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1. Introduction

Suppose the value of a portfolio (π(t), S0(t)) is given by

X
(π)
x (t) = x + π(t)S(t) + S0(t), (1.1)

where x is the initial capital, S(t) is a semimartingle price process of a risky asset, π(t) is the
number of risky assets held at time t, and S0(t) is the amount invested in the risk-free asset at
time t. Then, the cumulative cost at time t is given by

P(t) = X
(π)
x (t) −

∫ t

0
π(u−)dS(u). (1.2)

If P(t) = p-constant for all t, then the portfolio strategies (π(t), S0(t)) is called self-financing.
A contingent claimwith expiration date T is a nonnegative FT -measurable random variable G
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that represents the time T payoff from seller to buyer. Suppose that for a contingent claim G

there exists a self-financing strategy such that X(π)
x (T) = G, that is,

p +
∫T

0
π(u)dS(u) = G. (1.3)

Then, p is the price of G in the complete market, that is,

p = EQ[G], (1.4)

where Q is any martingale measure equivalent to P on the probability space (Ω,Ft, P).
In an incomplete market, an exact replication of a contingent claim is not always

possible. One of the approaches to solve the replicating problems in an incomplete market
is the utility indifference pricing. See, for example, Grasselli and Hurd [1] for the case
of stochastic volatility model, Hodges and Neuberger [2] for the financial model with
constraints, and Takino [3] for model with incomplete information. The utility indifference
price p of a claimG is the initial payment thatmakes the seller of the contract utility indifferent
to the two following alternatives: either selling the contract with initial payment p and with
the obligation to pay out G at time T or not selling the contract and hence receiving no initial
payment.

Recently, several papers discuss risk measure pricing rather than utility pricing in
incomplete markets. Some papers related to risk measure pricing are the following: Xu [4]
propose risk measure pricing and hedging in incomplete markets; Barrieu and El Karoui [5]
study a minimization problem for risk measures subject to dynamic hedging; Klöppel and
Schweizer [6] study the indifference pricing of a payoff with a minus dynamic convex risk
measure. See also the references in these papers.

In our paper, we study a pricing formula based on the risk indifference principle
in a jump-diffusion market. The same problem was studied by Øksendal and Sulem [7]
with the restriction to Markov controls. So the problem is solved by using the Hamilton-
Jacobi-Bellman equation. In our paper, the control process is required to be adapted to
a given subfiltration of the filtration generated by the underlying Lévy processes. This
makes the control problem non-Markovian. Within the non-Markovian setting, the dynamic
programming cannot be used. Here we use the maximum principle approach to find the
solution for our problem.

The paper is organized as follows. In Section 2, we will implement the option pricing
method in an incomplete market. In Section 3, we present our problem in a jump-diffusion
market. In Section 4, we use a maximum principle for a stochastic differential game to
find the relation between the optimal controls of the stochastic differential game and of
a corresponding stochastic control problem. Using this result, we derive the relationship
between the two value functions of the two problems above, and then find the formulas for
the risk indifference prices for the seller and the buyer.

2. Statement of the problem

Assume that a filtered probability space (Ω,F, {Ft}0≤t≤T , P) is given.

Definition 2.1. A nonnegative random variable G on (Ω,Ft, P) is called a European contingent
claim.
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From now on, we consider a European-type option whose payoff at time t is some
nonnegative random variable G = g(S(t)). In the rest of the paper, we will identify a
contingent claim with its payoff function g.

Let F be the space of all equivalence classes of real-valued random variables defined
on Ω.

Definition 2.2 (see [8, 9]). A convex risk measure ρ : F → R ∪ {∞} is a mapping satisfying the
following properties, for X,Y ∈ F:

(i) (convexity)

ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ), λ ∈ (0, 1); (2.1)

(ii) (monotonicity) if X ≤ Y , then ρ(X) ≥ ρ(Y ).

