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1. Introduction

Over the last few years, many researchers have focused their research on the study of bound-
ary value problems for nonlinear differential and integral equations defined on an infinite in-
terval, and various theoretical results have been obtained [1–8]. In [4], the existence of multi-
ple positive solutions of a boundary value problem (BVP) for nth-order nonlinear impulsive
integral-differential equations defined on an infinite interval in a Banach space is obtained by
means of the fixed-point index theory of completely continuous operators. However, the result
requires the use of the measures of noncompactness condition α(f(t, Pr, . . . , Pr)) = 0 (where
Pr = {x ∈ P : ‖x‖ ≤ r}) and the normal and solid cone P in a real Banach space. In [6], by us-
ing the Mönch fixed-point theorem, a class of infinite boundary value problems for first-order
impulsive differential equations in a Banach space is considered and the existence of positive
solutions is obtained, but the solutions are limited to bounded solutions only.

To generalize and further develop the existing results in this field, in this paper we dis-
cuss the existence of unbounded solutions for a class of nth-order nonlinear differential equa-
tions defined on an infinite interval in a Banach space by using the Mönch fixed-point theorem
under certain conditions weaker than those in [4]. The boundary value problemin question is
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as follows:

u(n)(t) = f(t, u(t), u′(t), . . . , u(n−1)(t)),

u(i)(0) = βiu
i+1(0), i = 0, 1, . . . , n − 2

u(n−1)(+∞) = βu(n−1)(0),

(1.1)

where J = [0,+∞), u(n−1)(+∞) = limt→+∞u(n−1)(t), β > 1, βi > 0 (i = 0, 1, . . . , n − 2), f ∈ C[J × E ×
· · · × E, E], in which (E, ‖·‖) is a real Banach space.

Let C[J, E] be the space of all continuous functions u : J → E, and let L[J, E] be the
Banach space of all strongly measurable functions u : J → E with

∫
J‖u(t)‖dt < +∞, equipped

with the norm ‖u‖1 =
∫
J‖u(t)‖dt. Let Ce[J, E] = {u ∈ C[J, E] : e−t‖u(t)‖ → 0 for t → +∞}, then

it is clear that Ce[J, E] is a Banach space with norm

‖u‖e = sup
t∈J

{
e−t

∥∥u(t)
∥∥}. (1.2)

Let Dn−1
e [J, E] = {u ∈ Cn−1[J, E] : limt→+∞e−t‖u(i)(t

)‖ −→ 0, i = 0, 1, . . . , n − 1}, then it is also
easy to see that Dn−1

e [J, E] is a Banach space with norm

‖u‖D = max
{‖u‖e, ‖u′‖e, . . . ,

∥∥u(n−1)∥∥
e

}
. (1.3)

Let P be a cone of the Banach space E, Ce[J, P] = {u ∈ Ce[J, E] : u(t) ≥ θ, t ∈ J}, and
Dn−1

e [J, P] = {u ∈ Dn−1
e [J, E] : u(i)(t) ≥ θ, t ∈ J, i = 0, 1, . . . , n − 1}, where θ denotes the,

zero element of E. Then, it is obvious that Ce[J, P] is a cone in space Ce[J, E], and Dn−1
e [J, P] is

a cone in space Dn−1
e [J, E].

Definition 1.1. A function u ∈ Dn−1
e [J, P]∩Cn[J, E] is called a nonnegative solution of BVP (1.1)

if u(t) satisfies (1.1) for t ∈ J .

The rest of the paper is organized as follows. In Section 2, we give some lemmas which
provide a theoretical basis for the proof of our main results. The main theorem is presented
and proved in Section 3. In Section 4, an example is given to demonstrate the application of
our results.

2. Some lemmas

Here we first list some assumptions to be used throughout the rest of the paper.
(H1) There exist a(t) and bi(t) ∈ C[J,R+] such that a(t), etbi(t) ∈ L[J,R+] (i =

0, 1, 2, . . . , n − 1) and

‖f(t, x0, x1, . . . , xn−1‖ ≤ a(t) +
n−1∑

i=0

bi(t)‖xi‖ ∀t ∈ J, xi ∈ E,

n−1∑

i=0

b∗i <
β − 1
β∗ + β′

β∗ = max0≤j≤n−2

{
n−2∏

i=j

βi

}

, b∗i =
∫+∞

0
etbi(t)dt < +∞, i = 0, 1, 2, . . . , n − 1.

