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1. Introduction

Standby provides a powerful tool to enhance the reliability, availability, quality, and safety
of operational plants (see, e.g., [1–4]). Standby systems are often subjected to priority rules.
For instance, the external power supply station of a technical plant has usually overall (break-
in) priority in operation with regard to an internal (local) power generator kept in cold or
warm standby; that is, the local generator is only deployed if the external unit is down. The
notion of “cold” standby signifies that the local generator has a zero failure rate in standby,
whereas the notion of “warm” standby means that the failure-free time of the local generator
is stochastically larger [5] in standby than in the operative state. Note that the warm standby
mode of a unit is often indispensable to perform an instantaneous switch from standby into
the operative state, allowing continuous operation of an operational system upon failure of
the online unit.

Cold or warm standby systems, subjected to priority rules, have received considerable
attention in previous literature (see, e.g., [6–20]). As a variant, we introduce a duplex system
consisting of a priority unit (the p-unit) with a back-up nonpriority unit (the n-unit) in
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warm standby and attended by a repair facility. The p-unit has overall (break-in) priority
in operation with regard to the n-unit; that is, the n-unit is only deployed if and only if the
p-unit is down. In order to avoid undesirable delays in repairing failed units, we assume that
the twin system is attended by two heterogeneous repairmen. Each repairman has his own
particular task. Repairman N is skilled at repairing the failed n-unit, whereas repairman P
is supposed to be an expert in repairing the failed p-unit. Both repairmen are jointly busy if
both units (the p-unit and n-unit) are down. Otherwise, at least one repairman is idle. Any
repair is assumed to be perfect. The entire system (henceforth called the T-system) is up if at
least one unit is up. Otherwise, the T-system is down.

In order to determine the survival function of the T-system, we introduce a
stochastic process endowed with time-dependent transition measures satisfying coupled
partial differential equations. The solution procedure is based on a refined application of
the theory of sectionally holomorphic functions (see, e.g., [21]) combined with the notion
of dual transforms. Furthermore, we introduce a security interval [0, τ) related to a security
level 0 < δ < 1 and a risk criterion based on the survival function of the T-system. The
security interval ensures a survival of the T-system up to time τ with a probability larger
than δ. Finally, we consider the particular case of deterministic repair (replacement). A
computer-plotted graph displays the survival function together with the security interval
corresponding to a security level of 90%.

2. Formulation

Consider the T-system subjected to the following conditions.
(i) The p-unit has a general failure-free time distribution F(·) with finite mean and a

general repair time distribution R(·), R(0) = 0. The failure-free time and the repair time are
denoted by f and r. We assume that F(·) is Lebesgue absolutely continuous with a density
function (in the Radon-Nikodym sense) of bounded variation on [0,∞).

(ii) The n-unit has a constant failure rate λ > 0 in the operative state and a constant
failure rate 0 < λs < λ in standby. Note that the inequality λs < λ is consistent with the notion
of warm standby. The failure-free time of the n-unit in warm standby (resp., in operation)
is denoted by fs (resp., fo). The common repair time of any n-failure is denoted by rs with
(common) repair time distribution Rs(·), Rs(0) = 0. In addition, we assume that rs has finite
mean and variance.

(iii) The random variables f, r, fs, fo, and rs are assumed to be statistically
independent and any repair is perfect.

(iv) Characteristic functions are formulated in terms of a complex transform variable.
For instance,

Eeiωr =
∫∞

0
eiωxdR(x), Im ω ≥ 0. (2.1)

Note that

Ee−iωr =
∫0

−∞
eiωxd

{
1 − R((−x) − )}, Im ω ≤ 0. (2.2)

The corresponding Fourier-Stieltjes transforms are called dual transforms. Without loss of
generality (see Remark 7.4), we may assume thatR andRs have density functions of bounded
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variation on [0,∞). Note that the bounded variation property implies that, for instance,

∣∣Eeiτf ∣∣ = O
(

1
|τ |
)
, |τ | −→ ∞. (2.3)

(v) In order to derive the survival function of the T-system, we employ a stochastic
process {Nt, t ≥ 0} with discrete state space {A,B,C,D} ⊂ [0,∞) and absorbing state D
characterized by the following exhaustive set of mutually exclusive events.

