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1 Introduction

The properties of the maximum value attained by Brownian motion on a given interval
are well understood. Indeed, in the absence of drift, its distribution is easily obtained
from the reflection principle; moreover the case of Brownian motion with drift can
be reduced to the above through Girsanov’s theorem, using an appropriate change of
probability measure, see Karatzas and Shreve [4], p. 196.

The time at which the maximum is attained is a less familiar and somewhat more
subtle object. First one needs to prove that such a time is almost surely unique. So, if
Bt, t ≥ 0 is standard Brownian motion on a suitable probability space and if we denote
its running maximum by

B̄t = max
0≤s≤t

Bs,

then
θt = sup{s ≤ t : Bs = B̄t} = inf{s ≤ t : Bs = B̄t},

where the second equality holds almost surely, see Karatzas and Shreve [4], p. 102.
Next one can obtain the joint probability density of Bt, B̄t, θt:

fBt,B̄t,θt
(a, b, s) =

{
b(b−a)

π(s(t−s))3/2 e−(b−a)2/2(t−s)e−b2/2s if b ≥ a, b ≥ 0, s ≤ t,

0 otherwise.
(1.1)
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This can be established (with some effort) by completely elementary means using
nothing more than the defining properties of the increments of Brownian motion, see
Karatzas and Shreve [4], p. 101.

As a consequence of (1.1), the time of the maximum of standard Brownian motion
on [0,t] follows an arcsine law, see Karatzas and Shreve [4], p. 102.

fθt
(s) =

1
π
√

s(t − s)
, 0 < s < t. (1.2)

The formula that replaces (1.2) when a drift term is added to Bt is known, and is
considerably more complex; it reads

f
(µ)
θt

(s) = 2
[

1√
s
ϕ(µ

√
s) + µΦ(µ

√
s)
]
×

[
1√

t − s
ϕ(µ

√
t − s) − µΦ(−µ

√
t − s)

]
, 0 < s < t (1.3)

where ϕ and Φ denote the standard Gaussian density and distribution function respec-
tively. The route through which (1.3) is identified as being the density of the time of
the maximum of Brownian motion with drift is somewhat circuitous: that formula was
in fact derived in Akahori [1] as the density of At, the time spent by Brownian motion
with drift in (0,∞) up to instant t. This in turn is known to coincide with the density
of θt in the presence of a drift because (Bt, At) and (Bt,θt) have identical laws when
µ = 0. This fact is offered as an observation in Karatzas and Shreve [4], p. 425 after
both laws have been obtained separately; the derivation of the joint law of (Bt, At)
involves excursion theory.

A probabilistic explanation for the above identity in law is given in Karatzas and
Shreve [3] by means of path decomposition methods. Two alternative explanations are
offered in Embrechts et al. [2]. One of these relies on the observation that both θt

and At can be expressed in terms of hitting times of appropriate Brownian bridges; the
other one depends on the properties of Brownian meanders.

To be sure, the articles described above provide a fascinating insight into fundamen-
tal questions of stochastic analysis; but to someone primarily interested in (1.3), none
of these approaches can be described as direct. Moreover, the level of sophistication
required is considerable. By contrast, this article offers a direct and straightforward
derivation of (1.3).

Remark 1.1: When comparing formula (1.3) to Theorem 1.1 in Akahori [1] the
reader should note that what is actually calculated there is the distribution of the time
spent in (−∞, 0); also the author uses the notation Φ for the tail of the Gaussian
distribution. Finally, (1.3) has the advantage of showing explicitly the invariance of
f

(µ)
θt

under the combined transformation, µ → −µ, s → t − s.

2 Changing measure

The most natural method for establishing formula (1.3) consists in reducing the prob-
lem to a driftless one through a change of measure, exactly as is done when studying
the distribution of the maximum value of Brownian motion. By Girsanov’s theorem
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(Karatzas and Shreve [4], p. 196) if Bs, 0 ≤ s ≤ t is standard Brownian motion on
(Ω,F , P) then Ws = Bs + µs is itself standard Brownian motion on (Ω,F , Pµ) where

dPµ = e−µBt−µ2t/2 dP,

or equivalently

dP = eµWt−µ2t/2dPµ.

This results in the following identity for the probability density f
(µ)
θt

of the time of the
maximum of Bs + µs, 0 ≤ s ≤ t:

f
(µ)
θt

(s) = e−µ2t/2

∫ ∞

−∞
eµafBt,θt

(a, s)da. (2.1)

Hence our first task must be to extract fBt,θt
from the trivariate density (1.1).

Although the calculation is straighforward, the result does not seem to appear in the
standard treatises; neither is it particularly simple.

