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1 Introduction

The problem of proving the existence of mild solutions for differential and integrodiffer-
ential equations in abstract spaces has been studied by several authors [2, 4, 11, 12, 13].
Balachandran and Uchiyama [3] established the existence of solutions of nonlinear in-
tegrodifferential equations of Sobolev type with nonlocal conditions in Banach spaces.
Benchohra [6] studied the existence of mild solutions on infinite intervals for a class of
differential inclusions in Banach spaces. For the existence results of differential inclu-
sions on compact intervals, one can refer to the papers of Avgerinos and Papageorgiou
[1], and Papageorgiou [14, 15]. Benchohra and Ntouyas [7] discussed the existence
results for first order integrodifferential inclusions of the form

dy

dt
− Ay ∈ F (t,

∫ t

0

k(t, s, y)ds) t ∈ I = [0,∞),

y(0) = y0.

In this paper, we consider the Sobolev-type semilinear mixed integrodifferential inclusion
of the type

(Eu(t))′ + Au ∈ G

(
t, u,

∫ t

0

k(t, s, u)ds,

∫ a

0

b(t, s, u)ds

)
t ∈ I = [0,∞),(1.1)
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u(0) = u0,

where G : I × X × X × X → 2Y is a bounded, closed, convex, multivalued map
k : ∆×X → X, b : ∆×X → X, where ∆ = {(t, s) ∈ I × I; t ≥ s}, u0 ∈ X, a is a real
constant, X, Y are real Banach spaces with norms ‖.‖ and |.|, respectively. Our method
is to reduce the problem (1.1) to a fixed point problem of a suitable multivalued map
in the Frechet space C(I, X) and we make use of a fixed point theorem due to Ma [10]
for multivalued maps in locally convex topological spaces.

2 Preliminaries

In this section we introduce the notations, definitions and preliminary facts from multi-
valued analysis which are used in this paper. Im is the compact interval [0, m](m ∈ N).
C(I, X) is the linear metric Frechet space of continuous functions from I into X with
the metric

d(u, z) =
∞∑

m=0

2−m‖u − z‖m

1 + ‖u − z‖m
for each u, z ∈ C(I, X),

where ‖u‖m = sup{‖u(t)‖ : t ∈ Im}. B(X) denotes the Banach space of bounded linear
operators from X into X. A measurable function u : I → X is Bochner integrable if and
only if |u| is Lebesgue integrable. Let L1(I, X) denote the Banach space of continuous
functions u : I → X which are Bochner integrable normed by

‖u‖L1 =
∫ ∞

0

‖u(t)‖dt,

and Ur is a neighbourhood of 0 in C(I, X) defined by

Ur = {u ∈ C(I, X) : ‖u‖m ≤ r}

for each m ∈ N. The convergence in C(I, X) is the uniform convergence on compact
intervals, that is, uj → u in C(I, X) if and only if for each m ∈ N, ‖uj − u‖m → 0 in
C(Im, X) as j → ∞. BCC(X) denotes the set of all nonempty bounded, closed, and
convex subsets of X.

A multivalued map G : X → 2X is convex(closed) valued if G(x) is convex(closed)
for all x ∈ X. G is bounded on bounded sets if G(B) =

⋃

x∈B

G(x) is bounded in X for any

bounded set B of X (that is, sup
x∈B

{sup{‖u‖ : u ∈ G(x)}} < ∞). G is called upper semi

continuous on X if for each x0 ∈ X the set G(x0) is a nonempty, closed subset of X, and
if for each open subset B of X containing G(x0), there exists an open neighbourhood A
of x0 such that G(A) ⊆ B. G is said to be completely continuous if G(B) is relatively
compact for every bounded subset B ⊆ X. If the multivalued map G is completely
continuous with nonempty compact values, then G is upper semicontinuous if and only
if G has a closed graph (that is, xn → x0, un → u0, un ∈ Gxn imply u0 ∈ Gx0).

We assume the following conditions:

(i) The operator A : D(A) ⊂ X → Y and E : D(E) ⊂ X → Y satisfy the following
conditions
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[C1] A and E are closed linear operators.

[C2] D(E) ⊂ D(A) and E is bijective.

[C3] E−1 : Y → D(E) is continuous.

[C4] The resolvent R(λ,−AE−1) is a compact operator for some λ ∈ ρ(−AE−1)
and resolvent set of −AE−1.

Conditions [C1], [C2], and the closed graph theorem imply the boundedness of the linear
operator AE−1 : Y → Y .