(2.1)
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(H2) There exists li(t) ∈ C[J,R+] such that etli(t) ∈ L[J,R+] (i = 0, 1, . . . , n − 1),

α
(
f
(
t,D0, D1, . . . , Dn−1

)) ≤
n−1∑

i=0

li(t)α
(
Di

) ∀t ∈ J, Di ⊂ E,

2
(
β∗ + β

)

β − 1

n−1∑

i=0

li < 1, li =
∫+∞

0
etli(t)dt < +∞, i = 0, 1, . . . , n − 1,

(2.2)

where α(·) denotes the Kuratowski measure of noncompactness in E. For details on the
definition and properties of the measure of noncompactness, the reader is referred to [9, 10].

In the following, we give various lemmas which are to be used for the proof of the main
results to be presented in Section 3.

Lemma 2.1 (see [4]). Let (H1) be satisfied. Then u ∈ Dn−1
e [J, P] ∩ Cn[J, E] is a solution of

BVP (1.1) if and only if u ∈ Dn−1
e [J, P] is a solution of the following integral equation:

u(t) =
1

β − 1

[
n−2∑

j=0

(
n−2∏

i=j

βi

)
tj

j!
+

tn−1

(n − 1)!

]∫+∞

0
f
(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds

+
1

(n − 1)!

∫ t

0
(t − s)n−1f

(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds.

(2.3)

Proof. If u ∈ Dn−1
e [J, P]∩Cn[J, E] is a solution of BVP (1.1), then by condition (H1)we have the

convergence of the infinite integral

∫+∞

0
f
(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds. (2.4)

Integrating the first equation in (1.1) from 0 to t, we have

u(n−1)(t) − u(n−1)(0) =
∫ t

0
f
(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds. (2.5)

By virtue of u(n−1)(+∞) = βu(n−1)(0), let t → +∞ in (2.5), we get

u(n−1)(0) =
1

β − 1

∫+∞

0
f
(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds. (2.6)

From the second equation in (1.1), we have

u(i)(0) = βiu
(i+1)(0) = βiβi+1u

(i+2)(0) = βiβi+1βn−2u(n−1)(0) =
n−2∏

j=i

βju
(n−1)(0). (2.7)
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Substituting (2.6) into (2.7) yields for i = 0, 1, . . . , n − 2,

u(i)(0) =
1

β − 1

n−2∏

j=i

βj

∫+∞

0
f
(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds. (2.8)

From (2.5) and (2.6), we have

u(n−1)(t) =
1

β − 1

∫+∞

0
f
(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds +

∫ t

0
f
(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds.

(2.9)

Integrating (2.9) from 0 to t and using (2.8) for i = n − 2, we have

u(n−2)(t)

=u(n−2)(0)+
t

β − 1

∫+∞

0
f
(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds+

∫ t

0
ds

∫ s

0
f
(
w,u(w), . . . , u(n−1)(w)

)
dw

=
(
βn−2
β − 1

+
t

β − 1

)∫+∞

0
f
(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds+

∫ t

0
(t − s)f

(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds.

(2.10)

It is not difficult to show by mathematical induction that u satisfies (2.3). Conversely, if u ∈
Dn−1

e [J, P] is a solution of (2.3), then direct differentiation of (2.3) gives

u(i)(t) =
1

β − 1

[
n−2∑

j=i

(
n−2∏

s=j

βs

)
tj−i

(j − i)!
+

tn−i−1

(n − i − 1)!

]∫+∞

0
f
(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds

+
1

(n − i − 1)!

∫ t

0
(t − s)n−i−1f

(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds, i = 0, 1, . . . , n − 2,

(2.11)

u(n−1)(t) =
1

β − 1

∫+∞

0
f
(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds +

∫ t

0
f
(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds,

u(n)(t) = f
(
t, u(t), u′(t), . . . , u(n)(t)

) ∀t ∈ J.

