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ABSTRACT

Suppose that, given w = (wl,ws) R, X,X,... and

Y, Y:,... are independent random variables and their respective

distribution functions G and G= belong to a one parameter

exponential family of distributions. We derive approximations

to the posterior probabilities of w lying in closed convex subsets

of the parameter space under a general prior density. Using

this, we then approximate the Bayes posterior risk for testing

the hypotheses H0" w F/ versus HI" w f22 using a zero-one

loss function, where FtI and Ft2 are disjoint closed convex subsets

of the parameter space.
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I. INTRODUCTION

Let F be a non-degenerate open interval of the real line R and let G.,

7 F, be a one parameter exponential family of probability distributions

with natural parameter space F, that is,

G.(dz} = exp{Tz

for z and 7 F, where/z(.) is a non-degenerate sigma-finite measure on, exp{%b(7)}= fexp{7a}#(da) nd F:{7 6 " /exp{7a}#(da)< +oc}.
The function is strictly convex and its second derivative is positive on F.

Let X, X,... and Y, Ye,... be independent random variables and suppose

that the X’s have common distribution function G, for some unknown

and the Y’s have common distribution function G2, for an unknown

w2 F. Further, suppose that w (w, w2) are jointly distributed on F2

with a joint prior density II.

Consider the problem of testing hypotheses of the form H0" w f/

versus H" w f/2 using a zero-one loss function, where f/ and fl are

disjoint closed convex subsets of P2. There is a unit loss for making a wrong

decision when w fl t2 f22 and no loss when w F2- (fli t5 f/2). In

the literature this last subset is called an indifference zone. The concept of

indifference zone was introduced by Schwarz (1962). A zero-one loss function

for testing H0 versus HI with the above indifference zone may be written

L(w, q) qI{n} + (1- q)I{en}, where q = 0 or 1 to indicate acceptance

of H0 or HI, respectively, and I{.) denotes the set indicator function.

Suppose we are to decide between H0 and H based on the observations

X,... ,XtN and Y,..., Y(1-t)N, where N and Nt are fixed integer and t

(0, 1). The posterior risk of any procedure (test) qN--qN(XI,..., XtN, Y,...
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,}i-)N) for choosing between H0 and H is EtL(,qN)I.TN] = qNP[a
--(1 qN)P?w. f2:IoT’NI, where qN = 0 if H0 is accepted and 1

otherwise and 5rN is the sigma-algebra generated by X,...,XtN,},...,

}l-t)N. The posterior risk E[L(w, qN)[,T’N] is minimized by the Bayes pro-

cedure" accept Ho (qN 0)if P [w g/ lgVg] >_ P [w flgVN and reject

Ho (qN = 1) otherwise; is used. The posterior risk of the Bayes procedure,

called the Bayes posterior risk, is

min=, {fn exp[N/(w, z)]H(a)dw}
fr exp{N/(c0, z) }II(w)dw

where/(, z)=tw- t(w)+(1 t)w2F- (1 t)(w:), z=(, }-’7) and Y
and I" denote the averages of X,... ,Xtg and Y ..., Y(-t)N respectively.

The main goal of this paper is to derive approximations to the Bayes

posterior risk r(II, z), which does not always have an explicit expression.

Approximations to r(H,z) find applications in sequential analysis, where

the experimenter may need to evaluate r(H,z) at each stage in order to

decide whether to stop the experiment or not and/or whether to observe

an X or a Y next. Since the Bayes posterior risk is the minimum of the

posterior probabilities of fl and fl we will first consider the more general

problem of approximating posterior probabilities of closed convex subsets

of I‘2 then approximations to r(II,z) will follow as a corollary. Bickel and

Yahav (1969) studied the Bayes posterior risk of testing disjoint hypotheses

using a zero-one loss function with indifference zone. They showed that for a

certain class of distributions the nth root of the posterior risk converges to a

quantity related to the Kullback-Liebler information numbers, as the sample

size increases to infinity.
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Let P Iftz] denote the posterior probability of a subset f/ of F 9- given

the sufficient statistics z and let

P (f; z) = jf exp{N l(ca, z)}II(w)dw.

