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There are many known asymptotic estimates for the expected number of real zeros of

an algebraic polynomial a0 + a1x + a2x2 + · · · + an−1xn−1 with identically distributed

random coefficients. Under different assumptions for the distribution of the coefficients

{aj}n−1
j=0 it is shown that the above expected number is asymptotic to O(log n). This

order for the expected number of zeros remains valid for the case when the coefficients

are grouped into two, each group with a different variance. However, it was recently

shown that if the coefficients are non-identically distributed such that the variance of

the jth term is
(n

j

)
the expected number of zeros of the polynomial increases to O(

√
n).

The present paper provides the value for this asymptotic formula for the polynomials

with the latter variances when they are grouped into three with different patterns for

their variances.
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1 Introduction

A random algebraic polynomial defined as

Pn(x) =
n−1∑

j=0

ajx
j (1.1)

where the coefficients {aj}n−1
j=0 are a sequence of normally distributed random variables

is well studied. In particular the mathematical behaviour of the number of real zeros,
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Nn(a, b) in the interval (a, b) is interesting and somehow unexpected. For the case of
identically distributed coefficients with mean zero it is known that the mathematical
expected number of real zeros, denoted by ENn(−∞,∞) is asymptotic to (2/π) log n,
see Kac [5] or the recent work of Wilkins [10]. This asymptotic value remains invariant
for all other cases of identically distributed coefficients belonging to the domain of
attraction of normal law. For other distributions outside this domain Logan and Shepp
[6] and [7] have shown that there is a slight increase in the number of real zeros, when
they considered the cases which include Cauchy distributed coefficients.

However, Edelman and Kostlan [2] in their expository work have shown that the
expectation ENn(−∞,∞) increases significantly, to

√
n, when they assume a special

non- identical distribution for the coefficients. They chose normal distribution for the
coefficients aj with mean zero and variance

(
n
j

)
. This particular choice of variances is

of special interest for their physical properties investigated by Ramponi [8] and indeed
their mathematical behaviour. For the latter, this choice permits the variances of the
coefficients to be small for the first few and the last few terms of the polynomials
compared with the middle terms. It is presumably the case that, under some mild
assumptions, the Edelman and Kostlan results could be generalized to remain valid
for other forms of variances for aj rather than just

(
n
j

)
. These authors, however, were

unable to make any substantial progress toward this conjecture.
Instead in this work for σ2

1 , σ2
2 and σ2

3 all being absolute constants and n1 and n−n1

being a proportion of n we assume

var(aj) =





σ2
1

(
n1−1

j

)
0 ≤ j ≤ n1 − 1

σ2
2 n1 ≤ j ≤ n − n1 − 1

σ2
3

(
n−1−1
n−j−1

)
n − n1 ≤ j ≤ n − 1.

(1.2)

Our theorem shows that for these classes of distribution we are still able to obtain a sig-
nificant number of zeros. As with the above assumptions the variance of the coefficients
in Pn(x) is not necessarily larger for the middle terms obeying the above pattern for
the conjecture, and still being able to obtain a significantly large number of real zeros,
the assumption for the above conjecture should be outside (1.2).

Also in [4] the corresponding result for varying the means of the coefficients, rather
than variances, is studied. The earlier works on random polynomials are reviewed in
the comprehensive book by Bharucha-Reid and Sambandham [1] and more recently in
Farahmand [3]. We prove:

Theorem 1.1: Let the coefficients {aj}n−1
j=0 of Pn(x) be normally distributed with

mean zero and variances given in (1.2), when n1 (and therefore n−n1) is a proportion
of n, that is for k > 1 an absolute constant we have n1 = n/k. Then the expected
number of real zeros of Pn(x) is

ENn(−∞, 0) ∼ ENn(0,∞) ∼
√

n1 − 1
2

.

The proof of our theorem also reveals another interesting behaviour for the expected
number of real zeros. In the interval (−1, 1) this behaviour is dictated by the variance
of the first few n1 terms. However, outside this interval the behaviour is dictated by
the variance of the last few terms. The variance of the middle terms is not supported
by the binomial terms, and therefore could not influence ENn(−∞,∞).
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2 Primary Analysis for the moments.