(ii) G : I × X × X × X → BCC(Y ) is measurable with respect to t for each u ∈ X,
upper semi continuous with respect to u for each t ∈ I, and for each u ∈ C(I, X)
the set

SG,u = {g ∈ L1(I; R) : g(t) ∈ G(t, u,

∫ t

0

k(t, s, u)ds,

∫ a

0

b(t, s, u)ds)

for a.e t ∈ I} is nonempty.

(iii) There exist functions p(t), q(t) ∈ C(I; R) such that

|
∫ t

0

k(t, s, u)ds| ≤ p(t)‖u‖ and |
∫ a

0

b(t, s, u)ds| ≤ q(t)‖u‖for a.e t, s ∈ I, u ∈ X.

(iv) There exists a function α(t) ∈ L1(I; R+) such that

‖G(t, u, v, w)‖ ≤ α(t)Ω(‖u‖ + ‖v‖ + ‖w‖)

for a.e t ∈ I, u ∈ X, where Ω : R+ → (0,∞) is continuous increasing function
satisfying Ω(p(t)x + q(t)y) ≤ p(t)Ω(x) + q(t)Ω(y) and

M

∫ m

0

α(s)(1 + p(s) + q(s))ds <

∫ ∞

c

du

Ω(u)

for each m ∈ N, where c = ‖E−1‖M |Eu0| and M = max{‖T (t)‖; t ∈ I}.

(v) For each neighbourhood Ur of 0, u ∈ Ur and t ∈ I, the set

{E−1T (t)Eu0 +
∫ t

0

E−1T (t − s)g(s)ds, g ∈ SG,u}

is relatively compact.

Definition 2.1: A continuous function u(t) of the integral inclusion

u(t) ∈ E−1T (t)Eu0 +
∫ t

0

E−1T (t − s)G
(

s, u,

∫ s

0

k(s, τ, u(τ))dτ,

∫ a

0

b(s, τ, u(τ))dτ

)
ds

is called a mild solution of (1.1) on I.
Lemma 2.1: [9]. Let I be a compact real interval and let X be a Banach space. Let

G be a multivalued map satisfying (i) and let Γ be a linear continuous mapping from
L1(I, X) to C(I, X). Then the operator

Γ ◦ SG : C(I, X) → X, (Γ ◦ SG)(y) = Γ(SG,y)
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is a closed graph operator in C(I, X) × C(I, X).
Lemma 2.2: [10]. Let X be a locally convex space. Let N : X → X be a compact,

convex valued, upper semicontinuous, multivalued map such that there exists a closed
neighbourhood Ur of 0 for which N(Ur) is a relatively compact set for each r ∈ N . If
the set ζ = {y ∈ X : λy ∈ N(y)} for some λ > 1 is bounded, then N has a fixed point.

Remark: [9]. If dimX<∞ and I is a compact real interval, then for each u ∈
C(I, X), SG,u is nonempty.

Lemma 2.3: [16]. Let S(t) be a uniformly continuous semigroup and let A be its
infinitesimal generator. If the resolvent set R(λ : A) of A is compact for every λ ∈ ρ(A),
then S(t) is a compact semigroup.

From the above fact, −AE−1 generates a compact semigroup T (t) in Y . Thus,
max
t∈I

|T (t)| is finite and so denote M = max
t∈I

|T (t)|.

3 Main Result

Theorem 3.1: If the assumptions (i)–(v) are satisfied, then the initial value problem
(1.1) has at least one mild solution on I.

Proof: A solution to (1.1) is a fixed point for the multivalued map
N : C(I, X) → 2C(I,X) defined by

N(u) = {h ∈ C(I, X) : h(t) = E−1T (t)Eu0 +
∫ t

0

E−1T (t − s)g(s)ds, g ∈ SG,u},

where

SG,u = {g ∈ L1(I, X) : g(t) ∈ G(t, u,

∫ t

0

k(t, s, u(s))ds,

∫ a

0

b(t, s, u(s))ds)

for a.e t ∈ I}.
First we shall prove N(u) is convex for each u ∈ C(I, X). Let h1, h2 ∈ N(u), then

there exist g1, g2 ∈ SG,u such that

hi(t) = E−1T (t)Eu0 +
∫ t

0

E−1T (t − s)gi(s)ds, i = 1, 2, t ∈ I

Let 0 ≤ k1 ≤ 1, then for each t ∈ I we have

(k1h1 + (1 − k1)h2)t = E−1T (t)Eu0 +
∫ t

0

E−1T (t − s)(k1g1(s) + (1 − k1)g2(s))ds.

