ������ � � �:�:�� � �
�

� � ��� � �

�

�� 	

�

�

 � �  � ��     

�

� � ����� �9 ���� ��� �� ������ � ��� �� 


�� 	 �� 	��, �

�

�

��� � �      �
�
�

�

� �    

�

� �  � �
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where , .� 1 � � � 	���$ �
	

 Using Green's formula and (2.3), we have� � �
� � �

�  � � 9 ����� ����� � 9 ����� ����� � � 9 ����� ����� -  � �:�<�� �  �

and � �
� �

� �  � �9 ���� � � ����� � 9 ���� � � ������ � � �

�:�=�

� � 9 ���� � � ������� �  � �
�
�

where , ; .� 1 � � � 	���$ �
 � � 	���$ ��	

 It follows from (4.4)-(4.6) that

�
��� �� �

� �

9 ����� ����� � ��� 9 ���� � � ������ � � �

�

�� 	

 � � �
  - � � ��� 9 ���� � � ������ �  ��� � �

�

�� 	

� �
�

� +� ��� + 9 ���� � � ����� � � ��� 9 ����� ������ �   ��� � � � �

� 


�� 	 �� 	��, �

� �      � �
� �

 � � ��� � 9 ���� ��� �� ������ � � �:�>���

�� 	

�

�

��� � �
�    � �  � ��

�

� � ��� � 9 ���� ��� �� ������ � ���� �� 


�� 	 �� 	��, �

�

�

��� � �       
  

    � �� �  � �
�

where , .� 1 � � � 	���$ �
	

 Setting

7 ��� � 9 ����� ����� � 1 � �� � 	���$ �
�� � 	
�
�

 ,  

we have

� �7 ���� ���7 �� � � � � ���7 �� � �� � � �  ��� � �

� �

�� 	 �� 	

8� �� � � �
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� +� ��� +7 �� � �� � ��� � �

� 


�� 	 �� 	��, �

� �      
�:�@�

� � ���7 ���� � ��� �7 �� ��� ��� ���� � ��� � �

�

�� 	

�

�

��    � � �

� � ��� �7 �� ��� ��� � � -  ��� �� 


�� 	 �� 	��, �

�

�

��� � �       � � � � �

where , .� 1 � � � 	���$ �
	

 Let  for .  It follows from (4.8) that7 ��� � 7 ��� � 1 ��

�� 	 � 	

� �7 ���� ���7 �� � ���

�� 	

� �

8

� �

� � ���7 �� � �� +� ��� +7 �� � �� � � ��� � � ��� � �

� 
 


�� 	 �� 	 �� 	��, �

� � �  � �� �

� ����7 ���� � ��� �7 �� ��� ��� � � �:�A�� �� 


�� 	 �� 	

�

�

�� � �

��	�
 ��    � � � �

����
��
�� � ��� �7 �� ��� ��� ��� -  � 1 � ���


�� 	��, �

�

�

��� � � 	 , �   

� � �

 As in the proof of Theorem 3.1, with (4.9), we obtain

� �7 ���� ���7 �� � � � * ���7 �� � �� ����7 ���� �� �

�� 	 �� 	

� �  � �

8

� � � �

� 0 ��� �7 �� ��� ��� � � -  � 1 � ���

�� 	

�

�

� � 	
�    � � � � ,  

which shows that  is a positive solution of the inequality (4.2).  This is a7 ��� � 7 ��� )  �

�� 	 �

contradiction.
 By using Theorem 4.1, we have the following theorems.
 Theorem 4.2:  If all conditions of Theorem  hold, then every solution of  problem5�	
���	� ���5� #,  is oscillatory in .
 Theorem 4.3:  If all conditions of Theorem  hold, then every solution of  problem5��
���	� ���5� #,  is oscillatory in .
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   If all conditions of Theorem  hold, then every solution of  problemTheorem 4.4: 5�5
���	� ���5� #,  is oscillatory in .
   Consider the system of parabolic differential equationsExample 4.1:

�������������������	������������������
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�� � �
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� �	 �4 0
with boundary condition

 � ��� �  � ��� �  � 1  � � 	��� �:�		�� � 
 , , 

 Here , , , , , , ,  ,& � 	 
 � � � � 	 � � 	 � � 	 ��� � 	 � � ��� � 	� � ��� � 	� � 
	 	 	 			

� ��� � � 	 � � ����� � > � ����� � � < � ����� � � � � ��� � � � �	�	 	 	 			 	�	 	
5
�, , , , , ,� � � � �


� ��� � � ��� � � ��� � � � ����� � 	 � ����� � � 	 � ����� � � 5� �		 ��	 � �		 ��	
5 	
� �, , , , , ,� �

� � � � � �
, .  It is easy to see that all the conditions of Theorem 4.4 are met.  Thus, all

�

the solutions of the problem (4.10), (4.11) are oscillatory in .  For instance,� � �� � �! �

 ����� � � �  ����� � � �	 �sin cos , sin sin  is such a solution.
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