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We construct a family of martingales with Gaussian marginal distributions. We give a
weak construction as Markov, inhomogeneous in time processes, and compute their in-
finitesimal generators. We give the predictable quadratic variation and show that the
paths are not continuous. The construction uses distributions Gσ having a log-
convolution semigroup property. Further, we categorize these processes as belonging to
one of two classes, one of which is made up of piecewise deterministic pure jump pro-
cesses. This class includes the case where Gσ is an inverse log-Poisson distribution. The
processes in the second class include the case where Gσ is an inverse log-gamma distribu-
tion. The richness of the family has the potential to allow for the imposition of specifica-
tions other than the marginal distributions.
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1. Introduction

It is hard to overestimate the importance of the Brownian motion. From the stochastic
calculus perspective, the Brownian motion draws its status from the fact that it is a mar-
tingale. From the modeling perspective, the Brownian motion has the desirable property
of having the Markov property as well as Gaussian marginals. In an attempt to uphold
these basic requirements, we construct a rich family of Markov processes which are mar-
tingales and have Gaussian marginals. We also exhibit some properties of this family of
processes, which has the potential to find applications in many fields, including finance.

Let us first, give a brief survey of related results and ideas found in the literature.
Kellerer gave conditions for the existence of a Markov martingales with given marginals

in [1], but offered no explicit construction. He proves the existence of such processes
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under two conditions: the first one is that the targeted marginal densities, g(x, t), must
be increasing in the convex order (E[ f (Xt)] ≥ E[ f (Xs)] for s < t and f convex), sec-
ondly, that the marginal densities must have means that do not depend on t. Madan and
Yor in [2], inspired by the above result, gave three different constructions: a continuous
martingale, a time-changed Brownian motion, and a construction that uses Azèma-Yor’s
solution to the Skorokhod embedding problem.

The continuous martingale approach looks for a process of the form

Xt =
∫ t

0
σ
(
Xs,s

)
dBs, (1.1)

where Bt is a Brownian motion. When applied to the case of N(0, t) marginal densities,
this methodology simply produces a Brownian motion. Indeed, writing the forward par-
tial differential equation for these densities, one can see that σ2 must be identically equal
to 1 (see [2]).

In the time change approach, one looks for a process of the form

Xt = BLt , (1.2)

where L is an increasing process, assumed to be a Markov process with inhomogeneous
independent increments, independent of the Brownian motion Bt. Using the indepen-
dence of B and L, and the assumption of Gaussian marginals, we have

e−(λ2/2)t = E[eiλXt]= E[e−(λ2/2)Lt
]
. (1.3)

This implies that Lt = t and Xt = Bt.
However, the Skorokhod embedding approach, which we do not review here, yields an

example of a discontinuous and time-inhomogeneous Markov non-Gaussian martingale,
see [2].

Our approach is different to all of the above and produces a rich family of processes
rather than a single process. The richness of the family has the potential to allow for
the imposition of specifications other than that of prescribed marginal distributions. Al-
though our method can be extended to include other types of marginal distributions,
we choose to focus solely on the Gaussian case. Finally, we comment that all existing
approaches yield discontinuous processes (barring the Brownian motion itself), and the
question of the existence of a non-Gaussian continuous martingale with Gaussian mar-
ginals remains open.

The starting point of our construction is an observation that for any triple (R,Y ,ξ) of
independent random variables such that R takes values in (0,1], ξ is standard Gaussian
and Y is Gaussian with mean zero and variance α2, the random variable

Z = σ
(√
RY +α

√
1−Rξ

)
(1.4)
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is Gaussian with mean zero and variance σ2α2. However, the joint distribution of (Y ,Z)
is not bivariate Gaussian, as can be verified by calculating the fourth conditional moment
of Z given Y = 0. In fact,

E
[
Z4 | Y = 0

]− 3E
[
Z2 | Y = 0

]2 = 3σ4α4(E[(1−R)2]−E[1−R]2) (1.5)

and (Y ,Z) is a bivariate Gaussian pair if and only if R is nonrandom. The martingale
property of the two-period process (Y ,Z) holds if and only if

Y = E[Z | Y]= E[σ(√RY +α
√

1−Rξ) | Y]= σYE[√R], (1.6)

in other words, if and only if

E
[√
R
]= 1

σ
. (1.7)

Furthermore, the conditional distribution of Z given Y = y is

FZ|Y=y(dz)= P[R= 1]εσ y(dz) +E
[
φ
(
σ
√
Ry,α2σ2(1−R),z

)
1R<1

]
dz, (1.8)

where εx is the Dirac measure at x and φ(μ,σ2,·) denotes the density of the Gaussian
distribution with mean μ and variance σ2.

This construction of a two-step process is extended to that of a continuous time
Markov process as described in the following section.