Since SG,u is convex, thus kh1 + (1 − k)h2 ∈ N(u). Hence, N(u) is convex for each
u ∈ C(I, X).

Let Ur = {u ∈ C(I, X); ‖u‖ ≤ r} be a neighbourhood of 0 in C(I, X) and u ∈ Ur.
Then for each h ∈ N(u) there exists g ∈ SG,u such that for t ∈ I, we have

‖h(t)‖ ≤ ‖E−1‖‖T (t)‖|Eu0| +
∫ t

0

‖E−1‖‖T (t − s)‖‖g(s)‖ds

≤ ‖E−1‖M |Eu0| + ‖E−1‖M
∫ t

0

α(s)Ω(‖u‖ + p(t)‖u‖ + q(t)‖u‖)ds
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≤ ‖E−1‖M |Eu0| + ‖E−1‖M
∫ t

0

α(s)(Ω(‖u‖) + p(t)Ω(‖u‖) + q(t)Ω(‖u‖))ds

≤ ‖E−1‖M |Eu0| + ‖E−1‖M
∫ t

0

α(s)(1 + p(s) + q(s))Ω(‖u‖)ds

≤ ‖E−1‖M |Eu0| + ‖E−1‖M‖α‖L1(Im)‖(1 + p(s) + q(s))‖ sup
u∈Ur

Ω(‖u‖)

Hence, N(Ur) is bounded in C(I, X) for each r ∈ N . Next we shall prove N(Ur) is an
equicontinuous set in C(I, X) for each r ∈ N . Let t1, t2 ∈ Im with t1 < t2. Then for all
h ∈ N(u) with u ∈ Ur, we have

‖h(t1) − h(t2)‖ ≤ ‖E−1‖‖(T (t2) − T (t1))Eu0‖

+ ‖E−1‖‖
∫ t2

0

(T (t2 − s) − T (t1 − s))g(u)ds‖

+ ‖E−1‖‖
∫ t2

t1

T (t1 − s)g(u)ds‖

≤ ‖E−1‖‖(T (t2) − T (t1))Eu0‖

+ ‖E−1‖‖
∫ t2

0

(T (t2 − s) − T (t1 − s))g(u)ds‖

+ M(t2 − t1)‖E−1‖
∫ m

0

‖g(s)‖ds.

Hence, by the Ascoli-Arzela Theorem, we conclude that N : C(I, X) → 2C(I,X) is
a completely continuous multivalued map. Next we shall prove that N has a closed
graph. Let un → u∗, hn ∈ N(un) and hn → h0, then we shall prove that h0 ∈ N(u∗).
Here, hn ∈ N(un) means that there exists gn ∈ SG,un

such that

hn(t) = E−1T (t)Eu0 +
∫ t

0

E−1T (t − s)gn(s)ds, t ∈ I.

We must also prove that there exists g0 ∈ SG,u such that

h0(t) = E−1T (t)Eu0 +
∫ t

0

E−1T (t − s)g0(s)ds, t ∈ J. (3.1)

To prove the above, we use the fact that hn → h0; and hn−E−1T (t)Eu0 ∈ Γ(SG,u),
where

(Γg)(t) =
∫ t

0

E−1T (t − s)g(s)ds, t ∈ I.

Consider the functions un, hn−E−1T (t)Eu0 and gn defined on the interval [k, k+1] for
any k ∈ N ∪ {0}. Then using Lemma 2.1, we can conclude (3.1) is true on the compact
interval [k, k + 1]. That is,

[h0(t)][k,k+1] = E−1T (t)Eu0 +
∫ t

0

E−1T (t − s)gk
0 (s)ds

for a suitable L1-selection gk
0 of G(t, u,

∫ t

0
k(t, s, u)ds,

∫ T

0
b(t, s, u)ds) on the interval

[k, k + 1]. Let g0(t) = gk
0 (t) for t ∈ [k, k + 1). Then g0 is an L1-selection and (3.1)
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will satisfied. Clearly we have ‖(hn − E−1T (t)Eu0) − (h0 − E−1T (t)Eu0)‖∞ → 0 as
n → ∞. Consider for all k ∈ N ∪ {0}, the mapping

Sk
G : C([k, k + 1], X) → L1([k, k + 1], X),

y → Sk
G,y = {g ∈ L1([k, k + 1], X) : g(t) ∈ G(t, u,

∫ t

0

k(t, s, u)ds,

∫ a

0

b(t, s, u)ds)

for a.e t ∈ [k, k + 1]}.
Now we consider the linear continuous operators

Γk : L1([k, k + 1], X) → C([k, k + 1], X),

g → Γk(g)(t) =
∫ t

0

E−1T (t − s)g(s)ds.

