Journal of Applied Mathematics and Stochastic Analysis, **16:3** (2003), 243-248. Printed in the USA ©2003 by North Atlantic Science Publishing Company

COMMON FIXED POINT THEOREMS FOR A PAIR OF COUNTABLY CONDENSING MAPPINGS IN ORDERED BANACH SPACES

B.C. DHAGE

Kasubai, Gurukul Colony Almedpur 413515, Maharashtra, India

> DONAL O'REGAN National University of Ireland Department of Mathematics Galway, Ireland

RAVI P. AGARWAL Florida Institute of Technology Department of Mathematical Sciences Melbourne, FL 32901 USA

(Received January, 2003; Revised June, 2003)

In this paper some common fixed point theorems for a pair of multivalued weakly isotone mappings on an ordered Banach space are proved.

Keywords. Common Fixed Point, Multivalued, Weakly Isotone, Ordered Banach Space.

AMS (MOS) subject classification. 47A10.

1 Introduction

Let X be a Banach space with norm $\| . \|$. A nonempty closed subset K of X is called a cone if

- (i) $K + K \subseteq K$,
- (ii) $\lambda K \subseteq K$ for all $\lambda > 0$ and
- (iii) $(-K) \cap K = \{0\}$ where 0 is the zero element of X.

We define an order relation \leq in X with the help of the cone K as follows: for $x, y \in X$ then $x \leq y$ iff $y - x \in K$. By an ordered Banach space X we mean the

Banach space X equipped with a partial ordering \leq induced by K. Let $z, w \in X$ be such that $z \leq w$. Then by an order interval [z, w] we mean a set in X defined by

$$[z, w] = \{ x \in X : z \le w \}.$$

A cone K is normal in X if every order interval in X is bounded in norm (see [1, 4]). **Definition 1.1:** A map $T: X \to X$ is said to be isotone increasing if for $x, y \in X$

and $x \leq y$ we have $T x \leq T y$.

The measure of noncompactness [2] of $A \subseteq X$ is defined by

$$\alpha(A) = \inf\{r > 0 : A \subseteq \bigcup_{i=1}^{n} A_i \text{ and } diam(A_i) \le r \text{ for } i \in \{1, ..., n\}\}.$$

Definition 1.2: Let $Q \subseteq X$. A map $T: Q \to X$ is said to be countably condensing if T(Q) is bounded and if for any countably bounded set A of Q with $\alpha(A) > 0$ we have $\alpha(T(A)) < \alpha(A)$.

In Section 2 we prove new common fixed point theorems for a pair of single valued maps and in Section 3 we prove the multivalued analogue of these theorems. The results in this paper complement and extend results in the literature; see [3] and the references therein.

2 Pairs of Single-Valued Mappings

In this section we prove some common fixed point theorems for a pair of mappings defined on a closed subset of an ordered Banach space X.

Condition D_Q : Let $Q \subseteq X$. Two maps $S, T : Q \to Q$ are said to satisfy condition D_Q if for any countable set A of Q and for any fixed $a \in Q$ the condition

$$A \subseteq \{a\} \cup S(A) \cup T(A)$$

implies \overline{A} is compact.

Definition 2.1: Two maps S and T on an ordered Banach space X into itself are said to be weakly isotone increasing if $Sx \leq TSx$ and $Tx \leq STx$ for all $x \in X$. Similarly S and T are said to be weakly isotone decreasing if $Sx \geq TSx$ and $Tx \geq STx$ for all $x \in X$. Also two mappings S and T are called weakly isotone if they are either weakly isotone increasing or weakly isotone decreasing.

Now we are ready to prove our main result.

Theorem 2.1: Let B be a closed subset of an ordered Banach space X and let $S, T: B \to B$ be two continuous and weakly isotone mappings satisfying condition D_B . Then S and T have a common fixed point.

