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1 Introduction

Probabilistic functional analysis has emerged as one of the important mathematical
disciplines in view of its role in analyzing probabilistic models in the applied sciences.
The study of fixed points of random operators forms a central topic in this area. The
Prague school of probabilistic initiated its study in the 1950s. However, the research
in this area flourished after the publication of the survey article of Bharucha-Reid [3].
Since then, many interesting random fixed point results and several applications have
appeared in the literature, see, for example the work of Beg and Shahzad [2], Itoh
[4], Lin [6], O’Regan [7], Papageorgiou [8], Shahzad and Latif [9], Tan and Yuan [10],
Xu [11]. The purpose of this paper is to establish a random fixed point theorem for
generalized random contractions on spaces with two metrics. Using this, we obtain a
random fixed point theorem for nonexpansive random maps which contains as a special
case Theorem 3.4 of [10] and Theorem 1(ii) of [11]. Some random homotopy results are
also presented.
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2 Preliminaries

Let (Ω, Σ) be a measurable space with Σ a sigma algebra of subsets of Ω and M a
non-empty subset of a metric space X = (X, d). Let 2M be the family of all non-empty
subsets of M and C(M) the family of all nonempty closed subsets of M . A mapping
G : Ω −→ 2M is called measurable if, for each open subset U of M , G−1(U) ∈ Σ, where
G−1(U) = {ω ∈ Ω : G(ω) ∩ U 6= φ}. A mapping ξ : Ω −→ M is called a measurable
selector of a measurable mapping G : Ω −→ 2M if ξ is measurable and ξ(ω) ∈ G(ω) for
each ω ∈ Ω. A mapping T : Ω × M −→ X is said to be a random operator if, for each
fixed x ∈ M , T (., x) : Ω → X is measurable. A measurable mapping ξ : Ω −→ M is
a random fixed point of a random operator T : Ω × M −→ X if ξ(ω) = T (ω, ξ(ω)) for
each ω ∈ Ω.

A mapping T : M → X is (1) called hemicompact if each sequence {xn} in M has
a convergent subsequence whenever d(xn, T (xn)) → 0 as n → ∞; (2) said to satisfy
condition (A) w.r.t d if for any sequence {xn} in M , D ∈ C(M) such that d(xn, D) → 0
and d(xn, T (xn)) → 0, then there exists x0 with x0 = T (x0). It is clear that every
continuous hemicompact map satisfies condition (A).

Let M be a subset of a Banach space X. A mapping T : M → X is said to be
demiclosed at y ∈ X if, for any sequence {xn} in M , the conditions xn → x in M weakly
and T (xn) → y strongly together imply T (x) = y. A random operator T : Ω×M → X
is continuous (hemicompact, etc.) if the map T (ω, .) : M → X is so, for each ω ∈ Ω.
We represent by I, the identity mapping of X.

3 Main Results

The following lemmas play a crucial role in the section.
Lemma 3.1: [9] Let (X, d) be a Polish space (i.e., a complete separable metric

space) and T : Ω×X → X a continuous random operator which satisfies condition (A)
w.r.t d. If the set G(ω) = {x ∈ X : x = T (ω, x)} is non-empty for each ω ∈ Ω, then T
has a random fixed point.

Proof: Let G : Ω → 2X be defined by G(ω) = {x ∈ X : x = T (ω, x)}. We show
that G is measurable. For any non-empty closed subset D of X, let

L(D) = ∩∞
n=1 ∪∞

i=1 {ω ∈ Ω : d(xi, T (ω, xi)) <
2
n
},

where {xi} is a countable dense subset of D. Clearly, G−1(D) ⊂ L(D). On the other
hand, if ω0 ∈ L(D), then, for each n, there is an i(n) such that

d(xi(n), T (ω0, xi(n))) <
2
n

.

Since T satisfies condition (A), there exists an x0 ∈ D such that x0 ∈ T (ω0, x0).
This shows that ω0 ∈ G−1(D). Thus G−1(D) = L(D) and so G is measurable. The
Kuratowski and Ryll-Nardzewski selection theorem [5] further implies that G has a
measurable selector ξ, which is a random fixed point of T .

