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ABSTRACT

In nonlinear estimation problems with linear models, one difficulty in obtaining

optimal designs is their dependence on the true value of the unknown parameters.

A Bayesian approach is adopted with the assumption the means are independent

apriori and have conjuguate prior distributions. The problem of designing an exper-

iment to estimate the product of the means of two normal populations is considered.

The main results determine an asymptotic lower bound for the Bayes risk, and a

necessary and sufficient condition for any sequential procedure to achieve the bound.
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1. INTRODUCTION

There are many statistical problems in which a good choice for the desigaa

depends on the true value of the unknown parameters; For such problems, the
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idea of designing the experiment sequentially is very appropriate. For example,

in nonlinear estimation problems with linear models, one difficulty in obtaining

optimal designs is their dependence on the value of the parameters. For another

illustrative example, consider the problem of estimating the difference of the means

of two normal populations with unknown means and unknown variances. It is

optimal to design the experiment sequentially in order to have the ratio of the two

sample sizes equal the ratio of the standard deviations, which are unknown apriori.

The problem of finding efficient experimental designs in nonlinear problems is of

considerable practical importance, since efficient designs use the available resources

more effectively.

Robbins, Simons, and Start (1966) considered this design problem for estimat-

ing the parameter A =/ -/z, in the normal model; that is, suppose that

and ,.N(/,tr) for all i= 1,

The four parameters/l, #, al, a are assumed unknown. Their procedure can be

described as follows. Let

Then choose the next observation on x or on y according as i/j is less or greater

than ui/v. This sequential procedure was shown to be asymptotically efficient.

Consider the general linear model y = x + e, where is k x 1, e is an error

which is N(0,1), and the design variable x can be chosen within a bounded region

A’. The p x 1 vector parameter of interest is 9 = g(fl), a nonlinear smooth function

of ft.
In nonlinear regression problems, he performance of a design depends on the

unknown parameters. For instance, the Fisher information for depends on the x’s

chosen and ft. In these circumstances, efficient designs must be constructed sequen-

tially. The choice of the next design point should be chosen using the information

about the parameters from previous observations.

Ford and Silvey (1980) considered the design problem for estimating the ratio

p = -01/22, which is the turning point of the regression function Ol +x in the
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linear model

y = Oz + Ozz + , ,,, N(O,a), z I_< 1.

They proposed a sequential procedure which effectively selects x to maximize the

estimated Fisher Information at each stage. The properties of this procedure were

then studied by Wu (1985). It is very important to note that neither one of these

authors concentrates toward the optimality; their work is restricted entirely to the

ad hoc design. The goal of this article is to refine the above analysis, searching for

procedures with higher order efficiency.

To obtain a higher order efficiency, the Bayesian approach is adopted with

squared error loss. It assumes that the means are independent apriori and have

conjuguate prior distributions before the observations are known. These are mod-

ified through Bayes theorem, to posterior distributions given the observations. By

adopting the Bayesian approach, we find a necessary and sufficient condition for the

first order optimality of any sequential design. Throughout this article, we assume

that the total number of observations from the two populations is fixed, so that the

problem is one of selecting the sample sizes.

The investigation presented here concentrates on two normal populations with

unit variance. The parameter of interest is the product of the means. An asymptotic

lower bound for the Bayes risk and a necessary and sufficient condition for any

sequential procedure to achieve the bound are derived.

Suppose we restrict our attention to allocation problems where the design space

has two points, X = {(0,1)t, (1, O)t} say. Shortly after the beginning stages of an

experiment, a sequential adaptive procedure will have learned the general location

of . Since any smooth function g() can be expanded into a Taylor series, a

thorough understanding of problems where 9 is polynomial should have value in a

general setting.

Definitions and Notation

Suppose that 0 and w are independent random variables which have (prior)

normal distributions, say

0 ,., N(/. lit) and co N(u. l/s)
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where #, v and r, s > 0. Given t9, , let Xx, X,... Yx, Y2,... be independent,

with

Xi,N(/,I) and ,N(w, 1) for all i= 1,

Allocation rules are algorithms for determining the number of Xts and Yts to

be sampled. These must satisfy measurability conditions prohibiting clairvoyance.