Proposition 2.1: The joint density of standard Brownian motion and the time of
its maximum up to instant t is given for 0 < s < t by

fBt,θt
(a, s) =

a

πt2

√
s

t − s
e−a2/2s +

√
2
π

1
t3/2

e−a2/2t(1 − a2

t
)Φ(−a

√
t − s

st
)

if a ≥ 0, and

fBt,θt
(a, s) =

−a

πt2

√
t − s

s
e−a2/2(t−s) +

√
2
π

1
t3/2

e−a2/2t(1 − a2

t
)Φ(a

√
s

t(t − s)
)

if a ≤ 0.
Proof: Clearly

fBt,θt
(a, s) =

∫ ∞

a+
fBt,B̄t,θt

(a, b, s)db,

where a+ = max(a, 0) denotes the positive part of a. The integration becomes easy if
the exponent in (1.1) is written in the form

−1
2
{a2

t
+

(b − as/t)2

σ2
},

with σ2 = s(t − s)/t. Standard manipulations lead to

fBt,θt
(a, s) =

e−a2/2t

πt
√

s(t − s)
(a+ − a +

as

t
)e−(a+−as/t)2/2σ2

+

√
2
π

1
t3/2

e−a2/2t(1 − a2/t)Φ(−a+ − as/t

σ
)

which is equivalent to the stated result. �
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The next step is to combine (2.1) and Proposition 2.1. This yields

eµ2t/2f
(µ)
θt

(s) =
s

πt2
√

s(t − s)

∫ ∞

0

eµaae−a2/2s da

+

√
2
π

1
t3/2

∫ ∞

0

eµae−a2/2t(1 − a2

t
)Φ(−a

√
t − s

st
) da

− 1
πt2

√
t − s

s

∫ 0

−∞
eµaae−a2/2(t−s) da

+

√
2
π

1
t3/2

∫ 0

−∞
eµae−a2/2t(1 − a2

t
)Φ(a

√
s

t(t − s)
) da. (2.2)

The first and third terms are easily integrated to give

1
πt2
√

s(t − s)

[
s2 + (t − s)2 + µ

√
2πs5/2eµ2s/2Φ(µ

√
s)

−µ
√

2π(t − s)5/2eµ2(t−s)/2Φ(−µ
√

t − s)
]
. (2.3)

However, the other two terms do not appear to lend themselves to an explicit evaluation,
so that we are left with a frustratingly untidy formula for f

(µ)
θt

, a far cry from the compact
(1.3). We develop in the next section an integral identity which resolves this conundrum.

3 The Key Integral Identity

Theorem 3.1: The following holds whenever α, β, µ ∈ R and αβ > 0:

∫ ∞

0

e−αβx2/2
{
e−µxΦ(−αx) + eµxΦ(−βx)

}
dx

=
√

2π

αβ
eµ2/2αβΦ

(
µ√

β(α + β)

)
Φ

(
−µ√

α(α + β)

)
.

Proof: Rewrite the integral as

eµ2/2αβ

{∫ ∞

0

e−αβ(x+µ/αβ)2/2Φ(−αx)dx +
∫ ∞

0

e−αβ(x−µ/αβ)2/2Φ(−βx)dx

}

= eµ2/2αβ

{∫ ∞

µ√
αβ

e−
u2
2 Φ(−u

√
α

β
+

µ

β
)

du√
αβ

+
∫ ∞

− µ√
αβ

e−
u2
2 Φ(−u

√
β

α
− µ

α
)du

}

=
eµ2/2αβ

√
2παβ

{∫ ∞

µ√
αβ

du

∫ −u
√

α
β + µ

β

−∞
e−(u2+v2)/2dv

+
∫ ∞

− µ√
αβ

du

∫ −u
√

β
α− µ

α

−∞
e−(u2+v2)/2dv

}
. (3.1)

The two integrals in (3.1) are over the regions A and B represented in Figure 1.
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Figure 1: The regions A and B.
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Figure 2: The regions A′ and B.
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In the above the angle θ is determined by

cos θ =

√
β

α + β
, sin θ =

√
α

α + β
. (3.2)

In the view of the symmetry of the integrand, the region A can be replaced by its
reflection A′ in the vertical axis, see Figure 2.

Finally one can take advantage of the invariance of the integrand under rotations to
replace the region of integration A′ ∪ B by C characterised in Figure 3.

C

v

uθ

Figure 3: The region C.

The apex of the region C has coordinates

(−µ/
√

α(α + β), µ/
√

β(α + β)),

see (3.2); the result follows by inspection in view of the shape of the region of integration.
�

The above identity is remarkable in that the two parts of the integrand are not
separately capable of such an explicit integration; indeed the prospects for simplification
look bleak until one realizes the orthogonality between the boundaries of A′ and B.

Theorem 3.1 allows us to evaluate (2.2); indeed if we denote by I(α, β, µ) the integral
in theorem 1, a moment’s reflection shows that the second and fourth terms in (2.2) are
nothing but

√
2
π

1
t

3
2

{
I

(√
s

t(t − s)
,

√
t − s

st
, µ

)
− 1

t

∂2

∂µ2
I

(√
s

t(t − s)
,

√
t − s

st
, µ

)}
. (3.3)
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If suffices now to use (2.2), (2.3),(3.3) and Theorem 3.1 to obtain, after a routine
regrouping of terms of a similiar nature:

Theorem 3.2: The probability density of the time of the maximum of Bs + µs over
[0,t] is given by formula (1.3).
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