Lemma 3.2: Let (X, d
′
) be a metric space and let d be another metric on X. Let M

be a d
′
-complete d

′
-separable subset of X and let U be a d-open subset of X and U ⊂ M .

Suppose the random operator T : Ω × M → X is continuous w.r.t d
′

and assume the
following two conditions are satisfied:
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(a) condition (A) w.r.t d
′
; and

(b) x 6= T (ω, x) for x ∈ M \ U and ω ∈ Ω.

If the set {x ∈ M : T (ω, x) = x} is non-empty for each ω ∈ Ω, then T has a random
fixed point, i.e., there exits a measurable map ξ : Ω → U such that ξ(ω) = T (ω, ξ(ω))
for all ω ∈ Ω.

Proof: Let G : Ω → 2M be defined as in the proof of Lemma 3.1. Then G is
measurable. Now, the Kuratowski and Ryll-Nardzewski selection theorem [5] guarantees
that G has a measurable selector ξ : Ω → M , i.e., ξ(ω) = T (ω, ξ(ω)) for all ω ∈ Ω. By
(b), we have ξ(ω) ∈ U for all ω ∈ Ω. This completes the proof.

Theorem 3.1: Let (X, d
′
) be a Polish space, d another metric on X, and T :

Ω × X → X a continuous random operator w.r.t to both d
′

and d. Suppose there is
some q ∈ (0, 1) such that for x, y ∈ X and ω ∈ Ω, we have

d(T (ω, x), T (ω, y)) ≤ q max{d(x, y), d(x, T (ω, x)), d(y, T (ω, y)),
1
2
[d(x, T (ω, y)) + d(y, T (ω, x))]}.

In addition, assume the following conditions are satisfied:
(3.1) if d 6≥ d

′
, assume T is uniformly continuous from (X, d) into (X, d

′
)

and
(3.2) if d 6= d

′
, assume T satisfies condition (A) w.r.t d

′
.

Then T has a random fixed point.
Proof: First, we shall show that T satisfies condition (A) w.r.t d

′
.

If d 6= d
′
, this follows from (3.2). Next suppose d = d

′
. Fix ω ∈ Ω. Let {xn} ⊂ X be a

sequence and D ∈ C(X) such that d(xn, D) → 0 and d(xn, T (ω, xn)) → 0 as n → ∞.
Using the triangle inequality, we obtain

d(xn, xm) ≤ d(xn, T (ω, xn) + d(T (ω, xn), T (ω, xm)) + d(xm, T (ω, xm))
≤ d(xn, T (ω, xn)) + q max{d(xn, xm), d(xn, T (ω, xn)), d(xm, T (ω, xm)),

1
2
[d(xn, T (ω, xm)) + d(xm, T (ω, xn))]} + d(xm, T (ω, xm)).

It is easy to see that

d(xn, xm) ≤ 1 + q

1 − q
[d(xn, T (ω, xn)) + d(xm, T (ω, xm))],

so {xn} is a Cauchy sequence in (X, d). Thus there exists an x0 ∈ X with d(xn, x0) → 0.
The continuity of T w.r.t d further implies that x0 ∈ D and x0 = T (ω, x0). Thus T
satisfies condition (A) w.r.t d = d

′
.

Let G : Ω → 2X be defined by G(ω) = {x ∈ X : x = T (ω, x)}. Then, by Theorem 2.3
of Agarwal and O’Regan [1], G(ω) 6= ∅. for each ω ∈ Ω. Since T satisfies condition (A)
w.r.t d

′
, an application of Lemma 3.1 guarantees that T has a random fixed point.

Remark 3.2: Condition (3.2) in Theorem 3.1 may be replaced by the following
condition:
(3.3) There exists P , Q and R > 0 such that

d(xn, T (ω, xn)) ≤ R d
′
(xn, T (ω, xn))
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for any sequence {xn} ⊂ X and also we assume

Q d(xn, xm) ≤ d
′
(xn, xm) ≤ P d(xn, xm)

whenever {xn} satisfies d(xn, T (ω, xn)) → 0 as n → ∞ for each ω ∈ Ω; i.e., d and d
′
are

equivalent for {xn} whenever it satisfies d(xn, T (ω, xn)) → 0 as n → ∞ for each ω ∈ Ω.