If an investor sells a liability to pay out the amount g(S(T)) at time T and receives an
initial payment p for such a contract, then the minimal risk involved for the seller is

ΦG(x + p) = inf
π∈P

ρ
(
X

(π)
x+p(T) − g(S(T))

)
, (2.2)

where P is the set of self-financing strategies such that X(π)
x (t) ≥ c, for some finite constant c

and for 0 ≤ t ≤ T .
If the investor has not issued a claim (and hence no initial payment is received), then

the minimal risk for the investor is

Φ0(x) = inf
π∈P

ρ
(
X

(π)
x (T)

)
. (2.3)

Definition 2.3. The seller’s risk indifference price, p = psellerrisk , of the claim G is the solution p of
the equation

ΦG(x + p) = Φ0(x). (2.4)

Thus, psellerrisk is the initial payment p that makes an investor risk indifferent between selling the
contract with liability payoff G and not selling the contract.

In view of the general representation formula for convex risk measures (see [10]), we
will assume that the risk measure ρ, which we consider, is of the following type.

Theorem 2.4 (representation theorem [8, 9]). A map ρ : F → R is a convex risk measure if
and only if there exists a family L of measures Q � P on FT and a convex “penalty” function
ζ : L → (−∞,+∞) with infQ∈Lζ(Q) = 0 such that

ρ(X) = sup
Q∈L

{
EQ[−X] − ζ(Q)

}
, X ∈ F. (2.5)
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By this representation, we see that choosing a risk measure ρ is equivalent to choosing
the family L of measures and the penalty function ζ.

Using the representation (2.5), we can write (2.2) and (2.3) as follows:

ΦG(x + p) = inf
π∈P

(
sup
Q∈L

{
EQ

[ −X
(π)
x+p(T) + g(S(t))

] − ζ(Q)
})

, (2.6)

Φ0(x) = inf
π∈P

(
sup
Q∈L

{
EQ

[ −X
(π)
x (T)

] − ζ(Q)
})

, (2.7)

for a given penalty function ζ.
Thus, the problem of finding the risk indifference price p = psellerrisk given by (2.4)

has turned into two stochastic differential game problems (2.6) and (2.7). In the complete
information, Markovian setting this problem was solved in [7] where the authors use
Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations and PDEs to find the solution. In our
paper, the corresponding partial information problem is considered by means of a maximum
principle of differential games for SDEs.

3. The setup model

Suppose in a financial market, there are two investment possibilities:
(i) a bond with unit price S0(t) = 1, t ∈ [0, T];
(ii) a stock with price dynamics, for t ∈ [0, T],

dS(t)S(t−)
[
α(t)dt + σ(t)dBt +

∫
R0

γ(t, z)Ñ(dt, dz)
]
,

S(0) = s > 0.
(3.1)

Here Bt is a Brownian motion and Ñ(dt, dz) = N(dt, dz)− ν(dz)dt is a compensated Poisson
randommeasure with Lévy measure ν. The processes α(t), σ(t), and γ(t, z) are Ft-predictable
processes such that γ(t, z) > −1, for a.s. t, z, and

E

[∫T

0

{
|α(s)| + σ2(s) +

∫
R0

| log(1 + γ(s, z))|2ν(dz)
}
ds

]
< ∞ a.s., (3.2)

for all T ≥ 0.
Let Et ⊆ Ft be a given subfiltration. Denote by π(t), t ≥ 0, the fraction of wealth

invested in S(t) based on the partial market information Et ⊆ Ft being available at time
t. Thus, we impose on π(t) to be Et-predictable. Then, the total wealth X(π)(t) with initial
wealth x is given by the SDE

dX(π)(t) = π(t−)S(t−)
[
α(t)dt + σ(t)dBt +

∫
R0

γ(t, z)Ñ(dt, dz)
]
,

X(π)(0) = x > 0.
(3.3)
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In the sequel, we will call a portfolio π ∈ P admissible if π is Et-predictable, permits a
strong solution of (3.3), and satisfies

∫T

0

{
|α(t)||π(t)|S(t) + σ2(t)π2(t)S2(t) + π2(t)S2(t)