Hence P(alz)=P(a; z)/P(r; z). Let &(z) and &(z) denote the maximum

likelihood estimators (M.L.E.) of w on F2 and f, respectively. Recall, the

M.L.E. of , over a set f is the point & &(z) f/such that supen l(,, z)-

/(5, z). The subset ’(F) x ’(F) of 2 is called the expectation space, where

prime denotes derivative here. When z ’(r) x ’(r) then by Lemma 2.1

the M.L.E.’s b(z) and &(z)exist and are unique.

The main results of this paper are given in Section 5. Proposition 5.1

gives approximations to posterior probabilities of closed convex subsets of r.
The Bayes posterior risk r(II, z) is approximated in Corollary 5.1. Sections 2

through 4 contain technical results. In Section 2 we give some properties of

exponential families of distributions. In Section 3, we derive approximations

to P(fl; z) when the M.L.E. b(z) f and in Section 4 we approximate

P(F/; z) when &(z) e f0, the interior of f/.

2. PRELIMINARY RESULTS

In this section we present some results of exponential families of that

will be needed in subsequent sections. For the proofs of most of these results

the reader is refered to the monograph by Lawrence Brown on Fundamentals

of EzponentiaI Statistical Families. The first result states that when the

natural parameter space r is open then the expectation space

is also open and both the maximum likelihood estimator (M.L.E.) over

and the M.L.E. over any closed convex subset f of I‘2 exist and are unique.
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Lemma 2.1" r is open then, ,’(r) w’(r) i op ayo, u z e’(r)

,’(F) the Maximum Likelihood Etimator of w, denoted by & = &(z), ezist

and i unique.

zf f is , tosed convz ,egion off, then for every fized z ’(r)x ’(F)

there exists a unique point &=&(z) f2 such that sup,,e /(w, z) = /(&,z).

Moreover if the M.L.E. & f2 then & lies on the boundary of

For a proof of this Lemma the reader is refered to Brown (1986) (Theorem

5.5, page 148 and Theorem 5.8, page 154).

Lemma 2.2" Let C(w) denote a closed ball with center and radius

Proof of Lemma 2.2" First we will show that A,(z) is bounded uniformly in

z, Vz F, that is, there exists a compact subset Be of f such that Vz F,

A,(z) C B,. We will use a proof by contradiction to prove this claim.

Suppose that A,(z) is not urfiformly bounded, then there exist a se-

quence of real numbers (m)m with limm = +oo as m +oo, a sequence

(Z,)m C F and a sequence (Wm), such that

m A(z.)

Since (Zm)m is in a compact set then there exist a subsequence (Zm)m Of

(Zm), and a point z F such that limz,t z as m ---, +oo. Moreover

by (2.1)

(2.2)
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By letting m +oc in (2.2) we get a contradiction. Since, by the

strict concavity of/in w, (2.3) implies that lim/(m, z,,) -c as m -
and the continuity of and & with respect to (,z) and z imply that

liml(&(zmt),zm) = /(&(z),z) < +c as m +:x. Hence

compact subset of f/such that Vz F A(z) C B.

Again, using a proof by contradiction, suppose the Lemma were not

true. Then there exist a t > 0, a decreasing sequence (em)m C , with

and e,, ---, 0 as m --+ +oc, a sequence (z,,),, C F and a sequence

(Wm)m such that

(2.4)

Since F is compact then there exists a subsequence (Zm)mt of (Zm)m and a

z2 F such that limzm = z2 as mz +c. Observe that for z fixed the set

Ae(z) are closed and increasing in e, that is A,(z) C .4,,(z) fore <_ e’. Since,

as shown above, A, (z) is bounded uniformly in z then .4,,,, (z,) CA, (Zm) C

Be Vm _> 1, where B is a compact subset of f/ containing (Wm),. Hence

there exists a subsequence (wm)m of (m)m nd a w, a such that

limwm = w, as m +oc. By (2.4) we have

l(,,z=)- lim [/(w,, z.=) + e.] >_ lim /(&(z...), z,)

= z:).

and co,,= C; (g;(zm:)). Hence w, is a M.L.E. over f and w, 76 &(z:)which
contradicts the unicity of (z=) as stated in Lemma 2.1.