Proof: Let $x \in B$ be arbitrary. Suppose S and T are weakly isotone increasing. Define a sequence $\{x_n\} \subseteq B$ as follows:

$$x_0 = x, \ x_{2n+1} = S x_{2n}, \ x_{2n+2} = T x_{2n+1} \text{ for } n \ge 0.$$
 (2.1)

Note $x_1 = S x_0 \leq T S x_0 = T x_1 = x_2$ and so we have

$$x_1 \le x_2 \le x_3 \le \dots \dots$$

Let $A = \{x_0, x_1, \dots\}$. Now A is countable and

$$A = \{x_0\} \cup \{x_1, x_3, \dots\} \cup \{x_2, x_4, \dots\} \subseteq \{x_0\} \cup S(A) \cup T(A).$$

Now S and T satisfy condition D_B so \overline{A} is compact. Thus $\{x_n\}$ has a convergent subsequence which converges to say $x^* \in B$. However $\{x_n\}$ is nondecreasing from above, so the original sequence $\{x_n\}$ converges to $x^* \in B$. Also the continuity of T and S imply

$$x^{\star} = \lim_{n \to \infty} x_{2n+1} = \lim_{n \to \infty} S x_{2n} = S(\lim_{n \to \infty} x_{2n}) = S(x^{\star})$$

and

$$x^{\star} = \lim_{n \to \infty} x_{2n+2} = \lim_{n \to \infty} T x_{2n+1} = T(\lim_{n \to \infty} x_{2n+1}) = T(x^{\star}).$$

Thus S and T have a common fixed point. The case when S and T are weakly isotone decreasing is similar.

Corollary 2.1: Let B be a closed subset of an ordered Banach space X and let $S, T : B \to B$ be two continuous, countably condensing and weakly isotone mappings. Then S and T have a common fixed point.

Proof: The result follows from Theorem 2.1 once we show S and T satisfy condition D_B . To see this let A be a countable subset of B, $a \in B$ fixed, and $A \subseteq \{a\} \cup S(A) \cup T(A)$. Now A is bounded since S and T are condensing (so in particular S(B) and T(B) are bounded). Now if $\alpha(A) \neq 0$ then

$$\alpha(A) \leq \max\{\alpha(\{a\}), \alpha(S(A)), \alpha(T(A))\} < \ \alpha(A),$$

which is a contradiction. Thus $\alpha(A) = 0$, so \overline{A} is compact.

In our next result let X be a Banach space, K a cone in X and let $\overline{x}, \overline{y} \in X$ be such that $\overline{x} \leq \overline{y}$. Also $[\overline{x}, \overline{y}]$ denotes an order interval in X as described in Section 1.

Condition R: Two weakly isotone maps $S, T : [\overline{x}, \overline{y}] \to [\overline{x}, \overline{y}]$ are said to satisfy condition R if for any countable set A of $[\overline{x}, \overline{y}]$,

(i) the condition

$$A \subseteq \{\overline{x}\} \cup S(A) \cup T(A)$$

implies \overline{A} is compact if S and T are weakly isotone increasing,

(ii) whereas the condition

$$A \subseteq \{\overline{y}\} \cup S(A) \cup T(A)$$

implies \overline{A} is compact if S and T are weakly isotone decreasing.

Corollary 2.2: Suppose $S, T : [\overline{x}, \overline{y}] \to [\overline{x}, \overline{y}]$ are two continuous and weakly isotone mappings satisfying condition R. Then S and T have a common fixed point.

Proof: If S and T are weakly isotone increasing we define a sequence $\{x_n\} \subseteq [\overline{x}, \overline{y}]$ as in (2.1) with $x_0 = \overline{x}$, whereas if S and T are weakly isotone decreasing we define a sequence $\{x_n\} \subseteq [\overline{x}, \overline{y}]$ as in (2.1) with $x_0 = \overline{y}$. \Box

Corollary 2.3: Suppose $S, T : [\overline{x}, \overline{y}] \to [\overline{x}, \overline{y}]$ are two continuous, countably condensing and weakly isotone mappings. Then S and T have a common fixed point $x^* \in [\overline{x}, \overline{y}]$.