∫
R0

γ2(t, z)ν(dz)
}
ds < ∞, (3.4)

as well as

π(t)S(t)γ(t) > −1 (ω, t, z)-a.s. (3.5)

The class of admissible portfolios is denoted by Π.
Now, we define the measuresQθ parameterized by given Ft-predictable processes θ =

(θ0(t), θ1(t, z)) such that

dQθ(ω) = Kθ(T)dP(ω) on FT , (3.6)

where

dKθ(t) = Kθ(t−)
[
θ0(t)dB(t) +

∫
R0

θ1(t, z)Ñ(dt, dz)
]
, t ∈ [0, T],

Kθ(0) = k > 0,

(3.7)

We assume that

θ1(t, z) ≥ −1 for a.a. t, z,

∫T

0

{
θ2
0(s) +

∫
R0

(log(1 + θ1(s, z)))
2ν(dz)

}
ds < ∞ a.s.

(3.8)

Then, by the Itô formula, the solution of (3.7) is given by

Kθ(t) = k exp
[
−
∫ t

0
θ0(s)dB(s) − 1

2

∫ t

0
θ2
0(s)ds

+
∫ t

0

∫
R0

ln(1 − θ1(s, z))Ñ(dt, dz)

+
∫ t

0

∫
R0

{ln(1 − θ1(s, z)) + θ1(s, z)}ν(dz)ds
]
.

(3.9)

We say that the control θ = (θ0, θ1) is admissible and write θ ∈ Θ if θ is adapted to the
subfiltration Et and satisfies (3.8) and

E[Kθ(T)] = Kθ(0) = k > 0. (3.10)



6 Journal of Applied Mathematics and Stochastic Analysis

We set

dY (t) =

⎡
⎢⎣
dY1(t)
dY2(t)
dY3(t)

⎤
⎥⎦ =

⎡
⎢⎣

dKθ(t)
dS(t)

dX(π)(t)

⎤
⎥⎦ =

⎡
⎢⎣

0
S(t−)α(t)

S(t−)π(t)α(t)

⎤
⎥⎦dt

+

⎡
⎢⎣

Kθ(t−)θ0(t)
S(t−)σ(t)

S(t−)π(t)σ(t)

⎤
⎥⎦dB(t) +

∫
R0

⎡
⎢⎣
Kθ(t−)θ1(t, z)
S(t−)γ(t, z)
S(t−)π(t)γ(t)

⎤
⎥⎦ Ñ(dt, dz),

Y (0) = y = (y1, y2, y3) = (k, s, x),

dỸ (t) =

[
dY1(t)
dY2(t)

]
=

[
dKθ(t)
dS(t)

]
,

Ỹ (0) = ỹ = (y1, y2) = (k, s).

(3.11)

We now define two sets L, M of measures as follows:

L = {Qθ; θ ∈ Θ},
M = {Qθ; θ ∈ M},

(3.12)

where

M = {θ ∈ Θ; E[Mθ(t, ỹ) | Et] = 0 ∀t, ỹ},

Mθ(t, ỹ) = Mθ(t, k, s) = α(t) + σ(t)θ0(t) +
∫

R0

γ(t, z)θ1(t, z)ν(dz).
(3.13)

In particular, by the Girsanov theorem, all the measures Qθ ∈ M with E[Kθ(T)] = 1
are equivalent martingale measures for the Et-conditioned market (S0(t), S1(t)),where

dS1(t) = S1(t−)
[
E[α(t) | Et]dt + E[σ(t) | Et]dBt +

∫
R0

E[γ(t, z) | Et]Ñ(dt, dz)
]

S1(0) = s > 0
(3.14)

