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1 Introduction

Let X be a Banach space with norm ‖ . ‖. A nonempty closed subset K of X is called
a cone if

(i) K + K ⊆ K,

(ii) λ K ⊆ K for all λ > 0 and

(iii) (−K) ∩ K = {0} where 0 is the zero element of X.

We define an order relation ≤ in X with the help of the cone K as follows: for
x, y ∈ X then x ≤ y iff y − x ∈ K. By an ordered Banach space X we mean the

243



244 B.C. DHAGE, D. O’REGAN, and R. AGARWAL

Banach space X equipped with a partial ordering ≤ induced by K. Let z, w ∈ X be
such that z ≤ w. Then by an order interval [z, w] we mean a set in X defined by

[z, w] = {x ∈ X : z ≤ x ≤ w}.

A cone K is normal in X if every order interval in X is bounded in norm (see [1, 4]).
Definition 1.1: A map T : X → X is said to be isotone increasing if for x, y ∈ X

and x ≤ y we have T x ≤ T y.
The measure of noncompactness [2] of A ⊆ X is defined by

α(A) = inf{r > 0 : A ⊆ ∪n
i=1 Ai and diam (Ai) ≤ r for i ∈ {1, ..., n}}.

Definition 1.2: Let Q ⊆ X. A map T : Q → X is said to be countably condensing
if T (Q) is bounded and if for any countably bounded set A of Q with α(A) > 0 we
have α(T (A)) < α(A).

In Section 2 we prove new common fixed point theorems for a pair of single valued
maps and in Section 3 we prove the multivalued analogue of these theorems. The results
in this paper complement and extend results in the literature; see [3] and the references
therein.

2 Pairs of Single-Valued Mappings

In this section we prove some common fixed point theorems for a pair of mappings
defined on a closed subset of an ordered Banach space X.

Condition DQ: Let Q ⊆ X. Two maps S, T : Q → Q are said to satisfy condition
DQ if for any countable set A of Q and for any fixed a ∈ Q the condition

A ⊆ {a} ∪ S(A) ∪ T (A)

implies A is compact.
Definition 2.1: Two maps S and T on an ordered Banach space X into itself

are said to be weakly isotone increasing if S x ≤ T S x and T x ≤ S T x for all x ∈ X.
Similarly S and T are said to be weakly isotone decreasing if S x ≥ T S x and T x ≥
S T x for all x ∈ X. Also two mappings S and T are called weakly isotone if they are
either weakly isotone increasing or weakly isotone decreasing.

Now we are ready to prove our main result.
Theorem 2.1: Let B be a closed subset of an ordered Banach space X and let

S, T : B → B be two continuous and weakly isotone mappings satisfying condition DB.
Then S and T have a common fixed point.

Proof: Let x ∈ B be arbitrary. Suppose S and T are weakly isotone increasing.
Define a sequence {xn} ⊆ B as follows:

x0 = x, x2 n+1 = S x2 n, x2 n+2 = T x2 n+1 for n ≥ 0. (2.1)

Note x1 = S x0 ≤ T S x0 = T x1 = x2 and so we have

x1 ≤ x2 ≤ x3 ≤ ...... .

Let A = {x0, x1, .....}. Now A is countable and

A = {x0} ∪ {x1, x3, ....} ∪ {x2, x4, ....} ⊆ {x0} ∪ S(A) ∪ T (A).
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Now S and T satisfy condition DB so A is compact. Thus {xn} has a convergent
subsequence which converges to say x? ∈ B. However {xn} is nondecreasing from
above, so the original sequence {xn} converges to x? ∈ B. Also the continuity of T
and S imply

x? = lim
n→∞

x2 n+1 = lim
n→∞

S x2 n = S( lim
n→∞

x2 n) = S(x?)

and
x? = lim

n→∞
x2 n+2 = lim

n→∞
T x2 n+1 = T ( lim

n→∞
x2 n+1) = T (x?).