To show this, fix ω ∈ Ω and let {xn} ⊂ X be a sequence and D ∈ C(X) (closed w.r.t
d

′
) such that d

′
(xn, D) → 0 and d

′
(xn, T (ω, xn)) → 0 as n → ∞. Then by Condition

(3.3), d(xn, T (ω, xn)) → 0 as n → ∞. Now, as in the proof of Theorem 3.1, we have
{xn} is a Cauchy sequence in (X, d). By condition (3.3), {xn} is a Cauchy sequence

in (X, d
′
). The completeness of (X, d

′
) further implies that xn

d
′

→ x0 as n → ∞ for
some x0 ∈ X. Clearly x0 ∈ D. Since T is continuous w.r.t d

′
, we immediately have

x0 = T (ω, x0). Hence T satisfies condition (A) w.r.t d
′
. By Theorem 2.3 of Agarwal

and O’Regan [1], G(ω) = {x ∈ X : x = T (ω, x)} 6= ∅ for all ω ∈ Ω. Now apply Lemma
3.1.

Corollary 3.1: Let (X, d) be a Polish space and T : Ω × X → X a continuous
random operator. Suppose there is some q ∈ (0, 1) such that for x, y ∈ X and ω ∈ Ω,
we have

d(T (ω, x), T (ω, y)) ≤ q max{d(x, y), d(x, T (ω, x)), d(y, T (ω, y)),
1
2
[d(x, T (ω, y)) + d(y, T (ω, x))]}.

Then T has a random fixed point.
Theorem 3.2: Let M be a separable weakly compact convex subset of a Banach

space (X, ||.||′), ||.|| another norm on X, and T : Ω × M → M a continuous random
operator w.r.t ||.||′ . Suppose for x, y ∈ M and ω ∈ Ω, we have

||T (ω, x) − T (ω, y)|| ≤ ||x − y||

(i.e., T is nonexpansive w.r.t ||.||). In addition, assume the following conditions are
satisfied:
(3.4) if ||.|| 6≥ ||.||′ , assume T is uniformly continuous from (M, ||.||) into (M, ||.||′).
(3.5) if ||.|| 6= ||.||′ , assume for each t ∈ (0, 1), Tt satisfies condition (A) w.r.t ||.||′ , here
Tt(ω, x) = tT (ω, x) + (1− t)v for some v ∈ M . If I − T (ω, .) is demiclosed at zero w.r.t
||.||′ , then T has a random fixed point.

Proof: Let {kn} be sequence in (0, 1) such that kn → 1 as n → ∞. Define

Tn(ω, x) = knT (ω, x) + (1 − kn)v,

where v ∈ M . Then Tn : Ω×M → M is a continuous random operator w.r.t ||.||′ . Also,
for x, y ∈ M and ω ∈ Ω, we have

||Tn(ω, x) − Tn(ω, y)|| ≤ kn||x − y||.

Further, if ||.|| 6≥ ||.||′ , each Tn is uniformly continuous from (M, ||.||) into (M, ||.||′) and
if ||.|| 6= ||.||′ , each Tn satisfies condition (A) w.r.t ||.||′ . Now Theorem 3.1 guarantees
that each Tn has a random fixed point ξn.
For each n, define Gn : Ω → WK(M) by

Gn = w − cl{ξi(ω) : i ≥ n},
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where WK(M) denotes the family of all non-empty weakly compact subsets of M and
w − cl represents the weak closure. Let G:Ω → WK(M) be defined by

G(ω) = ∩nGn(ω).

Then, as in Itoh [4], G is w-measurable and has a measurable selector ξ. We show that
this ξ is a random fixed point of T . Fix ω ∈ Ω. Now there exists a subsequence {ξm(ω)}
of {ξn(ω)} that converges weakly to ξ(ω). From

ξm(ω) − T (ω, ξm(ω)) = (1 − km)(v − T (ω, ξm(ω))),

we get
||ξm(ω) − T (ω, ξm(ω))||

′
→ 0

as m → ∞ as M is bounded w.r.t ||.||′ . The demiclosedness of I − T (ω, .) at zero gives
that ξ(ω) = T (ω, ξ(ω)).