(see, e.g., [11, Chapter 1]).
We assume that the penalty function ζ has the form

ζ(Qθ) = E

[∫T

0

∫
R0

λ(t, θ0(t, Ỹ (t)), θ1(t, Ỹ (t), z), Ỹ (t), z)ν(dz)dt + h(Ỹ (T))
]
, (3.15)

for some convex functions λ ∈ C1(R2 × R0), h ∈ C1(R), such that

E

[∫T

0

∫
R0

|λ(t, θ0(t, Ỹ (t)), θ1(t, Ỹ (t), z), Ỹ (t), z)|ν(dz)dt + |h(Ỹ (T))|
]
< ∞, (3.16)

for all (θ, π) ∈ Θ ×Π.
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Using the Y (t)-notation, problem (2.6) can be written as follows:

Problem A. Find ΦE
G(t, y) and (θ∗, π∗) ∈ Θ ×Π such that

ΦE
G(t, y) := inf

π∈Π

(
sup
θ∈Θ

Jθ,π(t, y)
)

= Jθ
∗,π∗

(t, y), (3.17)

where

Jθ,π(t, y) = J(θ, π)

= Ey

[
−
∫T

t

Λ(θ(u, Ỹ (u)))du − h(Ỹ (T)) +Kθ(T)g(S(T)) −Kθ(T)X(π)(T)
]
,

(3.18)

Λ(θ) = Λ(θ(t, ỹ)) =
∫

R0

λ(t, θ0(t, ỹ), θ1(t, ỹ, z), ỹ, z)ν(dz). (3.19)

We will relate Problem A to the following stochastic control problem:

ΨE
G = sup

Q∈M
{EQ[G] − ζ(Q)}. (3.20)

Using the Ỹ (t)-notation, the problem gets the following form.

Problem B. Find ΨE
G(t, ỹ) and θ̌ ∈ M such that

ΨE
G(t, ỹ) := sup

θ∈M

Jθ0 (t, ỹ) = Jθ̌0 (t, ỹ), (3.21)

where

Jθ0 (t, ỹ) = Ey

[
−
∫T

t

Λ(θ(u, Ỹ (u)))du − h(Ỹ (T)) +Kθ(T)g(S(T))
]
. (3.22)

Define the HamiltonianH : [0, T]×R×R×R×Θ×Π×R×R×R → R for Problem A by

H(t, k, s, x, θ, π, p, q, r(·, z))
= −Λ(t, Ỹ (t)) + sαp2 + sαπp3 + kθ0q1 + sσq2 + sσπq3

+
∫

R0

{kθ1r1(·, z) + sγ(t, z)r2(·, z) + sπγ(t, z)r3(·, z)}ν(dz),
(3.23)

and the Hamiltonian H̃ : [0, T] × R × R ×Θ × R × R × R → R for Problem B by

H̃(t, k, s, θ, p, q, r(·, z))

= −Λ(t, Ỹ (t)) + sαp2 + kθ0q1 + sσq2 +
∫

R0

{kθ1(t, z)r1(·, z) + sγ(t, z)r2(·, z)}ν(dz).
(3.24)
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Here R is the set of functions r : [0, T] × R → R such that the integrals in (3.23) and (3.24)
converge. We assume that H and H̃ are differentiable with respect to k, s, and x. The adjoint
equations (corresponding to θ, π , and Y (t)) in the unknown adapted processes p(t), q(t),
r(t, z) are the backward stochastic differential equations (BSDEs)

dp1(t) =
(
∂Λ
∂k

(t, Ỹ (t)) − θ0(t)q1(t) −
∫

R0

θ1(t, z)r1(t, z)ν(dz)
)
dt

+ q1(t)dB(t) +
∫

R0

r1(t, z)Ñ(dt, dz),

p1(T) = −∂h
∂k

(Ỹ (T)) + g(S(T)) −X(π)(T),

(3.25)

dp2(t) =
(
∂Λ
∂s

(t, Ỹ (t)) − α(t)p2(t) − σ(t)q2(t) −
∫

R0

γ(t, z)r2(t, z)ν(dz)
)
dt

+ q2(t)dB(t) +
∫

R0

r2(t, z)Ñ(dt, dz),

p2(T) = −∂h
∂s

(Ỹ (T)) +Kθ(T)g ′(S(T)),

(3.26)

dp3(t) =
(
− α(t)p3(t) − σ(t)q3(t) −

∫
R0

γ(t, z)r3(t, z)ν(dz)
)
dt

+ q3(t)dB(t) +
∫

R0

r3(t, z)Ñ(dt, dz),

p3(T) = −Kθ(T).