{Nt = A}: the p-unit is operative and the n-unit is in warm standby at time t.
{Nt = B}: the n-unit is operative and the p-unit is under progressive repair at time t.
{Nt = C}: the p-unit is operative and the n-unit is under progressive repair at time t.
{Nt = D}: the T-system is down at time t.
Note that the absorbing state D implies that a transition of the process {Nt} into state

A is only possible via states B or C, whereas a transition from state B or C into state D
terminates the lifetime of the system. Therefore, the inclusion of the absorbing state D into
the state space of the process {Nt, t ≥ 0} triggers the introduction of a so-called stopping time.
Consequently, we first define the non-Markovian process {Nt, t ≥ 0} on a filtered probability
space {Ω,A,P,F} where the history F := {Ft, t ≥ 0} satisfies the Dellacherie conditions:

(i) F0 contains the P-null sets of A;

(ii) for all t ≥ 0, Ft =
⋂
u>tFu; that is, the family F is right-continuous.

Consider the F-stopping time

θ := inf
{
t : Nt = D |N0 = A, V0 = 0

}
, (2.4)

where Vt is the past failure-free time of the p-unit being operative at time t. We assume that
the T-system starts functioning at some time origin t = 0 in state A; that is, let N0 = A, V0 =
0, P-a.s. Thus, from t = 0 onwards, θ is the survival time (lifetime) of the T-system. The
corresponding survival function is denoted by R(·). Clearly, R(t) = P{θ > t}, t ≥ 0. A (vector)
Markov characterization of the non-Markovian process {Nt, t ≥ 0} with absorbing state D is
piecewise and conditionally defined by

(1) {(Nt,Ut)} if Nt = A (i.e., if the event {Nt = A} occurs), where Ut denotes the
remaining failure-free time of the p-unit being up at time t;

(2) {(Nt,Xt)} if Nt = B, where Xt denotes the remaining repair time of the p-unit being
under progressive repair at time t;

(3) {(Nt,Ut, Yt)} if Nt = C, where Yt denotes the remaining repair time of the n-unit
being under progressive repair at time t;

(4) {Nt} if Nt = D (the absorbing state).

The state space of the underlying Markov process, with absorbing state D, is given by

{
(A,u)

}⋃{
(B, x)

}⋃{
(C, u, y)

}⋃{D}, u ≥ 0, x ≥ 0, y ≥ 0. (2.5)

For K = A, B, C, D, let pK(t) := P{Nt = K}, t ≥ 0.
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(vi) Finally, we introduce the transition measures:

pA(t, u)du := P
{
Nt = A, Ut ∈ du

}
,

pB(t, x)dx := P
{
Nt = B, Xt ∈ dx

}
,

pC(t, u, y)dudy := P
{
Nt = C, Ut ∈ du, Yt ∈ dy

}
.

(2.6)

Note that, for instance,

pC(t) =
∫∞

0

∫∞

0
du dyP

{
Nt = C, Ut ≤ u, Yt ≤ y

}

=
∫∞

0

∫∞

0
pC(t, u, y)dudy.

(2.7)

3. Notations

(i) The indicator (function) of an event {Nt = K} is denoted by 1{Nt = K}.
(ii) The complex plane and the real line are, respectively, denoted by C and R with

obvious superscript notations such as C+ and C−. For instance, C+ := {ω ∈ C : Im ω > 0}.
(iii) We frequently use the characteristic function:

γ+s (τ) :=

⎧⎪⎪⎨
⎪⎪⎩

Eeiτrs − 1
iτErs

if τ /= 0,

1 if τ = 0.

(3.1)

Note that

γ+s (ω) =
1
Ers

∫∞

0
eiωx
(
1 − Rs(x)

)
dx, Im ω ≥ 0. (3.2)

Property 3.1 (see [22, Appendix]). The function 1 + λsErsγ+s (ω), Im ω ≥ 0, has no zeros in
C+ ∪ R.

(iv) The Heaviside unit step function, with the unit step at t = t0, is denoted by Ht0(·),
that is,

Ht0(t) :=

{
1 if t ≥ t0 > 0,
0 if t < t0.