Let ’j = a(Xx,...,Xj;Y,...,Yt), the sigma algebra generated by Xx,...,X.i

and Y,... ,1. Formally, n allocation rule will be stochastic process .4 =

{(nk, mk)}.>_ on Af ( Af is the set of non-negative integers ) satisfying

(+x..+.) = (..) + (0. 1), or
(.0)

((..) = (j. t). (+x..+x) = (j + . t)) e y.

for all k Af, j Af, l Af. Here, let n, and mk denote respectively the number

of X’s and Y’s sampled up to stage k. Let .T’k = .T’k(.A) = {A A {(nk, ink) =

(j,/)} e ’,, Vj, l}. Then 5rk is easily seen to be a sigma algebra for every k >_ 1,

and ’k C ’+l. A procedure will be a sequence of allocation rules {(N,.AN)}N>_X.
Let # be the posterior mean of given X1,..., Xj that is

0=

and , + E=x
j-t-r

for j = 1, Similarly let j be the posterior mean of w given Y,..., Yj that is

and

=
j +

for j = 1, Observe n + r and mk + S are the precisions ..of/9 and w respectively

at stage k. So,

1 1
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The study proceeds until stage N (fixed). To simplify the notation, let

= N and rn = raN.

Now, consider the problem of estimating the product #w with squared error loss.

It is well known that the Bayes risk is minimized by taking the posterior means as

estimates. Then

(P) = EVar(Owl.7:’N )

m + s n + r (n + rl(m + s)

where E denotes the expectation with respect to the joint distribution of , w,

2. First Order Lower Bound

In this section an asymptotic lower bound for 7(7) as N goes to infinity and

necessary and sufficient condition for any procedure to achieve the bound are

derived.

Theorem: Let n(’P) be defined as in (1). Then

(2) Te(P) > E(I a I+ I, I)2
4- o(1/N)N+r+s

as N +oo with equality if and only if the following three conditions are satisfied:

(i) m,n +oo in probability as N-. +oo

IO
 - i01+ w]: in probability as N --* +oo

2NN
and um-(iii) #2 m m

are uniformly integrable.

Proof of Theorem 1

The proof of the theorem requires the following five lemms.
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Lemma 1: Let T,, T=,... and T be random variables on a probability space

(f/, .4, P). Then

(a) If T T lmost surely, given T, az k --. +o, then T --. T lmost surely as

(b) T T in probabity, ven T, k +, then T T in probabity

k+.
Proof: To estabfish (a), observe that

Pr{Tk --, T} = E(Pr{T --, TIT})

=E(1)=I.

To establish (b), observe that

Ve > 0, Pr {I Tk T l> e.} = E (Pr {I T T l> elT}).

The proof follows by the dominated convergence theorem.

Lemma 2: If n m +oo in probabilty as N --+ +, then

/Zn -- 0 and rn --* w in probability as N -* +o.

Proofi The following result is crucial for the proof of the lemma:

Let Zk, k >_ 1 be a sequence of random variables, let Z be a random variable, and

let ra be a sequence of integer valued random variables such that:

Zk -- Z almost surely as k --, +oo

and

v --, + in probability as a +c.

Then

Zr. Z in probability as a --,

The lemma will follow if we show #k "-* 0 almost surely as k --* +c and k "* w

almost surely as k --* +0. By the strong law of large numbers, #k "* 0 almost
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surely, given , as k --. oo. Hence #k --*/7 almost surely as k --* +oo, by Lemma (1)
and similarly --. o almost surely as k +oo

Lemma 3: For any sequential procedure {(I /n I/lu I)Z;N >_ 0) is

dominated by an integrable random variable.

Proof:

_< 2(supl# 12 +supl

So in order to establish the proof we need to show that

and

E(supl #a ) < +oo

(3) 12) < +oo.