(3.27)

Similarly, the adjoint equations (corresponding to θ and Ỹ (t)) in the unknown pro-
cesses p̃(t), q̃(t), r̃(t, z) are given by

dp̃1(t) =
(
∂Λ
∂k

(t, Ỹ (t)) − θ0(t)q̃1(t) −
∫

R0

θ1(t, z)r̃1(t, z)ν(dz)
)
dt

+ q̃1(t)dB(t) +
∫

R0

r̃1(t, z)Ñ(dt, dz),

p̃1(T) = −∂h
∂k

(Ỹ (T)) + g(S(T)),

dp̃2(t) =
(
∂Λ
∂s

(t, Ỹ (t)) − α(t)p̃2(t) − σ(t)q̃2(t) −
∫

R0

γ(t, z)r̃2(t, z)ν(dz)
)
dt

+ q̃2(t)dB(t) +
∫

R0

r̃2(t, z)Ñ(dt, dz),

p̃2(T) = −∂h
∂s

(Ỹ (T)) +Kθ(T)g ′(S(T)).

(3.28)
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Lemma 3.1. Let θ ∈ Θ and suppose that p̃(t) = (p̃1(t), p̃2(t)) is a solution of the corresponding
adjoint equations (3.28). For all π ∈ R, define

p1(t) = p̃1(t) −X(π)(t), (3.29)

p2(t) = p̃2(t), (3.30)

p3(t) = −Kθ(t). (3.31)

If θ ∈ M, then p(t) = (p1(t), p2(t), and p3(t)) is a solution of the adjoint equations (3.25), (3.26),
and (3.27). Then, the following relation holds:

H(t, Y (t), θ, π, p(t), q(t), r(t, z))

= H̃(t, Ỹ (t), θ, p̃(t), q̃(t), r̃(t, z)) − S(t)πKθ(t)
(
α(t) + 2θ0(t)σ(t) + 2

∫
R0

θ1(t, z)γ(t, z)ν(dz)
)
.

(3.32)

Proof. Differentiating both sides of (3.29), we get

dp1(t) = dp̃1(t) − dX(π)(t)

=
(
∂Λ
∂k

(t, Ỹ (t)) − θ0(t)q̃1(t) −
∫

R0

θ1(t, z)r̃1(t, z)ν(dz) − S(t)α(t)π(t)
)
dt

+ (q̃1(t) − S(t)σ(t)π(t))dB(t) +
∫

R0

(r̃1(t, z) − S(t)π(t)γ(t, z))Ñ(dt, dz).

(3.33)

Comparing this with (3.25) by equating the dt, dB(t), Ñ(dt, dz) coefficients, respectively, we
get

∂Λ
∂k

(t, Ỹ (t)) − θ0(t)q1(t) −
∫

R0

θ1(t, z)r1(t, z)ν(dz)

=
∂Λ
∂k

(t, Ỹ (t)) − θ0(t)q̃1(t) −
∫

R0

θ1(t, z)r̃1(t, z)ν(dz) − S(t)α(t)π(t),
(3.34)

q1(t) = q̃1(t) − S(t)σ(t)π(t), (3.35)

r1(t, z) = r̃1(t, z) − S(t)γ(t, z)π(t). (3.36)

Substituting (3.35) and (3.36) into (3.34), we get

S(t)π(t)
(
α(t) + θ0(t)σ(t) +

∫
R0

θ1(t, z)γ(t, z)ν(dz)
)

= 0. (3.37)

Since θ ∈ M, (3.37) is satisfied, and hence p1(t) is a solution of (3.25).
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Proceeding as above with the processes p2(t) and p3(t), we get

q2(t) = q̃2(t), r2(t) = r̃2, (3.38)

−α(t)p3(t) − σ(t)q3(t) −
∫

R0

γ(t, z)r3(t, z)ν(dz) = 0, (3.39)

q3(t) = −Kθ(t)θ0(t), r3(t, z) = −Kθ(t)θ1(t, z). (3.40)

With the values p3(t), q3(t), and r3(t, z) defined as above, relation (3.39) is satisfied if θ ∈ M.
Hence, p1(t), p2(t), and p3(t) are solutions of (3.29), (3.30), and (3.31), respectively.