(3.3)

(v) The greatest integer function is denoted by [·].
(vi) The Laplace transform of any locally integrable and bounded function on [0,∞)

is denoted by the corresponding character marked with an asterisk. For instance,

p∗A(z) :=
∫∞

0
e−ztpA(t)dt, Re z > 0. (3.4)
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Observe that

R∗(z) =
1 − Ee−zθ

z
, Re z > 0. (3.5)

Moreover, by the product rule for Lebesgue-Stieltjes integrals (see, e.g., [23, Appendix])

zp∗D(z) =
∫∞

0−
e−zt dpD(t) = Ee−zθ, Re z > 0. (3.6)

(vii) Let ϕ(τ), τ ∈ R, be a bounded and continuous function. ϕ is called Γ-integrable if

lim
T→∞
ε↓0

∫
ΓT,ε
ϕ(τ)

dτ

τ − u, u ∈ R, (3.7)

exists, where ΓT, ε := (−T, u − ε] ∪ [u + ε, T). The corresponding integral, denoted by

1
2πi

∫
Γ
ϕ(τ)

dτ

τ − u, (3.8)

is called a Cauchy principal value in double sense.
(viii) A function ϕ(τ), τ ∈ R, is called Hölder-continuous on R if for all τ1, τ2 ∈ R,

there exists (β,A), 0 < β ≤ 1, A > 0 :

∣∣ϕ(τ2
) − ϕ(τ1

)∣∣ ≤ A∣∣τ2 − τ1
∣∣β. (3.9)

The function ϕ(τ), τ ∈ R, is called Hölder-continuous at infinity if there exists γ > 0:

∣∣ϕ(τ)∣∣ = O
(

1
|τ |γ
)
, |τ | −→ ∞. (3.10)

Hölder-continuous functions with exponent β = γ = 1 are called Lipschitz-continuous.
(ix) Note that the Hölder continuity of ϕ(·) on R and at infinity is sufficient for the

existence of the Cauchy-type integral:

1
2πi

∫
Γ
ϕ(τ)

dτ

τ −ω, ω ∈ C. (3.11)
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4. Differential equations

In order to derive a system of differential equations, we observe the random behavior of the
T-system in some time interval (t, t + Δ), Δ ↓ 0. Grouping terms of o(Δ) and taking the
absorbing state D into account reveal that

pA(t + Δ, u −Δ) = pA(t, u)
(
1 − λsΔ

)
+ pB(t, 0)

dF
du

(u)Δ + pC(t, u, 0)Δ + o(Δ),

pB(t + Δ, x −Δ) = pB(t, x)(1 − λΔ) + pA(t, 0)
dR
dx

(x)Δ + o(Δ),

pC(t + Δ, u −Δ, y −Δ) = pC(t, u, y) + λspA(t, u)
dRs

dy
(y)Δ + o(Δ),

pD(t + Δ) = pD(t) + λ
∫∞

0
pB(t, x)dxΔ +

∫∞

0
pC(t, 0, y)dyΔ + o(Δ).

(4.1)

Taking the definition of directional derivative into account, for instance,

(
∂

∂t
− ∂

∂u
− ∂

∂y

)
pC(t, u, y) := lim

Δ↓0

pC(t + Δ, u −Δ, y −Δ) − pC(t, u, y)
Δ

, (4.2)

entails that for t > 0, u > 0, x > 0, and y > 0,

(
λs +

∂

∂t
− ∂

∂u

)
pA(t, u) = pB(t, 0)

dF
du

(u) + pC(t, u, 0), (4.3)

(
λ +

∂

∂t
− ∂

∂x

)
pB(t, x) = pA(t, 0)

dR
dx

(x), (4.4)

(
∂

∂t
− ∂

∂u
− ∂

∂y

)
pC(t, u, y) = λspA(t, u)

dRs

dy
(y), (4.5)

d
dt
pD(t) = λpB(t) +

∫∞

0
pC(t, 0, y)dy. (4.6)

Note that the initial condition N0 = A, V0 = 0, P-a.s. implies that

pA(0, u) =
dF
du

(u), u > 0. (4.7)

Moreover, P{θ ≤ t} = pD(t). Finally, observe that (4.3)–(4.6) are consistent with the
probability law

∑
KpK(t) = 1 and that pA(0) = 1.
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5. Functional equation

First, we remark that our system of differential equations is well adapted to a Laplace-
Fourier transformation. As a matter of fact, the transition functions are bounded on their
appropriate regions and locally integrable with respect to t. Consequently, each Laplace
transform exists for Re z > 0. Moreover, the integrability of the density functions and
the transition functions with regard to u, x, and y also implies the integrability of the
corresponding partial derivatives.