2. A family of non-Gaussian martingales with Gaussian marginals

In this section, we construct a family of Markov martingales, Xt, the marginals of which
are Gaussian with mean zero and variance t. The result is stated as Theorem 2.5, the proof
of which is broken into several preceding propositions. The processXt is constructed as an
inhomogeneous Markov process with transition function given by (1.8). In other words,
it admits the following almost sure representation, see (1.4). For s < t,

Xt =
√
t

s

(√
Rs,tXs +

√
s
√

1−Rs,tξs,t
)

, (2.1)

where Xs, Rs,t, and ξs,t are assumed to be independent, Rs,t is assumed to take values
in (0,1] and to have a distribution that depends on (s, t) only through

√
t/s for which

E[
√
Rs,t]=

√
s/t. Finally, ξs,t is assumed to be a standard Gaussian random variable.

As we will shortly discover (see Proposition 2.3), for a family of transition functions
given by (1.8) to define a (Markov) process, we will require that the distribution of Rs,t
generates a so-called log-convolution semigroup.

Definition 2.1. The family of distributions on (0,+∞) (Gσ)σ≥1 is a log-convolution semi-
group if G1 = ε1 and the distribution of the product of any two independent random
variables with distributions Gσ and Gτ is Gστ .
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The following result shows the relationship that exists between log-convolution and
convolution semigroups. The proof is straightforward and is left to the reader. Recall that
(Kp)p≥0 is a convolution semigroup if

K0 = ε0, Kp∗Kq = Kp+q. (2.2)

Proposition 2.2. Let (Gσ)σ≥1 be a log-convolution semigroup on (0,1] and, for σ ≥ 1,
let Rσ be a random variable with distribution Gσ . If Kp, p ≥ 0, denotes the distribution of
Vp =− lnRep , then (Kp)p≥0 is a convolution semigroup.

Conversely, let (Kp)p≥0 be a convolution semigroup and, for p ≥ 0, let Vp be a random
variable with distribution Kp. If Gσ , σ ≥ 1, denotes the distribution of Rσ = e−Vlnσ , then
(Gσ)σ≥1 is a log-convolution semigroup.

In the next proposition, we check that the Chapman-Kolmogorov equation is satisfied,
thus, guarantying the existence of the process Xt. In view of Proposition 2.2 and the well-
known Lévy-Khinchin representation, we will later give a simple condition on the family
(Gσ)σ≥1 for it to generate the desired result (see Theorem 2.5).

Proposition 2.3. Define, for x ∈R, s > 0 and t = σ2s≥ s, Ps,t(x,dy) as

P0,t(x,dy)= 1√
2π
√
t

exp
(
− (y− x)2

2t

)
dy,

Ps,t(x,dy)= γ(σ)εσx(dy) +
[∫

(0,1)

1√
2π
√
t
√

1− r exp
(
− (y− σ√rx)2

2t(1− r)
)
Gσ(dr)

]
dy,

(2.3)

where γ(σ)=Gσ({1}).
If (Gσ)σ≥1 is a log-convolution semigroup on (0,1], then the Chapman-Kolmogorov equa-

tions hold. That is, for any u > t > s > 0 and any x,

∫
Ps,t(x,dy)Pt,u(y,dz)= Ps,u(x,dz) (2.4)

and, for any u > t > 0,

∫
P0,t(0,dy)Pt,u(y,dz)= P0,u(0,dz). (2.5)

Proof. Let us first observe that, if Rσ has distribution Gσ , Rτ has distribution Gτ and, Rσ
and Rτ are independent, then Rστ and RσRτ share the same distribution Gστ . Then we
have

γ(στ)= P[Rστ = 1
]= P[RσRτ = 1

]= P[Rσ = 1, Rτ = 1
]= γ(σ)γ(τ) (2.6)
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and, for any bounded Borel function h,

∫
(0,1)

∫
(0,1)

h(ab)Gσ(da)Gτ(db)

= E[h(RσRτ)1Rσ �=1, Rτ �=1
]

= E[h(RσRτ)1RσRτ �=1
]−E[h(RσRτ)1Rσ=1, Rτ �=1

]−E[h(RσRτ)1Rσ �=1, Rτ=1
]

= E[h(Rστ)1Rστ �=1
]− γ(σ)E

[
h
(
Rτ
)
1Rτ �=1

]− γ(τ)E
[
h
(
Rσ
)
1Rσ �=1

]

=
∫

(0,1)
h(r)

[
Gστ(dr)− γ(σ)Gτ(dr)− γ(τ)Gσ(dr)

]
.

(2.7)

Next, let t = σ2s, u= τ2t, and

ps,t(x, y)=
∫

(0,1)

1√
2π
√
t
√

1− r exp
(
− (y− σ√rx)2

2t(1− r)
)
Gσ(dr), (2.8)

so that by (2.4),

Ps,t(x,dy)= γ(σ)εσx(dy) + ps,t(x, y)dy, (2.9)

and for any bounded Borel function h,

∫
Ps,t(x,dy)

∫
Pt,u(y,dz)h(z)

=
∫
Ps,t(x,dy)

[
γ(τ)h(τ y) +

∫
h(z)pt,u(y,z)dz

]

= γ(σ)
[
γ(τ)h(τσx) +

∫
h(z)pt,u(σx,z)dz

]

+
∫ [

γ(τ)h(τ y) +
∫
h(z)pt,u(y,z)dz

]
ps,t(x, y)dy

= γ(στ)h(στx) + γ(σ)
∫
h(z)pt,u(σx,z)dz+ γ(τ)

∫
h(τ y)ps,t(x, y)dy

+
∫
h(z)

∫
pt,u(y,z)ps,t(x, y)dydz.