Remark 2.1: If in Corollary 2.3 the cone K is normal in X then the condition that $S([\overline{x}, \overline{y}])$ and $T([\overline{x}, \overline{y}])$ are bounded in the definition of countably condensing is automatically satisfied since $[\overline{x}, \overline{y}]$ is bounded in norm.

Remark 2.2: Assume $S, T : [\overline{x}, \overline{y}] \to [\overline{x}, \overline{y}]$ are two continuous weakly isotone mappings satisfying condition R and in addition suppose S and T are isotone increasing.

(i) Suppose S and T are weakly isotone increasing.

We know from Corollary 2.2 that the sequence $\{x_n\}$ defined by

$$x_0 = \overline{x}, \ x_{2n+1} = S x_{2n}, \ x_{2n+2} = T x_{2n+1} \text{ for } n \ge 0$$

converges to a common fixed point $x^* \in [\overline{x}, \overline{y}]$ of S and T.

Now let $z \in [\overline{x}, \overline{y}]$ be any common fixed point of S and T. We <u>claim</u> that $x^* \leq z$. To see this notice since S and T are isotone increasing that

$$x_1 = S \overline{x} \le S z = z, \ x_2 = T x_1 \le T z = z, \dots$$

Thus $x_n \leq z$ for all $n \in \{1, 2, ...\}$. Since $\{x_n\}$ converges to x^* we have $x^* \leq z$.

(ii) Suppose S and T are weakly isotone decreasing.

We know from Corollary 2.2 that the sequence $\{x_n\}$ defined by

$$x_0 = \overline{y}, \ x_{2n+1} = S x_{2n}, \ x_{2n+2} = T x_{2n+1} \text{ for } n \ge 0$$

converges to a common fixed point $y^* \in [\overline{x}, \overline{y}]$ of S and T.

Now let $z \in [\overline{x}, \overline{y}]$ be any common fixed point of S and T. Similar reasoning as in (i) guarantees that $z \leq y^*$.

3 Pairs of Multivalued Mappings.

Let X be an ordered Banach space and let 2^X (respectively C(X)) denote the family of all nonempty (respectively, nonempty closed) subsets of X. Let $A, B \in 2^X$. Then $A \leq B$ means $a \leq b$ for all $a \in A$ and $b \in B$.

Definition 3.1: A map $T : X \to 2^X$ is said to be isotone increasing if for x, $y \in X$ and $x \leq y$, $x \neq y$ we have $T x \leq T y$.

Definition 3.2: Two maps $S, T: X \to 2^X$ are said to be weakly isotone increasing if for any $x \in X$ we have $Sx \leq Ty$ for all $y \in Sx$ and $Tx \leq Sy$ for all $y \in Tx$. S and T are called weakly isotone decreasing if for any $x \in X$ we have $Sx \geq Ty$ for all $y \in Sx$ and T are called weakly isotone decreasing if for any $x \in X$ we have $Sx \geq Ty$ for all $y \in Sx$ and $Tx \geq Sy$ for all $y \in Tx$. Also two mappings S and T are called weakly isotone increasing or weakly isotone decreasing.

Condition D_Q : Let $Q \subseteq X$. Two maps $S, T : Q \to 2^Q$ are said to satisfy condition D_Q if for any countable set A of Q and for any fixed $a \in Q$ the condition

$$A \subseteq \{a\} \cup S(A) \cup T(A)$$

implies \overline{A} is compact; here $T(A) = \bigcup_{x \in A} T x$.

Theorem 3.1: Let B be a closed subset of an ordered Banach space X and let $S, T : B \to C(B)$ be two closed (i.e. have closed graph) weakly isotone mappings satisfying condition D_B . Then S and T have a common fixed point.