Applying a Laplace-Fourier transform technique to (4.3)–(4.6) and taking the initial
condition into account reveal that for Re z > 0, Im ω ≥ 0, Im η ≥ 0, and Im ζ ≥ 0,

(λs + z + iζ)
∫∞

0
e−ztE

(
eiζUt1

{
Nt = A

})
dt + p∗A(z, 0)

= p∗B(z, 0)Ee
iζf +

∫∞

0
eiζup∗C(z, u, 0)du + Eeiζf ,

(5.1)

(λ + z + iω)
∫∞

0
e−ztE

(
eiωXt1

{
Nt = B

})
dt + p∗B(z, 0) = p

∗
A(z, 0)Ee

iωr , (5.2)

(z + iζ + iη)
∫∞

0
e−ztE

(
eiζUteiηYt1

{
Nt = C

})
dt +

∫∞

0
eiζup∗C(z, u, 0)du +

∫∞

0
eiηyp∗C(z, 0, y)dy

= λs

∫∞

0
e−ztE

(
eiζUt1

{
Nt = A

})
dtEeiηrs ,

(5.3)

zp∗D(z) = λp
∗
B(z) +

∫∞

0
eiηyp∗C(z, 0, y)dy

∣∣∣∣
η=0
. (5.4)

Adding (5.1) and (5.3) yields the functional equation

(
λs
(
1 − Eeiηrs

)
+ z + iζ

)∫∞

0
e−ztE

(
eiζUt1

{
Nt = A

})
dt

+ p∗A(z, 0) − p∗B(z, 0)Eeiζf +
∫∞

0
eiηyp∗C(z, 0, y)dy

+ (z + iζ + iη)
∫∞

0
e−ztE

(
eiζUteiηYt1

{
Nt = C

})
dt = Eeiζf .

(5.5)

6. Survival function

In order to obtain the Laplace transform of the survival function, we first remark that by (5.4)
and (3.6),

Ee−zθ = λp∗B(z) +
∫∞

0
eiηyp∗C(z, 0, y)dy

∣∣∣∣
η = 0

. (6.1)
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Inserting ω = i(λ + z) (resp., ω = 0) into (5.2) entails that

p∗B(z, 0) = p
∗
A(z, 0)Ee

−(λ+z)r , (6.2)

(z + λ)p∗B(z) + p
∗
B(z, 0) = p

∗
A(z, 0). (6.3)

Finally, inserting ζ = iz, η = 0 into the functional equation (5.5) reveals that

Ee−zf = p∗A(z, 0) − p∗B(z, 0)Ee−zf +
∫∞

0
eiηyp∗C(z, 0, y)dy

∣∣∣∣
η = 0

. (6.4)

Invoking the relation

R∗(z) =
1 − Ee−z θ

z
, Re z > 0, (6.5)

yields by (6.1)–(6.4) that

R∗(z) =
1 − Ee−zf

z

(
1 + p∗A(z, 0)Ee

−(λ+z)r
)
+ p∗A(z, 0)

1 − Ee−(z+λ)r

z + λ
. (6.6)

Hence, we only have to determine p∗A(z, 0).

7. Methodology

In order to derive the unknown p∗A(z, 0), we first eliminate the function

∫∞

0
e−ztE

(
eiζUteiηYt1

{
Nt = C

})
dt, (7.1)

by the substitution of η = τ, ζ = −τ + iz, τ ∈ R, Re z > 0. Noting that z + iζ + iη = 0 reveals
that by (5.5),

p∗A(z, 0)
(
1 − Ee−(z+λ)rEe−i(τ−iz)f

)
+
∫∞

0
eiτyp∗C(z, 0, y))dy

− (1 + λsErsγ+s (τ)
)
iτ

∫∞

0
e−ztE

(
e−i(τ−iz)Ut1

{
Nt = A

})
dt = Ee−i(τ−iz)f .