(2.10)
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However,

∫
ps,t(x, y)pt,u(y,z)dy

=
∫ [∫

(0,1)

1√
2π
√
t
√

1− a exp
(
− (y− σ√ax)2

2t(1− a)

)
Gσ(da)

]

×
[∫

(0,1)

1√
2π
√
u
√

1− b exp
(
− (z− τ√by)2

2u(1− b)

)
Gτ(db)

]
dy

=
∫

(0,1)

∫
(0,1)

1
2π
√
tu
√

(1− a)(1− b)

×
[∫

exp
(
− (y−√t/s√ax)2

2t(1− a)
− (z−√u/t√by)2

2u(1− b)

)
dy
]
Gσ(da)Gτ(db).

(2.11)

Next, we reformulate the expression in the exponential term above using the following
identity which can be easily checked:

(y−mx)2

μ
+

(z−ny)2

ν
= (y− k)2

μν/(ν +μn2)
+

(z−mnx)2

ν +μn2
, k = νmx+μnz

ν +μn2
. (2.12)

Thus,

∫
ps,t(x, y)pt,u(y,z)dy

=
∫

(0,1)

∫
(0,1)

1
2π
√
tu
√

(1− a)(1− b)

×
[∫

exp
(
−

(
y− k(s, t,x,z)

)2

2
(
tu(1− a)(1− b)/(1− ab)u

) −
(
z−√u/s√abx)2

2(1− ab)u

)
dy
]
Gσ(da)Gτ(db)

=
∫

(0,1)

∫
(0,1)

1√
2π
√

(1− ab)u
exp

(
−
(
z−√u/s√abx)2

2(1− ab)u

)

×
[∫ √

(1− ab)u√
2π
√
tu
√

(1− a)(1− b)
exp

(
−

(
y− k(s, t,x,z)

)2

2tu(1− a)(1− b)/(1− ab)u

)
dy
]

︸ ︷︷ ︸
=1

Gσ(da)Gτ(db),

(2.13)

where k(s, t,x,z) is some quantity, given by (2.12), that does not depend on the integrating
variable y.
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It follows that

∫
ps,t(x, y)pt,u(y,z)dy

=
∫

(0,1)

∫
(0,1)

1√
2π
√

(1− ab)u
exp

(
−
(
z− στ√abx)2

2(1− ab)u

)
Gσ(da)Gτ(db)

=
∫

(0,1)

∫
(0,1)

φ
(
στ
√
abx, (1− ab)u,z

)
Gσ(da)Gτ(db)

=
∫

(0,1)
φ
(
στ
√
rx, (1− r)u,z

)
Gστ(dr)− γ(σ)

∫
(0,1)

φ
(
στ
√
rx, (1− r)u,z

)
Gτ(dr)

− γ(τ)
∫

(0,1)
φ
(
στ
√
rx, (1− r)u,z

)
Gσ(dr)

= ps,u(x,z)− γ(σ)pt,u(σx,z)− γ(τ)
∫

(0,1)
φ
(
στ
√
rx, (1− r)u,z

)
Gσ(dr).

(2.14)

Therefore, continuing from (2.10),

∫
Ps,t(x,dy)

∫
Pt,u(y,dz)h(z)

= γ(στ)h(στx) + γ(σ)
∫
h(z)pt,u(σx,z)dz+ γ(τ)

∫
h(τ y)ps,t(x, y)dy

+
∫
h(z)ps,u(x,z)dz− γ(σ)

∫
h(z)pt,u(σx,z)dz

− γ(τ)
∫
h(z)

∫
(0,1)

φ
(
στ
√
rx, (1− r)u,z

)
Gσ(dr)dz

= γ(στ)h(στx) +
∫
h(z)ps,u(x,z)dz,

(2.15)

where in the last equality, we have used the change of variables z = τ y to show that

∫
h(τ y)

∫
(0,1)

φ
(
σ
√
rx, (1− r)t, y)Gσ(dr)dy =

∫
h(z)

∫
(0,1)

φ
(
στ
√
rx, (1− r)u,z

)
Gσ(dr)dz.

(2.16)

Equation (2.4) immediately follows. Equation (2.5) is shown in a similar way. �
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The convolution semigroup K in Proposition 2.2 defines a subordinator (process with
positive, independent and stationary increments, i.e., an increasing Lévy process). The
proof of the following proposition uses this observation and is a straightforward applica-
tion of the classical Lévy-Khinchin Theorem on subordinators (see, e.g., [3, Section 1.2]).
It is left to the reader.

Proposition 2.4. Let the family (Gσ)σ≥1 be a log-convolution semigroup on (0,1]. De-
fine, for Rσ with distribution Gσ , Uσ = − lnRσ , and let Lσ(λ) = E[e−λUσ ](= E[eλ lnRσ ] =
E[(Rσ)λ]) be the Laplace transform of the (positive) random variableUσ . Then for any σ ≥ 1,
Uσ is infinitely divisible. Moreover,

lnLσ(λ)=−
[
βλ+

∫∞
0

(
1− e−λx)ν(dx)

]
lnσ , (2.17)

where the Lévy measure ν(dx) satisfies ν({0})= 0 and
∫∞

0 (1∧ x)ν(dx) <∞.
Conversely, any function Lσ of the form (2.17) is the λ-moments of a log-convolution

semigroup (Gσ)σ≥1.