(2.12)

Consequently, u ∈ Cn[J, E], and by (2.11) and (2.12), it is easy to see that u(t) satisfies (1.1).
The proof of Lemma 2.1 is completed.
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We now consider an operator A defined by

(Au)(t) =
1

β − 1

[
n−2∑

j=0

(
n−2∏

s=j

βs

)
tj

j!
+

tn−1

(n − 1)!

]∫+∞

0
f
(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds

+
1

(n − 1)!

∫ t

0
(t − s)n−1f

(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds ∀t ∈ J.

(2.13)

By Lemma 2.1, u ∈ Dn−1
e [J, P]∩Cn[J, E] is a solution of BVP (1.1) if and only if u is a fixed point

of the operator A in u ∈ Dn−1
e [J, P].

Lemma 2.2 (see [10, 11, 13]). Let E be a Banach space, let J0 = [a, b] be a finite interval, and let
H ⊂ C[J0, E] be a countable set. Assume that there exists ρ ∈ L[J0,R+] such that ‖u(t)‖ ≤ ρ(t), t ∈
J0, u ∈ H. Then α({u(t) : u ∈ H}) ∈ L[J0,R+] and

α

({∫

J0

u(t)dt : u ∈ H

})
≤ 2

∫

J0

α
({

u(t) : u ∈ H
})

dt. (2.14)

Lemma 2.3. Let E be a Banach space, and H ⊂ C[J, E]. If H is a countable set and there exists
ρ ∈ L[J,R+] such that ‖u(t)‖ ≤ ρ(t), t ∈ J, u ∈ H, then α({u(t) : u ∈ H}) is integrable on J , and

α

({∫+∞

0
u(t)dt : u ∈ H

})
≤ 2

∫+∞

0
α
({

u(t) : u ∈ H
})

dt. (2.15)

Proof. By ‖u(t)‖ ≤ ρ(t) for any u ∈ H and t ∈ J , we get u(t) ∈ L[J, E] for all u ∈ H and
α({u(t) : u ∈ H}) ≤ 2ρ(t). As ρ(t) ∈ L[J,R+], α({u(t) : u ∈ H}) is integrable in J . For any ε > 0,
from ρ(t) ∈ L[J,R+], there exists T0 > 0 such that

∫+∞
t ρ(s)ds < ε for any t > T0. So for any t > T0

and u ∈ H, we have

∥∥∥∥

∫ t

0
u(s)ds −

∫+∞

0
u(s)ds

∥∥∥∥ =
∥∥∥∥

∫+∞

t

u(s)ds
∥∥∥∥ <

∫+∞

t

ρ(s)ds < ε. (2.16)

Let

S(t) =
{∫ t

0
u(s)ds : u ∈ H

}
, T =

{∫+∞

0
u(s)ds : u ∈ H

}
. (2.17)

By (2.16) for any t > T0 and u ∈ H, we obtain

d

(∫ t

0
u(s)ds, T

)
= inf

u∈H

{∥∥∥∥

∫ t

0
u(s)ds −

∫+∞

0
u(s)ds

∥∥∥∥

}
≤
∥∥∥∥

∫ t

0
u(s)ds −

∫+∞

0
u(s)ds

∥∥∥∥ < ε,

(2.18)
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where d denotes the distance of a point to a set. Using the same method, we have

d

(∫+∞

0
u(s)ds, S(t)

)
< ε, t > T0, u ∈ H. (2.19)

So

sup
u∈H

d

(∫ t

0
u(s)ds, T

)
≤ ε, sup

u∈H
d

(∫+∞

0
u(s)ds, S(t)

)
≤ ε. (2.20)

Hence, for any t > T0, we have

dh

({∫ t

0
u(s)ds : u ∈ H

}
,

{∫+∞

0
u(s)ds : u ∈ H

})

= max
{
sup
u∈H

d

(∫ t

0
u(s)ds, T

)
, sup
u∈H

d

(∫+∞

0
u(s)ds, S(t)