(7.2)

Dividing (7.2) by the factor 1 + λsErsγ+s (τ), taking Property 3.1 into account, yields the
boundary value equation

ψ+(z, τ) − ψ−(z, τ) =
(

1 + p∗A(z, 0)Ee
−(λ+z)r

)
ϕ(z, τ), (7.3)
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where

ψ+(z,ω) :=
φ+(z,ω)

1 + λsErsγ+s (ω)
,

φ+(z,ω) :=
∫∞

0
eiωyp∗C(z, 0, y)dy − λsErsγ+s (ω)p∗A(z, 0), Im ω ≥ 0,

ψ−(z,ω) := iω
∫∞

0
e−ztE

(
e−i(ω−iz)Ut1

{
Nt = A

})
dt − p∗A(z, 0), Im ω ≤ 0,

ϕ(z, τ) :=
Ee−i(τ−iz)f

1 + λsErsγ+s (τ)
.

(7.4)

Equation (7.3) constitutes a z-dependent Sokhotski-Plemelj problem on R, solvable by the
theory of sectionally holomorphic functions (see, e.g., [21]). First, we need the following
property.

Lemma 7.1. The function ϕ(z, τ), Re z ≥ 0, is Lipschitz-continuous on R and at infinity.

Proof. Note that Property 3.1 implies that supτ∈R|1 + λsErsγ+s (τ)|−1 < ∞. Hence, the existence
of Ef, Ers, and Er2

s entails that

sup
τ∈R

∣∣∣∣ ∂∂τ ϕ(z, τ)
∣∣∣∣ <∞. (7.5)

Consequently, by the mean value theorem (see, e.g., [24]), there exists a constant K such that
for all τ1, τ2 ∈ R,

|ϕ(z, τ1) − ϕ(z, τ2)| ≤ K|τ1 − τ2|. (7.6)

Hence, ϕ(z, τ) is Lipschitz-continuous on R.
Finally, note that the Lipschitz continuity of ϕ(z, τ) at infinity follows from the

boundedness of |1 + λsErsγ+s (τ)|−1 and (2.3).

Corollary 7.2. The function

1
2πi

∫
Γ
ϕ(z, τ)

dτ

τ −ω, ω ∈ C, (7.7)

is sectionally holomorphic and regular.

Moreover, by (7.3),

ψ−(z,ω) =
(

1 + p∗A(z, 0)Ee
−(z+λ)r

) 1
2πi

∫
Γ
ϕ(z, τ)

dτ

τ −ω, ω ∈ C−. (7.8)
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Note that (7.8) is only valid for ω ∈ C−. However, by the Sokhotski-Plemelj formula (see, e.g.,
[21, page 36]),

lim
ω→0
ω∈C−

ψ−(z,ω) =
(

1 + p∗A(z, 0)Ee
−(z+λ)r

)
α(z), (7.9)

where

α(z) := lim
ω→0
ω∈C−

1
2πi

∫
Γ
ϕ(z, τ)

dτ

τ −ω = −1
2
ϕ(z, 0) +

1
2πi

∫
Γ
ϕ(z, τ)

dτ

τ
. (7.10)

On the other hand, we have by continuity lim ω→0
ω∈C−

ψ−(z,ω) = ψ−(z, 0) = −p∗A(z, 0). Hence,

p∗A(z, 0) = − α(z)
1 + α(z)Ee−(z+λ)r

. (7.11)

The function R∗(z) is now completely determined by (7.11) and (6.6). We summarize the
following result.

Property 7.3. The Laplace transform of the survival function is given by

R∗(z) =
1

1 + α(z)Ee−(z+λ)r

{
1 − Ee−zf

z
− 1 − Ee−(z+λ)r

z + λ
α(z)

}
, (7.12)

where

α(z) = −1
2

Ee−zf

1 + λsErs
+

1
2πi

∫
Γ

Ee−i(τ−iz)f

1 + λsErsγ+s (τ)
dτ

τ
,

γ+s (τ) :=

⎧⎪⎨
⎪⎩

Eeiτrs − 1
iτErs

if τ /= 0,

1 if τ = 0.