Now #k and k, k >_ 1, are martingales, since they are formed by taking succesive

conditional expectations. So domination follows from Doob’s inequality. In fact

E(sup ) _< 4supE()
k>_r k

Lemma 4: If T(79) ---, 0 as N --. +oo, then m +oo and n ---, +oo in

probability.

Proof." Recalling equation (1), T(79) --* 0 as N +oo implies E m+s ]
0

asN--.+oo So u
rn+s "" 0 in probability as N --* +oo. Observe that

#2n ) inf#m+s m+s
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But inf #2k > 0 with probability one since # --+ 0 # 0 with probability one and

Pr(N{t, # 0}1 = 1. So

By the same argument involving it follows that n --+ +oo in probability, asn+r
N +OOo

Lemma 5: Let

a2 b2
f(a, b x) = / (a + b)2

1-x

fora, b>0and0<x< 1. Then

a
() f(a b,x) > 0 with equnlity if and only if z = a+b

(b) If f(ttn,v,n, i’) O, n --. +oo, and m +oo in probability as N +oo, then

.N 0 + I,,.,I in probability asN --* +oo.

Proofi (a) follows directly from the identity

a b [a (a + b)x]2---+ (a + b)2 =

To establish (b), first observe that

1 m+s

by (4), since x(1 x) <_ 1/4 for 0 < x < 1. So, if f(p,,vm, m/N) --. 0 in probability

then

m +, I )2(I + I"- I)2 -* 0 in probability as N +oo.(N + r +.s ,., + v,,-,
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By the remarks at the beginning of the proof of Lemma 2, #n --,/9 and m
probability as N +oo, so

m+s I#nl )20 in probability as N+c,(N+ r+s ,1+i ’,

and

N 101+11
in probability as N

--*win

Proof of the first order lower bound

To establish the lower bound, let :P = 79N denote any procedure for which

n(7) < inf,,, 72(79)+o(). Then n(:P) 0 as N +o, since the risk approaches

zero for equal allocation. To show that 72(79) _> E(IsI+II):-N+r+s + o(), write

n q- r (n-t-

1
E{(I , I/1 I)}.-> v+r + s

The last inequality follows from Lemma (5) part (a). So

(7)-- E(I 0 + ...I)Z
N+r+s

1
:E{(I I+ I, I)z- (i 81+ w I)Z}.>-

Combining Lemmas (2) and (3) it follows that

E((l#,l+lr’,l)z-(lOl+l,l)}-+o as N-++.

Proof of the sufficient condition

At stage N,

<i + + )()- E<l 0l+/ !) { i ++ }N+r+s } = E (m+s)(n+)
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+E{ #2n

Combining Lemmas (2), (3) it follows that the last line approaches zero as N --. +c.
Since r > 0, s > 0, and

(N + r + s)/(m + s)(n + r) _< 2 max{l/(m + s), l/(n + r)},

it follows that

E m+s}(n"-r) 0 as N-.+oo

by the bounded convergence theorem. Combining Lemmns (2), (3), and conditions

(ii) nnd (iii) it follows that the middle line approaches zero as N +c. This

concludes the proof of the sufficient condition.

Proof of the necessary condition

Let 79 be any procedure for which there is equality in (1). Then Conditions (i) and

(ii) follow easily by using lemma(4) and (5). For condition (iii), first observe that

E(101/I I)z f N+r/ ](N + +

N+r+S N+r+S

Here the left hand side approaches zero as N --. c, by assumption; the first term

on the right approaches zero by the dominated convergence theorem; the second

term on the right is non-negative; and the last term on the right approaches zero

as N --+ c, by boob’s inequality and the dominated convergence theorem. So
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approaches zero as N --* oo. Moreover since condition(ii) is satisfied, then

#2n v N + r + s

N/r/,- N+r+, (’m + sl(n +

in probability as N --. oo and since it is non negative, then it is uniformly inte-

grable. See Woodroofe (1982). Therefore condition (iii) is satisfied since #nN/m
and vN/n are bounded above by a uniformly integrable quantity.
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