In what follows, we denote by ψ the so-called Laplace exponent of the log-convolution
semigroup (Gσ)σ≥1:

ψ(λ)= βλ+
∫∞

0

(
1− e−λx)ν(dx). (2.18)

As observed earlier, the requirement thatX be a martingale translates into condition (1.7)
which in turn, taking λ= 1/2 in (2.17), reduces to

ψ
(

1
2

)
= 1. (2.19)

Now we finalize the construction of the process X . Starting from a function ψ of the form
(2.18) which satisfies (2.19), we construct the family Gσ and the transition probability
function Ps,t(x,dy) given in (2.3). We conclude by invoking the Chapman-Kolmogorov
existence result (see, e.g., [4, Theorem 1.5]) and state the main theorem of this paper.

Theorem 2.5. Let the family (Gσ)σ≥1 form a log-convolution semigroup with Laplace ex-
ponent

ψ(λ)= βλ+
∫∞

0

(
1− e−λx)ν(dx). (2.20)

Assume thatψ(1/2)= 1. Then the coordinate process starting at zero, hereby denoted (Xt)t≥0,
is a Markov martingale with respect to its natural filtration (�t)t≥0 and with transition
probabilities Ps,t(x,dy) given by (2.3). Furthermore, the marginal distributions of Xt are
Gaussian with mean zero and variance t and, for 0 < s < t,

Xt =
√
t

s

(√
Rs,tXs +

√
s
√

1−Rs,tξs,t
)

, (2.21)

where Rs,t and ξs,t are independent of each other and of �s, Rs,t has distribution G√t/s and
ξs,t is standard Gaussian.
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3. Path properties

As a martingaleXt admits a càdlàg version. In the sequel, we assume thatXt itself is càdlàg.

Theorem 3.1. The process Xt is continuous in probability

∀c > 0, lim
s→t P

[∣∣Xt −Xs∣∣ > c]= 0. (3.1)

Proof. Using Lemma 3.2 below, we write

P
[∣∣Xt −Xs∣∣ > c]≤ 1

c2
E
[(
Xt −Xs

)2]= 1
c2

[
t− t1−δsδ + t1−δsδ − s]= t− s

c2
. (3.2)

�

Lemma 3.2. Let δ = ψ(1)/2 so that Lσ(1)= σ−2δ . Then

E
[(
Xt −Xs

)2 | Xs
]= t− t1−δsδ + t1−δs−1+δX2

s −X2
s . (3.3)

Proof. Using representation (2.21), we see that, with σ =√t/s,

E
[(
Xt −Xs

)2 | Xs
]= E[E[(Xt −Xs)2 | Xs,Rs,t

] | Xs]

= tE[1−Rs,t]+E
[(
σ
√
Rs,t − 1

)2]
X2
s

= t(1−Lσ(1)
)

+
(
σ2E

[
Rs,t
]− 1

)
X2
s

= t(1−Lσ(1)
)

+
(
σ2Lσ(1)− 1

)
X2
s

= t− sσ2−2δ + σ2−2δX2
s −X2

s .

(3.4)

�

Theorem 3.3. The (predictable) quadratic variation of Xt is

〈X ,X〉t = δt+ (1− δ)
∫ t

0

X2
s

s
ds, (3.5)

where δ = ψ(1)/2. Furthermore, it can be obtained as a limit,

〈X ,X〉t = lim
n→∞

n−1∑
k=0

E
[(
Xtk+1 −Xtk

)2 | Xtk
]

(3.6)

in L2, where t0 < t1 < ··· < tn is a subdivision of [0, t].

Proof. First note that Xt is a square integrable martingale on any finite interval [0,T]. In
fact, since E[X2

t ]= t, supt≤T E[X2
t ]= T .

To obtain the first statement, we show that X2
t − δt− (1− δ)

∫ t
0(X2

u/u)du is a martin-
gale, thus establishing that δt+ (1− δ)

∫ t
0(X2

s /s)ds is the predictable quadratic variation of
Xt (see [5, Theorem 4.2]).
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Now, with σ =√t/s,

E
[
X2
t |�s

]= E[t(1−Rs,t)+ σ2Rs,tX
2
s | Xs

]= t(1−Lσ(1)
)

+ σ2Lσ(1)X2
s . (3.7)

Since Lσ(1)= σ−2δ = sδt−δ , we find

E
[
X2
t |�s

]= t− t1−δsδ + t1−δs−1+δX2
s . (3.8)

It follows that

E
[

(1− δ)
∫ t

0

X2
u

u
du |�s

]

= (1− δ)
∫ s

0

X2
u

u
du+ (1− δ)

∫ t
s

(
1−u−δsδ +u−δs−1+δX2

s

)
du

= (1− δ)
∫ s

0

X2
u

u
du+ (1− δ)(t− s)− sδ(1− s−1X2

s

)(
t1−δ − s1−δ)

= (1− δ)
∫ s

0

X2
u

u
du+ (1− δ)(t− s)− sδt1−δ + s+ t1−δs−1+δX2

s −X2
s ,

E
[
X2
t − δt− (1− δ)

∫ t
0

X2
u

u
du |�s

]

= t− t1−δsδ + t1−δs−1+δX2
s − δt− (1− δ)

∫ s
0

X2
u

u
du− (1− δ)(t− s)

+ sδt1−δ − s− t1−δs−1+δX2
s +X2

s

= t− δt− (1− δ)
∫ s

0

X2
u

u
du− (1− δ)(t− s)− s+X2

s

= X2
s − δs− (1− δ)

∫ s
0

X2
u

u
du.