Thus S and T have a common fixed point. The case when S and T are weakly
isotone decreasing is similar.

Corollary 2.1: Let B be a closed subset of an ordered Banach space X and let
S, T : B → B be two continuous, countably condensing and weakly isotone mappings.
Then S and T have a common fixed point.

Proof: The result follows from Theorem 2.1 once we show S and T satisfy
condition DB . To see this let A be a countable subset of B, a ∈ B fixed, and
A ⊆ {a} ∪ S(A) ∪ T (A). Now A is bounded since S and T are condensing (so in
particular S(B) and T (B) are bounded). Now if α(A) 6= 0 then

α(A) ≤ max{α({a}), α(S(A)), α(T (A))} < α(A),

which is a contradiction. Thus α(A) = 0, so A is compact.
In our next result let X be a Banach space, K a cone in X and let x, y ∈ X be

such that x ≤ y. Also [x, y] denotes an order interval in X as described in Section 1.
Condition R: Two weakly isotone maps S, T : [x, y] → [x, y] are said to satisfy

condition R if for any countable set A of [x, y],

(i) the condition
A ⊆ {x} ∪ S(A) ∪ T (A)

implies A is compact if S and T are weakly isotone increasing,

(ii) whereas the condition
A ⊆ {y} ∪ S(A) ∪ T (A)

implies A is compact if S and T are weakly isotone decreasing.

Corollary 2.2: Suppose S, T : [x, y] → [x, y] are two continuous and weakly isotone
mappings satisfying condition R. Then S and T have a common fixed point.

Proof: If S and T are weakly isotone increasing we define a sequence {xn} ⊆ [x, y]
as in (2.1) with x0 = x, whereas if S and T are weakly isotone decreasing we define a
sequence {xn} ⊆ [x, y] as in (2.1) with x0 = y. �

Corollary 2.3: Suppose S, T : [x, y] → [x, y] are two continuous, countably con-
densing and weakly isotone mappings. Then S and T have a common fixed point
x? ∈ [x, y].

Remark 2.1: If in Corollary 2.3 the cone K is normal in X then the condition
that S([x, y]) and T ([x, y]) are bounded in the definition of countably condensing is
automatically satisfied since [x, y] is bounded in norm.

Remark 2.2: Assume S, T : [x, y] → [x, y] are two continuous weakly isotone map-
pings satisfying condition R and in addition suppose S and T are isotone increasing.
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(i) Suppose S and T are weakly isotone increasing.

We know from Corollary 2.2 that the sequence {xn} defined by

x0 = x, x2 n+1 = S x2 n, x2 n+2 = T x2 n+1 for n ≥ 0

converges to a common fixed point x? ∈ [x, y] of S and T .

Now let z ∈ [x, y] be any common fixed point of S and T . We claim that x? ≤ z.
To see this notice since S and T are isotone increasing that

x1 = S x ≤ S z = z, x2 = T x1 ≤ T z = z, ..... .

Thus xn ≤ z for all n ∈ {1, 2, ....}. Since {xn} converges to x? we have x? ≤ z.

(ii) Suppose S and T are weakly isotone decreasing.

We know from Corollary 2.2 that the sequence {xn} defined by

x0 = y, x2 n+1 = S x2 n, x2 n+2 = T x2 n+1 for n ≥ 0

converges to a common fixed point y? ∈ [x, y] of S and T .

Now let z ∈ [x, y] be any common fixed point of S and T . Similar reasoning as
in (i) guarantees that z ≤ y?.

3 Pairs of Multivalued Mappings.

Let X be an ordered Banach space and let 2X (respectively C(X)) denote the family
of all nonempty (respectively, nonempty closed) subsets of X. Let A, B ∈ 2X . Then
A ≤ B means a ≤ b for all a ∈ A and b ∈ B.