In order to estimate the expected number of real zeros of the random polynomial we
need to evaluate first the variances of Pn(x) and its derivative P ′

n(x). To this end we
assume x ∈ (0, 1), then since the coefficients of Pn(x) are independent with mean zero
and their variances are given in (1.2) we can say

A2 = var(Pn(x)) = σ2
1

n1−1∑

j=0

x2j

(
n1 − 1

j

)
+ σ2

2

n−n1−1∑

j=n1

x2j

+σ2
3

n−1∑

j=n−n1

x2j

(
n1 − 1

j − n + n1

)
. (2.1)

Using the well known identity for the first and second term on the right hand side of
(2.1) and since

(
n1−1

j−n1+n1

)
=

(
n1−1

n−j−1

)
from (2.1) we can obtain

A2 = σ2
1(x

2 + 1)n1−1 + σ2
2

{
x2(n1−1) − x2(n−n1)

1 − x2

}

+σ2
3

n−1∑

j=n−n1

x2j

(
n1 − 1

j − n + n1

)
. (2.2)

The last term of (2.2) can be evaluated further as

σ2
3

n1−1∑

j=0

x2(j+n−n1)

(
n1 − 1

j

)
= σ2

3x
2(n−n1)(x2 + 1)n1−1. (2.3)

Now we first assume 0 < x < 1 − ε where ε ≡ εn = n−λ and λ has a positive value
dependent on n only given by

λ = 1 − log log nk

log n
, (2.4)

where k is any constant number greater than two. Now let η = min{n1, (n − n1)}. By
our assumption of n1, obviously η = n/c for some constant c. Therefore we can show
that the terms in the forms x(2n1−1), x2(n−n1) and x2n which appeared in (2.2) and
(2.3) are small and can be ignored in the estimation. To this end, since for this range
of x all of these terms are smaller than x2η, for all sufficiently large n we can write

max{xn, xn1 , x(n−n1)} ≤ xη

< (1 − ε)η = (1 − n−λ)η

= exp(−ηn−λ) = exp
(
−n1−λ

c

)

∼ n−k. (2.5)

The last equation in (2.5) is obtained using the definition of λ in (2.4) and the fact that
c is a positive constant. In what follows, in order to simplify the analysis, we assume
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k = 10. However any choice of k > 2 leads to the result. From (2.2) and (2.3) and since
σ2

2 and σ2
3 are constants we can see

A2 = σ2
1(x

2 + 1)n1−1{1 + o(n−10)}. (2.6)

We now proceed to obtain the covariance of P (x) and its derivative P ′(x). Since the
coefficients of the polynomial are independent with mean zero we can obtain

C = cov{P (x), P ′(x)} = E




n−1∑

j=0

ajx
j

n−1∑

j=1

jajx
j−1




=
n−1∑

j=1

jx2j−1var(aj)

= σ2
1

n1−1∑

j=1

jx2j−1

(
n1 − 1

j

)
+ σ2

2

n−n1−1∑

j=n1

jx2j−1

+σ2
3

n−1∑

j=n−n1

jx2j−1

(
n1 − 1

n − j − 1

)
. (2.7)

Since
(

n1−1
n−j−1

)
=

(
n1−1

j−n+n1

)
the last term which appears in (2.7) is equal to

σ2
3

n1−1∑

j=0

(j + n − n1)x2(j+n−n1)−1

(
n1 − 1

j

)
.

The closed form of the above sum can be obtained by simple differentiation of the well
known formula for the binomial sum. This together with (2.7) yields

C = σ2
1(n1 − 1)x(x2 + 1)n1−2 + σ2

2

{
x2n1+1 − x2(n−n1)+1

(1 + x2)2

+
n1x

2n1−1 − (n − n1)x2(n−n1)−1

1 − x2

}

+σ2
3(n − n1)(n1 − 1)x2(n−n1)+1(x2 + 1)n1−2. (2.8)

Now since for 0 < x < 1 − ε we can use the inequality obtained in (2.6) for (2.8) to
obtain

C = (n1 − 1)x(x2 + 1)n1−2
{

σ2
1 + σ2

3(n − n1)x2(n−n1)
}

+ o(n−8)

= σ2
1(n1 − 1)x(x2 + 1)n1−2{1 + o(n−8)}. (2.9)

Finally we derive the variance of P ′(x). Using the above assumption for the coefficients
of the polynomial we have