(3.9)

Since 〈X ,X〉t is continuous and

E
[〈X ,X〉2

t

]= δ2t2 + 2δ(1− δ)t2 + (1− δ)2E
[(∫ t

0

X2
s

s
ds
)2]

≤ δ2t2 + 2δ(1− δ)t2 + (1− δ)2t
∫ t

0

E
[
X4
s

]
s2

ds

< +∞,

(3.10)

it follows, by application of the dominated convergence theorem, that

〈X ,X〉t = lim
n→∞

n−1∑
k=0

E
[〈X ,X〉tk+1 −〈X ,X〉tk |�tk

]
(3.11)



K. Hamza and F. C. Klebaner 11

in L2, where t0 < t1 < ··· < tn is a subdivision of [0, t]. The second statement of the theo-
rem now follows from the fact that

E
[(
Xtk+1 −Xtk

)2 | Xtk
]= E[〈X ,X〉tk+1 −〈X ,X〉tk |�tk

]
. (3.12)

�

The next result states that the only continuous process that can be constructed in the
way described in Section 2 is the Brownian motion.

Theorem 3.4. The process Xt is quasi-left-continuous. It is continuous if and only if Gσ ≡
εσ−2 (i.e., Rs,t ≡ s/t), in which case Xt is a standard Brownian motion.

Proof. The quasi-left continuity of Xt immediately follows from the continuity of 〈X ,X〉t
(see [5, Theorem I.4.2, page 38]). Obviously, if Rs,t ≡ s/t so that Xt is a Brownian motion,
then it must be continuous. Conversely, if Xt is continuous, then, Itô’s formula for eiλXt

gives

eiλXt = 1 +Mt − λ2

2

∫ t
0
eiλXsd〈X ,X〉s, (3.13)

where Mt =
∫ t

0 iλe
iλXsdXs is a true martingale. In fact,

E
[∣∣〈M,M〉t

∣∣]= E
[∣∣∣∣−

∫ t
0
λ2ei2λXsd〈X ,X〉s

∣∣∣∣
]

= E
[∣∣∣∣−

∫ t
0
λ2ei2λXs

(
δds+ (1− δ)

X2
s

s
ds
)∣∣∣∣
]

≤ δλ2t+ (1− δ)λ2
∫ t

0

E
[
X2
s

]
s

ds

= δλ2t+ (1− δ)λ2t

= λ2t.

(3.14)

Taking expectations in (3.13), we obtain that θ(λ, t)= E[eiλXt ]= e−λ2t/2 must satisfy

θ(λ, t)= 1− λ2

2

[
δ
∫ t

0
θ(λ,s)ds+ (1− δ)

∫ t
0
E
[
X2
s e

iλXs
]ds
s

]

= 1− λ2

2

[
δ
∫ t

0
θ(λ,s)ds− (1− δ)

∫ t
0

∂2θ

∂λ2
(λ,s)

ds

s

]
.

(3.15)

Differentiating in t, we get that θ(λ, t) must satisfy

−λ
2

2
θ(λ, t)=−λ

2

2

[
δθ(λ, t)− 1− δ

t

∂2θ

∂λ2
(λ, t)

]
, (3.16)

that is,

−λ
2

2
=−λ

2

2

[
δ− (1− δ)

(
λ2t− 1

)]
. (3.17)
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This, of course, can only occur if δ = 1, which corresponds to Lσ(1)= σ−2 and Rs,t being
nonrandom equal to s/t. �

Xt being quasi-left-continuous, ΔXT = 0 (a.s.) for every finite predictable time T . In
particular, Xt does not have any fixed points of discontinuity. One of the aims of the
constructions given in the following section is to describe the jumps of the process Xt.

4. Explicit constructions

Before we engage in the explicit construction of the processes outlined in the previous
sections, let us observe that they fall into one of two classes according to whether or not
Gσ({1}) is nil, uniformly in σ > 1.

Indeed, if Rσ has distribution Gσ , then

Lσ(λ)= E[(Rσ)λ]= P[Rσ = 1
]

+E
[(
Rσ
)λ

, Rσ < 1
]
,

γ(σ)= P[Rσ = 1
]= lim

λ↑∞
Lσ(λ)= lim

λ↑∞
exp

(−ψ(λ) lnσ
)
.