Definition 3.1: A map T : X → 2X is said to be isotone increasing if for x,
y ∈ X and x ≤ y, x 6= y we have T x ≤ T y.

Definition 3.2: Two maps S, T : X → 2X are said to be weakly isotone increasing
if for any x ∈ X we have S x ≤ T y for all y ∈ S x and T x ≤ S y for all y ∈ T x. S
and T are called weakly isotone decreasing if for any x ∈ X we have S x ≥ T y for all
y ∈ S x and T x ≥ S y for all y ∈ T x. Also two mappings S and T are called weakly
isotone if they are either weakly isotone increasing or weakly isotone decreasing.

Condition DQ: Let Q ⊆ X. Two maps S, T : Q → 2Q are said to satisfy
condition DQ if for any countable set A of Q and for any fixed a ∈ Q the condition

A ⊆ {a} ∪ S(A) ∪ T (A)

implies A is compact; here T (A) = ∪x∈A T x.
Theorem 3.1: Let B be a closed subset of an ordered Banach space X and let

S, T : B → C(B) be two closed (i.e. have closed graph) weakly isotone mappings
satisfying condition DB. Then S and T have a common fixed point.

Proof: Let x ∈ B be arbitrary. Suppose S and T are weakly isotone increasing.
Define a sequence {xn} ⊆ B as follows:

x0 = x, x2 n+1 ∈ S x2 n, x2 n+2 ∈ T x2 n+1 for n ≥ 0. (3.1)
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Note x1 ∈ S x0 and since S x0 ≤ T y for all y ∈ S x0 we have S x0 ≤ T x1. In
particular S x0 ≤ x2, and so x1 ≤ x2. As a result we have

x1 ≤ x2 ≤ x3 ≤ ...... .

Let A = {x0, x1, .....}. Now A is countable and

A = {x0} ∪ {x1, x3, ....} ∪ {x2, x4, ....} ⊆ {x0} ∪ S(A) ∪ T (A).

Now S and T satisfy condition DB so A is compact. Thus {xn} has a convergent
subsequence which converges to say x? ∈ B. However {xn} is nondecreasing from
above, so the original sequence {xn} converges to x? ∈ B. Now

x2 n → x?, x2 n+1 → x?, x2 n+1 ∈ S x2 n,

together with the fact that S has closed graph implies x? ∈ S x?. Similarly x? ∈ T x?.
The case when S and T are weakly isotone decreasing is similar.

Definition 3.3: Let Q ⊆ X. A map T : Q → 2X is said to be countably condensing
if T (Q) is bounded and if for any countably bounded set A of Q with α(A) > 0 we
have α(T (A)) < α(A).

Essentially the same reasoning as in Corollary 2.1 establishes the following result.
Corollary 3.1: Let B be a closed subset of an ordered Banach space X and let

S, T : B → C(B) be two closed, countably condensing, weakly isotone mappings. Then
S and T have a common fixed point.

In our next result let X be a Banach space, K a cone in X and let x, y ∈ X be
such that x ≤ y. Also [x, y] denotes an order interval in X as described in Section 1.

Condition R: Two weakly isotone maps S, T : [x, y] → 2[x,y] are said to satisfy
condition R if for any countable set A of [x, y],

(i) the condition
A ⊆ {x} ∪ S(A) ∪ T (A)

implies A is compact if S and T are weakly isotone increasing,

(ii) whereas the condition
A ⊆ {y} ∪ S(A) ∪ T (A)

implies A is compact if S and T are weakly isotone decreasing.

Corollary 3.2: Suppose S, T : [x, y] → C([x, y]) are two closed, weakly isotone
mappings satisfying condition R. Then S and T have a common fixed point.

Proof: If S and T are weakly isotone increasing we define a sequence {xn} ⊆ [x, y]
as in (3.1) with x0 = x, whereas if S and T are weakly isotone decreasing we define a
sequence {xn} ⊆ [x, y] as in (3.1) with x0 = y.
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