(7.13)

Remark 7.4. It should be noted that Property 3.1 also holds for an arbitraryRs with finite mean.
Moreover, the existence of moments does not depend on the canonical structure (Lebesgue
decomposition) of the underlying distribution. For instance, the inequality

∣∣∣∣ ∂∂τ γ+s (τ)
∣∣∣∣ ≤ 1

Ers

∫∞

0
x
(
1 − Rs(x)

)
dx =

1
2
Er2

s

Ers
<∞ (7.14)

also holds for an arbitrary Rs with finite mean and variance. Therefore, Lemma 7.1 remains
valid for arbitrary Rs. The requirement of a finite variance σ2

rs is extremely mild. In fact,
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Figure 1: Graph of R(t), 0 ≤ t ≤ 20, λ = 0.5, and λs = 0.25 with security interval [0, τ], τ = 2.259, and
security level δ = 0.9.

the current probability distributions of interest to statistical reliability engineering even have
moments of any order. Finally, the functional

Ee−(z+λ)r =
∫∞

0
e−(z+λ)x dR(x) (7.15)

exists for an arbitrary R as a Lebesgue-Stieltjes integral on [0,∞) and has no impact on the
existence of the integral

1
2πi

∫
Γ
ϕ(z, τ)

dτ

τ −ω, ω ∈ C. (7.16)

Consequently, Property 7.3 holds for arbitrary repair time distributions.

8. Risk criterion

Along with the survival function of the T-system, we now introduce a security interval [0, τ),
where

τ := sup
{
t ≥ 0 : R(t−) > δ} (8.1)

for some 0 < δ < 1, which is called the security level. In practice, δ is usually large.
For instance, δ = 0.9. Therefore, we require that the T-system satisfy the risk criterion
limt↑τR(t) > δ � 0. Note that the security interval, corresponding to the security level δ,
ensures a continuous operation (survival) of the T-system up to time τ with probability larger
than δ. See the forthcoming example.

9. Deterministic repair

As an example, we consider the particular case of deterministic repair (replacement); that is,
let R(·) = Rs(·) = Ht0(·), where t0 = 1 is taken as time unit. Clearly, Ee−zr = Ee−zrs = e−z.
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Furthermore, let F(u) = 1 − e−λu, u ≥ 0. Note that

Ee−i(τ−iz)f =
−iλ

τ − i(λ + z)
. (9.1)

By Property 7.3, we have

R∗(z) =
1

λ + z

(
1 − α(z)

1 + α(z)e−(λ+z)

)
. (9.2)

We recall that

α(z) = lim
ω→0
ω∈C−

1
2πi

∫
Γ
ϕ(z, τ)

dτ

τ −ω = lim
ω→0
ω∈C−

1
2πi

∫
Γ

−iλ(τ −ω)−1(τ − i(λ + z)
)−1

1 + λsErsγ+s (τ)
dτ. (9.3)

For ω ∈ C−, Re z ≥ 0, the integrand represents a meromorphic function in C+ with single pole
i(λ + z). Moreover, the function vanishes at infinity in C+ ∪ R. An application of the residue
theorem entails that

α(z) = lim
ω→0
ω∈C−

iλ(λ + z)(
ω − i(λ + z)

)(
λ + z + λs

(
1 − e−(λ+z))) = − λ

λ + z + λs
(
1 − e−(λ+z)) . (9.4)

Hence, by (9.2),

R∗(z) =
1

z + λ

(
1 +

λ

z + λs + λ − (λs + λ)e−(z+λ)
)
. (9.5)

Applying the inversion technology presented in [25] yields the exact survival function

R(t) = e−λt
(

1 +
λ

λs

[t]∑
k=0

(
λ

λ + λs

)k(
1 − e−λs(t−k)

k∑
j=0

(λs(t − k))j
j!

))
. (9.6)

Figure 1 displays the graph of R(t), 0 ≤ t ≤ 20, λ = 0.5, and λs = 0.25 with the security
interval [0, τ], τ = 2.259. The interval ensures a continuous operation of the T-system up to
time τ = 2.259 with a probability of at least 90%.
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