Proof: Let $x \in B$ be arbitrary. Suppose S and T are weakly isotone increasing. Define a sequence $\{x_n\} \subseteq B$ as follows:

$$x_0 = x, \ x_{2n+1} \in S \ x_{2n}, \ x_{2n+2} \in T \ x_{2n+1} \text{ for } n \ge 0.$$
 (3.1)

Note $x_1 \in S x_0$ and since $S x_0 \leq T y$ for all $y \in S x_0$ we have $S x_0 \leq T x_1$. In particular $S x_0 \leq x_2$, and so $x_1 \leq x_2$. As a result we have

$$x_1 \le x_2 \le x_3 \le \dots \dots$$

Let $A = \{x_0, x_1, \dots\}$. Now A is countable and

$$A = \{x_0\} \cup \{x_1, x_3, \dots\} \cup \{x_2, x_4, \dots\} \subseteq \{x_0\} \cup S(A) \cup T(A).$$

Now S and T satisfy condition D_B so \overline{A} is compact. Thus $\{x_n\}$ has a convergent subsequence which converges to say $x^* \in B$. However $\{x_n\}$ is nondecreasing from above, so the original sequence $\{x_n\}$ converges to $x^* \in B$. Now

$$x_{2n} \to x^{\star}, \ x_{2n+1} \to x^{\star}, \ x_{2n+1} \in S x_{2n},$$

together with the fact that S has closed graph implies $x^* \in S x^*$. Similarly $x^* \in T x^*$. The case when S and T are weakly isotone decreasing is similar.

Definition 3.3: Let $Q \subseteq X$. A map $T : Q \to 2^X$ is said to be countably condensing if T(Q) is bounded and if for any countably bounded set A of Q with $\alpha(A) > 0$ we have $\alpha(T(A)) < \alpha(A)$.

Essentially the same reasoning as in Corollary 2.1 establishes the following result.

Corollary 3.1: Let B be a closed subset of an ordered Banach space X and let $S, T : B \to C(B)$ be two closed, countably condensing, weakly isotone mappings. Then S and T have a common fixed point.

In our next result let X be a Banach space, K a cone in X and let $\overline{x}, \overline{y} \in X$ be such that $\overline{x} \leq \overline{y}$. Also $[\overline{x}, \overline{y}]$ denotes an order interval in X as described in Section 1.

Condition R: Two weakly isotone maps $S, T : [\overline{x}, \overline{y}] \to 2^{[\overline{x}, \overline{y}]}$ are said to satisfy condition R if for any countable set A of $[\overline{x}, \overline{y}]$,

(i) the condition

$$A \subseteq \{\overline{x}\} \cup S(A) \cup T(A)$$

implies \overline{A} is compact if S and T are weakly isotone increasing,

(ii) whereas the condition

$$A \subseteq \{\overline{y}\} \cup S(A) \cup T(A)$$

implies \overline{A} is compact if S and T are weakly isotone decreasing.

Corollary 3.2: Suppose $S, T : [\overline{x}, \overline{y}] \to C([\overline{x}, \overline{y}])$ are two closed, weakly isotone mappings satisfying condition R. Then S and T have a common fixed point.

Proof: If S and T are weakly isotone increasing we define a sequence $\{x_n\} \subseteq [\overline{x}, \overline{y}]$ as in (3.1) with $x_0 = \overline{x}$, whereas if S and T are weakly isotone decreasing we define a sequence $\{x_n\} \subseteq [\overline{x}, \overline{y}]$ as in (3.1) with $x_0 = \overline{y}$.

References

- Amann, H., Fixed point equations and nonlinear eigenvalue problems in Banach spaces, SIAM Review 18(1976), 620–709.
- Banas, J. and Goebel, K., Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York 1980.

- [3] Dhage, B.C., Common fixed point mappings on ordered Banach spaces with applications, Math. Sci. Research Journal 6(2002), 210–220.
- [4] Guo, D. and Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Academic Press, New York 1988.