Equations (3.23) and (3.24) give the following relation between H and H̃:

H(t, y, θ, π, p, q, r(·, z)) = H̃(t, ỹ, θ, p, q, r(·, z)) + sπ

(
αp3 + σq3 +

∫
R0

γ(t, z)r3(·, z)ν(dz)
)
.

(3.41)

Hence,

H(t, Y (t), θ, π, p(t), q(t), r(t, z))

= H̃(t, Ỹ (t), θ, p1(t), p2(t), q1(t), q2(t), r1(t, z), r2(t, z))

− S(t)π(t)
(
α(t)p3(t) + σq3(t) +

∫
R0

γ(t, z)r3(t, z)ν(dz)
)

= H̃(t, Ỹ (t), θ, p̃1(t), p̃2(t), q̃1(t), q̃2(t), r̃1(t, z), r̃2(t, z))

− S(t)σ(t)π(t)Kθ(t)θ0(t) −
∫

R0

S(t)γ(t, z)π(t)Kθ(t)θ1(t, z)ν(dz)

− S(t)π(t)Kθ(t)
(
α(t) + σ(t)θ0(t) +

∫
R0

γ(t, z)θ1(t)ν(dz)
)

= H̃(t, Ỹ (t), θ, p̃(t), q̃(t), r̃(t, z))

− sπKθ(t)
(
α(t) + 2σ(t)θ0(t) + 2

∫
R0

γ(t, z)θ1(t, z)ν(dz)
)
.

(3.42)

Lemma 3.2. Let p1(t), p2(t), and p3(t) be as in Lemma 3.1. Suppose that, for all π ∈ R, the function

θ −→ E[H(t, Y (t), θ, π(t), p(t), q(t), r(t, z)) | Et], θ ∈ Θ, (3.43)

has a maximum point at θ̂ = θ̂(π). Moreover, suppose that the function

π −→ E[H(t, Y (t), θ̂(π), π, p(t), q(t), r(t, z)) | Et], π ∈ R, (3.44)

has a minimum point at π̂ ∈ R. Then,

Mθ̂(π̂) = 0. (3.45)
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Proof. The first-order conditions for a maximum point θ̂ = θ̂(π) of the function E[H(t,
Y (t), θ, π(t), p(t), q(t), r(t, z)) | Et] is

E
[∇θ(H(t, Y (t), θ, π(t), p(t), q(t), r(t, z)))θ=θ̂(π) | Et

]
= 0, (3.46)

where ∇θ = (∂/∂θ0, ∂/∂θ1) is the gradient operator. The first-order condition for a minimum
point π̂ of the function E[H(t, Y (t), θ̂(π), π, p(t), q(t), r(t, z)) | Et] is

E
[∇π(H(t, Y (t), θ̂(π), π(t), p(t), q(t), r(t, z)))π=π̂ | Et

]
= 0, (3.47)

that is,

E

[
∇θ(H(t, Y (t), θ, π̂, p(t), q(t), r(t, z)))θ=θ̂(π̂)

(
dθ̂(π)
dπ

)
π=π̂

+∇π(H(t, Y (t), θ, π, p(t), q(t), r(t, z)))π=π̂, θ=θ̂(π̂) | Et

]
= 0.