(4.1)

That is, uniformly in σ > 1,

γ(σ)= 0⇐⇒ lim
λ↑∞

ψ(λ)= +∞. (4.2)

4.1. The case γ(σ) > 0. In this section, we apply our construction to the case where
γ(σ) = Gσ({1}) > 0. The processes thus obtained are piecewise deterministic pure jump
processes in the sense that between any two consecutive jumps, the process behaves ac-
cording to a deterministic function. Examples of such processes include the case where
Gσ is an inverse log-Poisson distribution.

The interpretation of these processes as piecewise deterministic pure jump processes
requires the computation of the infinitesimal generator.

Proposition 4.1. LetGσ be a log-convolution semigroup. Assume that γ(σ)=Gσ({1}) > 0,
γ is differentiable at 1 and limλ↓0ψ(λ)= 0. Then the infinitesimal generator of Xt on the set
of C2

0-functions is given by

A0 f (x)= 1
2
f ′′(x),

As f (x)= x

2s
f ′(x) +

−γ′(1)
2s

∫ [
f (x+ z)− f (x)

]

×
∫

(0,1)
φ
(
(
√
r− 1)x,s(1− r),z

)
G(dr)dz for s > 0,

(4.3)

where

G(dr)= lim
σ↓1

Gσ
(
dr∩ (0,1)

)
Gσ
(
(0,1)

) (4.4)

is a probability measure on (0,1), and the limit is understood in the weak sense.
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Thus the process X starts off as a Brownian motion (A0 f (x)= (1/2) f ′′(x)) and, when
in x at time s, drifts at the rate of x/(2s), and jumps at the rate of −γ′(1)/(2s). The size
of the jump from x has density

∫
(0,1)φ((

√
r − 1)x,s(1− r),z)G(dr), the mean of which is∫

(0,1)(
√
r− 1)G(dr)x (see [6, Section 4.2] for a detailed study of Markov jump processes).

In other words, while in positive territory, Xt continuously drifts upwards and has jumps
that tend to be negative. In negative region, the reverse occurs; Xt drifts downwards and
has (on average) positive jumps.

Proof. First note that the conditional moment generating function of Uσ given Uσ > 0 is

L∗σ (λ)= Lσ(λ)− γ(σ)
1− γ(σ)

(4.5)

and converges to

lim
σ↓1

L∗σ (λ)= 1 +
ψ(λ)
γ′(1)

. (4.6)

By the (Laplace) continuity theorem, if limλ↓0ψ(λ) = 0, then there exists a probability
measure on (0,1), G(dr), such that

G(dr)= lim
σ↓1

Gσ
(
dr∩ (0,1)

)
Gσ
(
(0,1)

) . (4.7)

Next, with σ =√t/s,
1

t− s
(
E
[
f
(
Xt
) | Xs = x]− f (x)

)

= 1
s

[
f (σx)γ(σ)− f (x)

σ2− 1
+

1
σ2− 1

∫
f (y)

∫
(0,1)

φ
(
σ
√
rx, t(1− r), y

)
Gσ(dr)dy

]

= 1
s

[
f (σx)γ(σ)− f (x)

σ2− 1
+

1− γ(σ)
σ2− 1

∫
f (y)

∫
(0,1)

φ
(
σ
√
rx, t(1− r), y

) Gσ(dr)
1− γ(σ)

dy
]
.

(4.8)

Letting σ decrease to 1, we see that

As f (x)= lim
t↓s

1
t− s

(
E
[
f
(
Xt
) | Xs = x]− f (x)

)

= 1
s

[
x f ′(x) + γ′(1) f (x)

2
− γ′(1)

2

∫
f (y)

∫
(0,1)

φ
(√
rx,s(1− r), y

)
G(dr)dy

]

= x

2s
f ′(x) +

−γ′(1)
2s

∫ [
f (y)− f (x)

]∫
(0,1)

φ
(√
rx,s(1− r), y

)
G(dr)dy

= x

2s
f ′(x) +

−γ′(1)
2s

∫ [
f (x+ z)− f (x)

]∫
(0,1)

φ
(
(
√
r− 1)x,s(1− r),z

)
G(dr)dz.

(4.9)

�
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Note that the domain of As can be extended to include functions that do not vanish
at infinity, such as f (x) = x2. Indeed by Theorem 3.3, gs(x) = δ + (1− δ)x2/s solves the
martingale problem for f (x)= x2.

The next proposition immediately follows from the observation that the process X
does not jump between times s and t if and only if Xu =

√
u/sXs for u∈ (s, t).

Proposition 4.2. Let Ts denote the first jump time after s > 0. Then, for any t > s,

P
[
Ts > t

]= γ(σ), (4.10)

where σ =√t/s.

4.2. The Poisson case γ(σ) = σ−c. In this case, β = 0, ν(dx) = cδ1(dx) with c = 1/(1−
e−1/2), and ψ(λ) = c(1− e−λ) (see [3, Section 1.2]). In other words, Uσ = − lnRσ has a
Poisson distribution with mean c lnσ .