From Lemma 2.1 it follows that Γk ◦ Sk
G is a closed graph operator for all k ∈ N ∪ {0}.

Moreover, we have

(hn(t) − E−1T (t)Eu0)|[k,k+1] ∈ Γk(Sk
G,un

)

and un → u∗. From Lemma 2.1, we have (h0(t) − E−1T (t)Eu0)|[k,k+1] ∈ Γk(Sk
G,u∗

),

(h0(t) − E−1T (t)Eu0)|[k,k+1] =
∫ t

0

E−1T (t − s)gk
0 (s)dsfor somegk

0 ∈ Sk
G,u∗

.

Hence, the function g0 defined on I by g0(t) = gk
0 (t) for t ∈ [k, k + 1] is in SG,u∗ .

Therefore, N(Ur) is relatively compact for each r ∈ N where N is upper semicontinuous
with convex closed values. Finally we prove the set ζ = {u ∈ C(I, X); λu ∈ Nu}, for
some λ > 1, is bounded.

Let λu = Nu for some λ > 1. Then there exists g ∈ SG,u such that

u(t) = λ−1E−1T (t)Eu0 + λ−1

∫ t

0

E−1T (t − s)g(s)ds, t ∈ I,

‖u(t)‖ ≤ ‖E−1‖M |Eu0| + ‖E−1‖M
∫ t

0

α(s)(1 + p(s) + q(s))Ω(‖u‖)ds.

Let v(t) = ‖E−1‖M |Eu0| + ‖E−1‖M
∫ t

0
α(s)(1 + p(s) + q(s))Ω(‖u‖)ds. Then we have

v(0) = ‖E−1‖M‖Eu0‖ = c and ‖u(t)‖ ≤ v(t), t ∈ Im. Using the increasing character of
Ω we get

v′(t) ≤ ‖E−1‖Mα(t)(1 + p(t) + q(t))Ω(v(t)), t ∈ Im.

The above proves that for each t ∈ Im,
∫ v(t)

v(0)

du

Ω(u)
≤ ‖E−1‖M

∫ m

0

α(s)(1 + p(s) + q(s))ds <

∫ ∞

0

du

Ω(u)
.

The above inequality implies that there exists a constant M0 such that v(t) ≤ M0, t ∈
Im, and hence that ‖u‖∞ ≤ M0 where M0 depends on m and on the functions α, p, Ω.
Hence, ζ is bounded. Thus by Lemma 2.2, N has a fixed point that is a mild solution
of (1.1).
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4 Nonlocal Initial Conditions

Several authors have studied the nonlocal Cauchy problem in abstract spaces [2, 3, 4,
11, 12, 13]. The importance of nonlocal conditions is discussed in [4, 5]. In this section
we consider a first order Sobolev-type, semilinear, mixed, integrodifferential inclusion
(1.1) with the nonlocal initial condition

u(0) + f(u) = u0 (4.1)

In addition to the five assumptions in Section 2, we also assume the following.

(vi) f : C(I, X) → X is a continuous function, and there exists a constant L > 0 such
that ‖f(u)‖ ≤ L for each u ∈ X.

(vii) ‖E−1‖M
∫ m

0
α(s)(1 + p(s) + q(s))ds <

∫ ∞
c1

du
Ω(u) where c1 = ‖E−1‖M |Eu0| +

L‖E−1‖M |Eu0|.

(viii) For each neighbourhood Ur of 0, u ∈ Ur and t ∈ I, the set {E−1T (t)Eu0 −
E−1T (t)Ef(u) +

∫ t

0
E−1T (t − s)g(s)ds, g ∈ SG,u} is relatively compact.

Definition 4.1: A continuous function u(t) of the integral inclusion

u(t) ∈ E−1T (t)Eu0 − E−1T (t)Ef(u)

+
∫ t

0

E−1T (t − s)G
(

s, u,

∫ s

0

k(s, τ, u(τ))dτ,

∫ a

0

b(s, τ, u(τ))dτ

)
ds

is called a mild solution of (1.1)-(4.1) on I.
Theorem 4.1: If the assumptions (i)–(iii), (vi)–(viii) are satisfied, then the non-

local initial value problem (1.1)–(4.1) has at least one mild solution on I.
The proof of Theorem 4.1 is similar to Theorem 3.1 and hence, is omitted.
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