)}
≤ ε,

(2.21)

where dh(D1, D2) denotes the Hausdorff distance of the sets D1 and D2, that is,

dh

(
D1, D2

)
= max

{
sup
x∈D1

d
(
x,D2

)
, sup
x∈D2

d
(
x,D1

)
}
. (2.22)

So, by (2.21), we obtain for any t > T0,

∣∣∣∣α
({∫ t

0
u(s)ds : u ∈ H

})
− α

({∫+∞

0
u(s)ds : u ∈ H

})∣∣∣∣

≤ 2dh

({∫ t

0
u(s)ds : u ∈ H

}
,

{∫+∞

0
u(s)ds : u ∈ H

})
≤ 2ε.

(2.23)

Hence, we have

lim
t→+∞

α

({∫ t

0
u(s)ds : u ∈ H

})
= α

({∫+∞

0
u(s)ds : u ∈ H

})
. (2.24)

By Lemma 2.3 for any t ∈ [0,+∞), we have

α

({∫ t

0
u(s)ds : u ∈ H

})
≤ 2

∫ t

0
α
({

u(s) : u ∈ H
})

ds. (2.25)

Hence, from (2.24) and (2.25), we have

α

({∫+∞

0
u(s)ds : u ∈ H

})

= lim
t→+∞

α

({∫ t

0
u(s)ds : u ∈ H

})
≤ 2 lim

t→+∞

∫ t

0
α
({

u(s) : u ∈ H
})

ds=2
∫+∞

0
α
({

u(s) : u ∈ H
})

ds.

(2.26)

Therefore, (2.15) is satisfied. The proof of Lemma 2.3 is completed.
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Remark 2.4. Lemma 2.3 generalizes Lemma 2.2 from a finite interval to an infinite interval, and
it plays an important role in studying the differential equations defined on an infinite interval.
It should be emphasized that Lemma 2.3 has no counterpart in the existing literature.

Lemma 2.5 (see [2, Lemma 7]). Let (H1) be satisfied, and let V = {um} ⊂ Dn−1
e [J, E] be a countable

bounded set. Then

αD(AV ) = max
{
sup
t∈J

[
e−tα

(
(AV )(i)(t)

)]
: i = 0, 1, . . . , n − 1

}
, (2.27)

where αD(·) denotes the Kuratowski measure of noncompactness inDn−1
e [J, E], (AV )(i) =

{(
Aum

)(i)(t) :
um ∈ V, m = 1, 2, . . .

} (
i = 0, 1, 2, . . . , n − 1

)
.

Lemma 2.6. If condition (H1) is satisfied, then the operator A is continuous and

A
(
Dn−1

e [J, P]
) ⊂ Dn−1

e [J, P]. (2.28)

Proof. For any u ∈ Dn−1
e [J, P], we have

(Au)(t) =
1

β − 1

[
n−2∑

j=0

(
n−2∏

s=j

βs

)
tj

j!
+

tn−1

(n − 1)!

]∫+∞

0
f
(
(s), u(s), u′(s), . . . , u(n−1)(s)

)
ds

+
1

(n − 1)!

∫ t

0
(t − s)n−1f

(
s, u(s), u′(s), . . . , u(n−1)(s)

)
ds,

(2.29)

(Au)(i)(t) =
1

β − 1

[
n−2∑

j=i

(
n−2∏

s=j

βs

)
tj−i

(j − i)!
+

tn−i−1

(n − i − 1)!

]∫+∞

0
f
(
s, u(s), . . . , u(n−1)(s)

)
ds

+
1

(n − i − 1)!

∫ t

0
(t − s)n−i−1f

(
(s), u(s), . . . , u(n−1)(s)

)
ds, i = 1, . . . , n − 1,

(Au)(n)(t) = f
(
t, u(t), u′(t), . . . , u(n−1)(t)

)
.

(2.30)

So, by (2.30) and condition (H1) for i = 0, 1, . . . , n − 1, we have

e−t
∥∥(Au)(i)(t)

∥∥ ≤ β∗ + β

β − 1
e−t

n−1∑

j=i

tj−i

(j − i)!