(3.48)

Choose π = π̂ . Then, by (3.46) and (3.48), we have

E
[∇π(H(t, Y (t), θ, π, p(t), q(t), r(t, z)))π=π̂, θ=θ̂(π̂) | Et

]
= 0, (3.49)

that is,

E

[
S(t)α(t)p3(t) + S(t)σ(t)q3(t) +

∫
R0

S(t)γ(t, z)r3(t, z)ν(dz) | Et

]
= 0. (3.50)

Substituting the values p3(t), q3(t), and r3(t, z) as in Lemma 3.1 into (3.50), we get

E

[
S(t)Kθ(t)

{
α(t) + σ(t)θ0(t) +

∫
R0

γ(t, z)θ1(t, z)ν(dz)
}

| Et

]
= 0. (3.51)

This gives,

Mθ̂(π̂) = 0. (3.52)

4. Maximum principle for stochastic differential games

Problem A is related to what is known as stochastic games studied in [12]. Applying in [[12],
Theorem 2.1] to our setting we get the following jump-diffusion version of the maximum
principle (of Ferris and Mangasarian type [13]).
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Theorem 4.1 (maximum principle for stochastic differential games [12]). Let (θ̂, π̂) ∈
Θ × Π and suppose that the adjoint equations (3.25), (3.26), and (3.27) admit solutions
(p̂1(t), q̂1(t), r̂1(t, z)), (p̂2(t), q̂2(t), r̂2(t, z)), and (p̂3(t), q̂3(t), r̂3(t, z)), respectively. Moreover,
suppose that, for all t ∈ [0, T], the following partial information maximum principle holds:

sup
θ∈Θ

E[H(t, Y (t), θ, π̂(t), p̂(t), q̂(t), r̂(t, z)) | Et]

= E[H(t, Y (t), θ̂(t), π̂(t), p̂(t), q̂(t), r̂(t, z)) | Et]

= inf
π∈Π

E[H(t, Y (t), θ̂(t), π, p̂(t), q̂(t), r̂(t, z)) | Et].

(4.1)

Suppose

θ −→ J(θ, π̂) is concave,

π −→ J(θ̂, π) is convex.
(4.2)

Then (θ∗, π∗) := (θ̂, π̂) is an optimal control and

ΦE
G(x) = inf

π∈Π

(
sup
θ∈Θ

J(θ, π)
)

= sup
θ∈Θ

(
inf
π∈Π

J(θ, π)
)

= sup
θ∈Θ

J(θ, π̂)

= inf
π∈Π

J(θ̂, π)

= J(θ̂, π̂).

(4.3)

Theorem 4.2. Let p̃1(t), p̃2(t) be, respectively, solutions of adjoint equations (3.28), and let p1(t),
p2(t), p3(t) be defined as in Lemma 3.1. Suppose θ → H̃(t, Ỹ (t), θ, p̃(t); q̃(t), r̃(t, ·)) is concave. Let
(θ̂(π̂), π̂) be an optimal pair for Problem A, as given in Lemma 3.2. Then,

θ̌ := θ̂(π̂) (4.4)

is optimal for Problem B.

Proof. By Theorem 4.1 for Problem B, θ̌ solves Problem B under partial information Et if

sup
θ∈M

E[H̃(t, Ỹ (t), θ, p̃(t), q̃(t), r̃(t, z)) | Et] = E[H̃(t, Ỹ (t), θ̌, p̃(t), q̃(t), r̃(t, z)) | Et], (4.5)

that is, if there exists C = C(t) such that

E
[∇θ(H̃(t, Ỹ (t), θ, p̃(t), q̃(t), r̃(t, z))) − C(t)M(θ))θ=θ̌ | Et

]
= 0, (4.6)

E[Mθ̌(t) | Et] = 0. (4.7)
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Let π̂ , θ̂(π̂) be as in Lemma 3.2. Then,

E
[∇θ(H(t, Y (t), θ, π̂(t), p(t), q(t), r(t, z))θ=θ̂(π̂(t)) | Et

]
= 0, (4.8)

E[Mθ̂(π̂)(t) | Et] = 0. (4.9)

Hence, by Lemma 3.1,

0 = E

[
∇θ

{
H̃(t, Ỹ (t), θ, p̃(t), q̃(t), r̃(t, z))

− S(t)π̂(t)Kθ(t)
(
α(t) + 2σ(t)θ0 + 2

∫
R0

γ(t, z)θ1(z)ν(dz)
)}

θ=θ̂(π̂(t))

| Et

]

= E
[∇θ(H̃(t, Ỹ (t), θ, p̃(t), q̃(t), r̃(t, z)) − 2S(t)π̂(t)Kθ(t)Mθ)θ=θ̂(π̂(t)) | Et

]
.