Corollary 3.2: [10], Theorem 3.4. Let M be a separable weakly compact convex
subset of a Banach space (X, ||.||) and T : Ω×M → M a nonexpansive random operator.
If I − T (ω, .) is demiclosed at zero, then T has a random fixed point.

Remark 3.2: Theorem 3.2 generalizes Theorem 1(ii) of Xu [11].

Now, we present some homotopy results.
Theorem 3.3: Let (X, d

′
) be a Polish space, d another metric on X. Let M ⊂ X

be d
′
-closed and let U ⊂ X be d-open and U ⊂ M . Suppose H : Ω × M × [0, 1] → X is

a random operator which satisfies the following conditions:

(i) for each λ ∈ [0, 1], Hλ : Ω×M → X is continuous w.r.t d
′
(here Hλ = H(., ., λ));

(ii) x 6= H(ω, x, λ) for x ∈ M \ U , λ ∈ [0, 1] and ω ∈ Ω;

(iii) there is some q ∈ (0, 1) such that for all λ ∈ [0, 1], x, y ∈ M and ω ∈ Ω, we have

d(H(ω, x, λ), H(ω, y, λ)) ≤ q max{d(x, y), d(x, H(ω, x, λ)), d(y, H(ω, y, λ)),
1
2
[d(x, H(ω, y, λ)) + d(y, H(ω, x, λ))]}.

(iv) for each ω ∈ Ω, H(ω, x, λ) is continuous in λ w.r.t d, uniformly for x ∈ M ;

(v) if d 6≥ d
′
, assume H is uniformly continuous from U × [0, 1] endowed with the

metric d on U into (X, d
′
); and

(vi) if d 6= d
′
, assume Hλ satisfies condition (A) on M endowed with the metric d

′
on

M .
In addition, assume H0 has a deterministic fixed point. Then for each λ ∈ [0, 1],
we have that Hλ has a random fixed point ξλ : Ω → U .

Proof: Fix ω ∈ Ω and let

Aω = {λ ∈ [0, 1] : H(ω, x, λ) = x for some x ∈ U}.
Since H0 has a deterministic fixed point, the set Aω is non-empty. As in Agarwal and
O’Regan [1], Aω is both open and closed. The connectedness of [0, 1] further implies
that Aω = [0, 1]. Let λ ∈ [0, 1]. Define

Gλ(ω) = {x ∈ M : Hλ(ω, x) = x}.
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From above, Gλ(ω) 6= ∅ for all ω ∈ Ω. Also, if d = d
′
, then the argument in Theorem

3.1 guarantees that Hλ satisfies condition (A) on M . On the other hand, if d 6= d
′
, then

(vi) implies Hλ satisfies condition (A) on M (endowed with the metric d
′
). Lemma 3.2

further implies that each Hλ has a random fixed point ξλ : Ω → U , i.e., there exists
a measurable map ξλ : Ω → U such that ξλ(ω) = Hλ(ω, ξλ(ω)) for all ω ∈ Ω and all
λ ∈ [0, 1].

Corollary 3.3:Let (X, d) be a Polish space. Let M ⊂ X be d-closed and let U ⊂ X
be d-open and U ⊂ M . Suppose H : Ω × M × [0, 1] → X is a random operator which
satisfies the following conditions:

(i) for each λ ∈ [0, 1], Hλ : Ω × M → X is continuous;

(ii) x 6= H(ω, x, λ) for x ∈ M \ U , λ ∈ [0, 1] and ω ∈ Ω;

(iii) there is some q ∈ (0, 1) such that for all λ ∈ [0, 1], x, y ∈ M and ω ∈ Ω, we have

d(H(ω, x, λ), H(ω, y, λ)) ≤ q max{d(x, y), d(x, H(ω, x, λ)), d(y, H(ω, y, λ)),
1
2
[d(x, H(ω, y, λ)) + d(y, H(ω, x, λ))]}.

(iv) for each ω ∈ Ω, H(ω, x, λ) is continuous in λ w.r.t d, uniformly for x ∈ M ;
In addition, assume H0 has a deterministic fixed point. Then for each λ ∈ [0, 1],
we have that Hλ has a random fixed point ξλ : Ω → U .
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