∫+∞

0

∥∥f
(
(s), u(s), u′(s), . . . , u(n−1)(s)

)∥∥ds

≤ β∗ + β

β − 1
e−t

n−1∑

j=i

tj−i

(j − i)!

(

a∗ +
n−1∑

i=0

b∗i ‖u‖D
)

,

(2.31)

where a∗ =
∫+∞
0 a(t)dt. Hence, limt→+∞e−t‖(Au)(i)(t)‖ = 0. Therefore, (2.28) is satisfied.
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Now we show that the operator A is continuous. Let um, u ∈ Dn−1
e [J, P], ‖um − u‖D →

0. Then r = supm‖um‖D < +∞ and ‖u‖ ≤ r. By the integrability of a(t) and etbi(t)
(i = 0, 1, . . . , n − 1) for any ε > 0, there exists T > 0 such that

β∗ + β

β − 1

[
2
∫+∞

T

a(t)dt + 2rn
∫+∞

T

etbi(t)dt
]
<

ε

2
. (2.32)

On the other hand, by the continuity of f , it is easy to see that

∫T

0

∥∥f
(
s, um(s), . . . , u

(n−1)
m (s)

) − f
(
s, u(s), . . . , u(n−1)(s)

)∥∥ds −→ 0, m −→ +∞. (2.33)

Hence, for the above ε > 0, there exists a natural number m0 such that for anym > m0,

β∗ + β

β − 1

∫T

0

∥∥f
(
s, um(s), . . . , u

(n−1)
m (s)

) − f
(
s, u(s), . . . , u(n−1)(s)

)∥∥ds <
ε

2
. (2.34)

Thus, from (2.13), (2.32), (2.34), and (H1) for anym > m0, we obtain

∥∥Aum −Au
∥∥
D ≤ β∗ + β

β − 1

∫+∞

0

∥∥f
(
s, um(s), . . . , u

(n−1)
m (s)

) − f
(
s, u(s), . . . , u(n−1)(s)

)∥∥ds

≤ ε

2
+
β∗ + β

β − 1

[

2
∫+∞

T

a(t)dt +
n−1∑

i=0

(∥∥um

∥∥
D + ‖u‖D

)
∫+∞

T

etbi(t)dt

]

≤ ε

2
+
β∗ + β

β − 1

[
2
∫+∞

T

a(t)dt + 2rn
∫+∞

T

etbi(t)dt
]
< ε.

(2.35)

Therefore, the continuity of A is proved. So, the proof of Lemma 2.6 is completed.

Lemma 2.7 ([10, 12] (Mönch)). Let V be a closed and convex subset of E and x0 ∈ V . Assume that
operator A : V → V has the following property:

C ⊂ V countable, C ⊂ co
({

x0
} ∪A(V )

)
=⇒ V is relatively compact. (2.36)

Then A has a fixed point in V .

3. Main result

In this section, we present the main results we obtained.

Theorem 3.1. Suppose (H1) and (H2) hold. Then BVP (1.1) has at least one nonnegative solution.

Proof. Choose

R > a∗
(

β − 1
β∗ + β

−
n−1∑

i=0

b∗i

)−1
, (3.1)
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and let V = {u ∈ Dn−1
e [J, P] : ‖u‖D ≤ R}. Obviously, V is a bounded convex closed set. For any

u ∈ V , by (2.28), (H1) and the definition of the norm ‖·‖e, we have

∥∥(Au)(i)
∥∥
e = sup

t∈J

{
e−t

∥∥(Au)(i)(t)
∥∥} ≤ β∗ + β

β − 1

(

a∗ +
n−1∑

j=0

b∗j ‖u‖D
)

≤ R, i = 0, 1, . . . , n − 1,

(3.2)

from which and the definition of the norm ‖·‖D, we obtain

∥∥Au
∥∥
D = max

{∥∥(Au)(i)
∥∥
e : 0 ≤ i ≤ n − 1

} ≤ R. (3.3)

Therefore, by Lemma 2.6, we conclude that A is a continuous operator from V to V .
Next, we prove that C is a relatively compact set if C ⊂ V is a countable set satisfying