The assumptions of Proposition 4.1 are clearly satisfied with γ(σ) = σ−c, γ′(1) = −c,
limσ↓1L∗σ (λ)= e−λ, and G(dr)= εe−1 (dr), so that Xt has infinitesimal generator

As f (x)= x

2s
f ′(x) +

c

2s

∫ [
f (x+ z)− f (x)

]
φ
(− x/c,s(1− e−1),z)dz. (4.11)

It jumps at the rate of c/2s with a size distributed as a Gaussian random variable with
mean −x/c and variance s(1− e−1). Figure 4.1 shows a simulation of a path of such a
process.

Furthermore, the law of the first jump time after s is given by

P
[
Ts > t

]= γ
(√

t

s

)
= sc/2

tc/2
. (4.12)

In other words, Ts is Pareto distributed (with location parameter s and scale parameter
c/2 ∼ 1.27). In particular,

E
[
Ts
]= cs

c− 2
, E

[
T2
s

]=∞. (4.13)
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4.3. The case γ(σ) = 0. We give the infinitesimal generator for functions of a specific
type, which include polynomials. But for specific cases, such as the gamma case, the gen-
erator is given for much wider class of functions.

Proposition 4.3. Assume that β = 0 so that

ψ(λ)=
∫∞

0

(
1− e−λx)ν(dx). (4.14)

Let f be a C1-function with the following property: there exist a function Nf and a (signed)
finite measure Mf such that

f
(
σe−u/2x+ σ

√
s
√

1− e−uz)=Nf (σ)
∫∞

0
e−λuMf (s,x,z,dλ), u > 0,

lim
σ↓1

Nf (σ)= 1.
(4.15)

Then, for any s > 0,

As f (x)= x

2s
f ′(x) +

1
2s

∫ [
f (x+ y)− f (x)

]∫ +∞

0
φ
((
e−ω/2− 1

)
x,s
(
1− e−ω), y)ν(dω)dy.

(4.16)

Proof. Let

Cσ f (u)= Cσ f (s,x,z,u)= f
(
σe−u/2x+ σ

√
s
√

1− e−uz) (4.17)

and t = σ2s. Then, since γ(σ)= 0, Uσ is almost surely strictly positive and

1
t− s

(
E
[
f
(
Xt
) | Xs = x]− f (x)

)

= 1
s

1
σ2− 1

∫ (
E
[
f
(
σe−Uσ /2x+

√
t
√

1− e−Uσ z
)]− f (x)

)
φ(z)dz

= 1
s

1
σ2− 1

{∫ (
E
[
Cσ f

(
Uσ
)]−Cσ f (0)

)
φ(z)dz+

(
f (σx)− f (x)

)}

= 1
s

1
σ2− 1

{∫
E
[
Nf (σ)

∫∞
0

(
e−λUσ − 1

)
Mf (dλ)

]
φ(z)dz+

(
f (σx)− f (x)

)}

= 1
s

1
σ2− 1

{
Nf (σ)

∫ ∫∞
0

(
e−ψ(λ) lnσ − 1

)
Mf (dλ)φ(z)dz+

(
f (σx)− f (x)

)}

= 1
s

1
σ + 1

{
Nf (σ) lnσ

σ − 1

∫ ∫∞
0

e−ψ(λ) lnσ − 1
lnσ

Mf (dλ)φ(z)dz+
f (σx)− f (x)

σ − 1

}
.

(4.18)
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Taking the limit as σ ↓ 1 (i.e., t ↓ s), we get

As f (x)= x

2s
f ′(x)− 1

2s

∫ ∫∞
0
ψ(λ)Mf (s,x,z,dλ)φ(z)dz. (4.19)

Since

ψ(λ)=
∫∞

0

(
1− e−λω)ν(dω),

As f (x)= x

2s
f ′(x)− 1

2s

∫ ∫∞
0

[∫∞
0

(
1− e−λω)ν(dω)

]
Mf (s,x,z,dλ)φ(z)dz

= x

2s
f ′(x)− 1

2s

∫ ∫∞
0

[∫∞
0

(
1− e−λω)Mf (s,x,z,dλ)

]
ν(dω)φ(z)dz

= x

2s
f ′(x) +

1
2s

∫ ∫∞
0

[
f
(
e−ω/2x+

√
s
√

1− e−ωz)− f (x)
]
ν(dω)φ(z)dz,

(4.20)

and the proof is completed by a change of variables in z. �

Lemma 4.4. Let f (x)= xn, then

f
(
σe−u/2x+ σ

√
s
√

1− e−uz)= σn
∫∞

0
e−λuMf (s,x,z,dλ), (4.21)

where

Mf (s,x,z,dλ)=
n∑
k=0

n−k∑
j=0

n!
k! j!(n− k− j)!

(−1) jxks(n−k)/2zn−k
(
εk/2∗mj

)
(dλ) (4.22)

and mj(dλ) is the j-order convolution of the probability measure

m(dλ)= 1
2
√
π

+∞∑
n=1

Γ(n− 1/2)
n!