(4.10)

Therefore, if we choose

C(t) = 2S(t)π̂(t)Kθ(t), (4.11)

we see that (4.6) holds with θ̌ = θ̂(π̂), as claimed.

5. Risk indifference pricing

Let (θ∗, π∗) = (θ̌, π̂) be as in Theorem 4.2 with the corresponding state process Y ∗ = Yθ∗,π∗
.

Suppose that Y = Y θ̂(π̂),π is the state process corresponding to an optimal control (θ̂(π̂), π).
Then, the value function ΦE

G, which is defined by (3.17) and (3.18), becomes

ΦE
G(t, y)

= inf
π∈Π

(
sup
θ∈Θ

Jθ,π(t, y)
)

= inf
π∈Π

(
sup
θ∈Θ

Ey

[
−
∫T

t

Λ(θ(u, Ỹ (u)))du − h(Kθ(T), S(T)) +Kθ(T)g(S(T))−Kθ(T)X(π)(T)
])

= inf
π∈Π

(
Ey

[
−
∫T

t

Λ(θ∗(u, Ỹ ∗(u)))du − h(Kθ∗(T), S(T)) +Kθ∗(T)g(S(T))−Kθ∗(T)X(π)(T)
])

.

(5.1)

We have that, for all π ∈ Π,

Ey[Kθ∗(T)X(π)(T)
]
= Ey[Kθ(T)X(π)(T)

]
= kEk,s,x

(1/k)Qθ̌

[
X(π)(T)

]
= kx, (5.2)
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since (1/k)Qθ̌ is an equivalent martingale measure for Et-conditioned market. On the other
hand, the first part of (5.1) does not depend on the parameter π . Hence, (5.1) becomes

ΦE
G(t, y) = Ey

[
−
∫T

t

Λ(θ̌(u, Ỹ (u)))du − h(Kθ̌(T), S(T)) +Kθ̌(T)g(S(T))
]
− kx

= sup
θ∈M

Jθ0 (t, ỹ) − kx

= ΨE
G(t, ỹ) − kx.

(5.3)

We have proved the following result for the relation between the value function for
Problem A and the value function for Problem B in the partial information case that is the
same as in Øksendal and Sulem [7] for the full information case.

Lemma 5.1. The relationship between the value function ΨE
G(t, ỹ) for Problem B and the value

function ΦE
G(t, y) for Problem A is

ΦE
G(t, y) = ΨE

G(t, ỹ) − kx. (5.4)

We now apply Lemma 5.1 to find the risk indifference price p = psellerrisk , given as a
solution of the equation

ΦE
G(t, k, s, x + p) = ΦE

0 (t, k, s, x). (5.5)

By Lemma 5.1, this becomes

ΨE
G(t, k, s) − k(x + p) = ΨE

0 (t, k, s) − kx, (5.6)

which has the solution

p = psellerrisk = k−1(ΨE
G(t, k, s) −ΨE

0 (t, k, s)
)
. (5.7)

In particular, choosing k = 1 (i.e., all measures Q ∈ L are probability measures), we get the
following.

Theorem 5.2. Suppose that the conditions of Theorem 4.2 hold. Then, the risk indifference price for
the seller of claim G, psellerrisk (G,E), is given by

psellerrisk (G,E) = sup
Q∈M

{EQ[G] − ζ(Q)} − sup
Q∈M

{−ζ(Q)}. (5.8)
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