C ⊂ co({u} ∪AC) for some u ∈ V . From this and the properties of the Kuratowski measure of
noncompactness in Dn−1

e [J, E], we have

αD(C) ≤ αD(AC). (3.4)

On the other hand, by (2.28), Lemmas 2.2−2.5, and (H2) for any t ∈ J and 0 ≤ i ≤ n−1, we have

e−tα
(
(AC)(i)(t)

) ≤ β∗ + β

β − 1
2
∫+∞

0
α
(
f
(
s, C(s), C′(s), . . . , C(n−1)(s)

))
ds

≤ 2
(
β∗ + β

)

β − 1

n−1∑

j=0

ljαD(C).
(3.5)

Thus, by (3.4), (3.5), and Lemma 2.5, we get

αD(C) ≤ αD(AC) ≤
[
2
(
β∗ + β

)

β − 1

n−1∑

i=0

li

]

αD(C). (3.6)

Hence, by (H2), we have αD(C) = 0, that is, C is a relatively compact set in Dn−1
e [J, E]. There-

fore, by Lemma 2.7, we conclude that A has at least one fixed point in V ⊂ Dn−1
e [J, P], that is,

BVP (1.1) has at least one solution in Dn−1
e [J, P] ∩ Cn[J, E].

4. An example

Example 4.1. Consider the following boundary value problem for a second-order differential
equation defined on an infinite interval:

u′′
n(t) = e−t + e−14tun(t) + e−16tu′

n+1(t), t ∈ J,

un(0) = u′
n+1(0),

u′
n(+∞) = 2u′

n(0), n = 1, 2, 3, . . . .

(4.1)
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5. Conclusion

BVP (4.1) has at least one nonnegative solution.

Proof. Let

E = l1 =

{

u =
(
u1, u2, . . . , un, . . .

)
:

∞∑

n=0

∥∥un

∥∥ < ∞
}

(5.1)

with norm ‖u‖ =
∑∞

n=0‖un‖. P = {u = (u1, u2, . . . , un, . . .) ∈ l1 : un ≥ 0, n = 1, 2, . . .} is a cone in
a Banach space E and BVP (4.1) is in the form of BVP (1.1) in E with n = 2. In this situation,
J = [0,∞)u = (u1, . . . , un, . . .), v = (v1, . . . , vn, . . .), and f = (f1, . . . , fn, . . .) in which

fn(t, u, v) = e−t + e−14tun(t) + e−16tu′
n+1(t). (5.2)

It is clear that f ∈ C[J × E × E, E]. For any t ∈ J , u, v ∈ P , we have

∣∣fn(t, u, v)
∣∣ ≤ e−t + e−14tun(t) + e−16tu′

n+1(t). (5.3)

So we get

∥∥f(t, u, v)
∥∥ ≤ a(t) + b0(t)‖u‖ + b1(t)‖v‖, (5.4)

where a0(t) = e−t, b0(t) = e−14t, b1(t) = e−16t. From (4.1) and (5.3), we have

a∗ =
∫+∞

0
e−tdt = 1, b∗0 =

∫+∞

0
ete−14tdt =

1
13

,

b∗1 =
∫+∞

0
ete−16tdt =

1
15

, β∗ = β0 = 1.

(5.5)

So, we have

β − 1
β∗ + β

=
2 − 1
1 + 2

=
1
3
>

1
13

+
1
15

= b∗0 + b∗1. (5.6)

Hence, the condition (H1)is satisfied. By (5.3) for any bounded sets D1, D2 ⊂ l1, we get

α
(
f
(
t,D1, D2

)) ≤ l1(t)α
(
D1

)
+ l2(t)α

(
D2

)
, (5.7)

where l1(t) = e−14t, l2(t) = e−16t. So

l1 =
∫+∞

0
etl1(t)dt =

1
13

< +∞, l2 =
∫+∞

0
etl2(t)dt =

1
15

< +∞,

2
(
β∗ + β

)

β − 1
(
l1 + l2

)
=
(

1
13

+
1
15

)
× 6 < 1.

(5.8)

Hence, the condition (H2) is satisfied. Therefore, our conclusion follows from Theorem 3.1.
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