εn(dλ). (4.23)

Proof. First, write the Taylor series of the (analytic on (0,1)) function 1−√1− x,

1−√1− x = 1
2

+∞∑
n=1

Γ(n− 1/2)
n!Γ(1/2)

xn. (4.24)

It immediately follows that

1−√1− e−u = 1
2

+∞∑
n=1

Γ(n− 1/2)
n!Γ(1/2)

e−nu =
∫∞

0
e−λum(dλ), (4.25)
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where m(dλ)= (1/2
√
π)
∑+∞

n=1(Γ(n− 1/2)/n!)εn(dλ) is a probability measure. Now,

f
(
σe−u/2x+ σ

√
s
√

1− e−uz)

= σn
n∑
k=0

(
n

k

)
e−ku/2xks(n−k)/2(1− e−u)(n−k)/2zn−k

= σn
n∑
k=0

(
n

k

)
e−ku/2xks(n−k)/2[1− (1−√1− e−u)]n−kzn−k

= σn
n∑
k=0

n−k∑
j=0

n!
k! j!(n− k− j)!

(−1) jxks(n−k)/2zn−ke−ku/2
(
1−√1− e−u) j .

(4.26)

The proof is ended by observing that

e−ku/2
(
1−√1− e−u) j =

∫∞
0
e−λu

(
εk/2∗mj

)
(dλ). (4.27)

�

The following theorem is now proven.

Theorem 4.5. Assume that β = 0. For any polynomial f and any s > 0,

As f (x)

= x

2s
f ′(x) +

1
2s

∫ [
f (x+ y)− f (x)

]∫ +∞

0
φ
((
e−ω/2− 1

)
x,s
(
1− e−ω), y)ν(dω)dy.

(4.28)

4.4. The gamma case γ(σ)= 0. Here, β = 0, ν(dx)= ax−1e−bxdxwith a=1/ ln(1+(1/2b))
and ψ(λ)= a ln(1 + (λ/b)) (see [3, Section 1.2]), that is,Uσ has a gamma distribution with
density

hσ(u)= ba lnσ

Γ(a lnσ)
ua lnσ−1e−bu, u > 0, (4.29)

and Rσ has an inverse log-gamma distribution with density

gσ(r)= ba lnσ

Γ(a lnσ)
(− lnr)a lnσ−1rb−1, 0 < r < 1. (4.30)

See Figure 4.2 for a simulation of such a process.
In this case, it is possible to compute the generator for a much wider class of functions.

Proposition 4.6. Let Gσ be the log-convolution semigroup of the inverse log-gamma dis-
tributions. Then (4.28) holds for any bounded function with bounded first derivative.

Proof. In the proof of Proposition 4.3, we write

1
t− s

(
E
[
f
(
Xt
) | Xs = x]− f (x)

)= 1
s

1
σ2− 1

∫ (
E
[
Cσ f

(
Uσ
)]− f (x)

)
φ(z)dz, (4.31)
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where σ = √t/s. Denote by θ(u) the quantity e−u/2x +
√
s
√

1− e−uz. Then, inserting
E[C1 f (Uσ)]= E[ f (θ(Uσ))], we get

1
t− s

(
E
[
f
(
Xt
) | Xs = x]− f (x)

)

= 1
s

1
σ + 1

∫ {
E
[
Cσ f

(
Uσ
)]−E[C1 f

(
Uσ
)]

σ − 1
+
E
[
C1 f (Uσ)

]− f (x)
σ − 1

}
φ(z)dz.

(4.32)

Since

Cσ f
(
Uσ
)−C1 f

(
Uσ
)

σ − 1
= f

(
σθ
(
Uσ
))− f

(
θ
(
Uσ
))

σ − 1
= θ(Uσ

)
f ′
(
ησ
)
, (4.33)

for some ησ between θ(Uσ) and σθ(Uσ). θ and f ′ being bounded, we obtain that

lim
σ↓1

∫
E
[
Cσ f

(
Uσ
)]−E[C1 f

(
Uσ
)]

σ − 1
φ(z)dz = x f ′(x). (4.34)

To compute the limit of the second term in (4.32), we use Lemma 4.7, which shows that

lim
σ↓1

∫
E
[
C1 f

(
Uσ
)]− f (x)

σ − 1
φ(z)dz

= a
∫ ∫∞

0

f
(
e−u/2x+

√
s
√

1− e−uz)− f (x)
u

e−buduφ(z)dz

=
∫ [

f (x+ y)− f (x)
]∫∞

0
φ
(
x
(
e−u/2− 1

)
,s
(
1− e−u), y)ae−bu

u
dudy.

(4.35)

�

Note that since ν((0,∞)) = +∞,
∫∞

0 φ(x(e−u/2 − 1),s(1− e−u), y)ν(du) cannot be re-
scaled to produce a density for the jumps of the process.
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Lemma 4.7. Let Vp have a gamma distribution with density

hp(v)= bp

Γ(p)
vp−1e−bv, v > 0. (4.36)

Let g be such that g(v)/v is bounded. Then

lim
p↓0

1
p
E
[
g
(
Vp
)]=

∫∞
0

g(v)
v

e−bvdv. (4.37)

Proof. First observe that

1
p
E
[
g
(
Vp
)]= 1

b
E
[
g
(
Vp+1

)
Vp+1

]
. (4.38)

Taking the limit as p ↓ 0, we obtain by dominated convergence

lim
p↓0

1
p
E
[
g(Vp)

]= 1
b
E
[
g(V1)
V1

]
=
∫∞

0

g(v)
v

e−bvdv. (4.39)

�
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