B2 = var(P ′(x)) = σ2
1

n1−1∑

j=0

j2x2j−2

(
n1 − 1

j

)

+σ2
2





n−n1−1∑

j=0

j2x2j−2 −
n1−1∑

j=0

j2x2j−2
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+σ2
3

n−1∑

j=n−n1

j2x2j−2

(
n1 − 1

j − n − n1

)
. (2.10)

Now for this range of x

n1−1∑

j=0

j2x2j−2 =
{
x2 + 1 − x2n1+2 − x2n1 − n2x2n1+2 + 2n2x2n1

−n2x2n1−2 + 2nx2n1+2 − 2n1x
2n1

}
(1 − x2)−3

=
1 + x2

(1 − x2)3
{
1 + o(n−18

1 )
}

. (2.11)

Also for all x
n1−1∑

j=0

j2x2j−2

(
n1 − 1

j

)
= (n1 − 1)(x2 + 1)n1−3(n1x

2 − x2 + 1) (2.12)

and
n−1∑

j=n−n1

j2x2j−2

(
n1 − 1

j − n − n1

)
= x2(n−n1)

{
(n − n1)2

n1−1∑

j=0

x2j−2

(
n1 − 1

j

)

+2(n − n1)
n1−1∑

j=0

jx2j−2

(
n1 − 1

j

)

+
n1−1∑

j=0

j2x2j−2

(
n1 − 1

j

)}
. (2.13)

Therefore from (2.10)-(2.13) and a little algebra we obtain

B2 = σ2
1(n1 − 1)(x2 + 1)n1−3(n1x

2 − x2 + 1){1 + o(n−18)}. (2.14)

3 Proof of theorem.

Now we use the well known Kac-Rice formula for the expected number of real roots
obtained in Kac [5] and Rice [9]. From [3, page 32] the expected number of real roots
of Pn(x) in (a, b) is given by

ENn(a, b) =
(

1
π

) ∫ b

a

(
∆
A2

)
dx (3.1)

where ∆2 = A2B2 − C2. Since from (2.6), (2.9) and (2.14), for all sufficiently large n1,

∆2 ∼ σ2
1(n1 − 1)(x2 + 1)2n1−4

so from (2.6) we can write

ENn(0, 1 − ε) =
∫ 1−ε

0

∆
πA2

dx

∼
√

n1 − 1
π

∫ 1−ε

0

dx

x2 + 1

∼ (π − ε)
√

n1 − 1
4π

∼
√

n1 − 1
4

. (3.2)
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In the following we show that in the interval (1 − ε, 1) the expected number of real
zeros is small compared with (3.2) and therefore can be ignored. To this end from the
definitions of A2, B2 and C given in (2.1), (2.7) and (2.10) we note that

B2 = var(P ′(x)) = var




n−1∑

j=0

ajjx
j−1




=
n−1∑

j=0

j2var(ajx
j−1)

< n2
n−1∑

j=0

var(ajx
j−1),

and therefore

∆
A2

<
B

A
<

√√√√n2
∑n−1

j=0 var(ajxj−1)
∑n−1

j=0 var(ajxj)

=

√
n2

x2
<

n

1 − ε
. (3.3)

Hence from (3.3) and the Kac-Rice formula and since from the definition of ε we can
see nε = n(log log n10/ log n) = log n10 and ε = n−λ = log n10/n which tends to zero as
n → ∞

ENn(1 − ε, 1) ≤
∫ 1

1−ε

B

A
dx <

nε

1 − ε
= o(log n10).

This together with (3.2) yields

ENn(0, 1) ∼
√

n1 − 1
4

.

Now we use this result obtained for the interval (0, 1) to derive the result for the
entire interval (−∞,∞). To this end we first note that changing x to −x leaves the
distribution of the coefficients invariant. Therefore EN(−∞, 0) ∼ EN(0,∞). Also in
order to obtain the result for the interval (1,∞) we replace x by 1/x to obtain

Pn

(
1
x

)
=

n−1∑

j=0

ajx
−j = x−n+1

n−1∑

j=0

ajx
n−j−1.

The above polynomial has the same properties as Pn(x) if we exchange the order of
coefficients in the latter. Therefore the above proof presented for (0, 1) remains valid
by only changing the order of coefficients.
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