A function of a complex variable is analytic on a domain U if (u) can

be represented as a power series in a neighborhood of every point u0 U.
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Lemma 2.3" Let be the cumulant generating function of the G., a defined

in (1.1). The function e,p{-W(u)} i analytic on {u C Re(u) e F}, where

C is the set set of complez numbers and Re(u) denotes the real part of u.

For a proof of this Lemma see Brown (1986) (Theorem 2.7, page 39). Let

Ed be the set of all limit points of a set E. The set E is said to be connected

if and only if for any partition E, E= of E, Ef E= 76 (3 or E 7 E2d 76 (3,

where denotes the empty set.

Lemma 2.4: Let U and V be two connected subsets of the plan . Let

(u,v) be an analytic function on U x V. Let C C U and C2 C V be

two circles with radiuses r and r and let Int(C) and Int(C) denote their

interiors respectively, then

< i!j!M(r, r:)

for every (u,v) e Int(C) x Int(C2), where M(r,r) = supcxc
and 0 denotes the partial derivative operator.

For a proof of this Lemma see Markushevich (1965), (Theorem 3.8, page

105, volume 2). In the sequel of this paper f/ will denote a closed convex

subset of F and I" the euclidean norm on 2.

3. APPROXIMATING P(fl;z): M.L.E. f

Let f2 be a closed convex subset of r2. Recall that if d(z) fZ then, by

Lemma 2.1, (z)lies on the boundary of a. Next, for each z

such that b(z) f/ consider the following reparametrization of/(w,z)" To

each co = (ox,c02) r2 associate its coordinates, say 0 = (02_,0), in the set

of axises obtained by rotating clockwise the w-axises such that the w2-axis

becomes parallel to the tangent to the boundary of f/at &(z). We will call

the new w2-axis the 0-axis and the new wi-axis the 0+/--axis.
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Hence

sin A Op cos),

cos A 0 sin A

where A = A(z) denotes the angle of the rotation. Let O denote the parameter

space F2 in the 0-axises and let h(0, z) denote the reparametrized function

l(w(O),z), that is, Vz e ’(F) x ’(r) with &(z) a let h(0, z) =/(w(0),z),

V0 (R). For simplicity of notations we will use fl to denote the set F/before

and after reparametrization. Also II will denote both the prior density of w

and 0. Let (z) and g(z) be the Maximum Likelihood Estimators of 0 over

and Ft. Observe that Vz e ’(r) x ’(r) such that &(z) [2

(3.2) 0 (0(z/,z) = 0,

(3.3)
Oh

" )tcos i "(&=)(1 t)sin= A < 0oo(O,z)=- (

o (0),z)<0 voea(3.4) [0+/- 0+/-(z)] oo. (z

The main result of this section, that is the approximation of P(f" z), is given

in Proposition 3.1. Next we introduce three lemmas that will be needed in the

proof of Proposition 3.1. The proofs of the following Lemmas are extensions

of Johnson (1967) to the two sample case. In this paper, Johnson gives

an asymptotic expansion for posterior distributions when the observations

come from a distribution belonging to a one-parameter exponential family

of distributions.

Lemma 3.1" Let zo ’(F) x ’(F). Assume that H is bounded, twice

continuously differentiabte in a neighborhood of = (Zo) and YI ((Zo)) > 0.
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If 6}(z0) f2 then there ezist a compact subset F, Zo F, of ’(F)x ’(F)

and three positive constants 5, M, and N such that for N >_ N, - ,<-

N-/, , <-N-/, ’ 1t<_5 and Vz F

(3.5)

where

(3.6)

VII(0) is the gradient of I"i at 0, ( = (+/-,(p) and prime denotes transpose.

Proof of Lemma 3.1" Let z0 ’(F)x ’(F). let 0 > 0 be such that

II is positive bounded and twice continuously differentiable on {0 O

I] 0- (z0) [[< 50 }. Since t}(z) and t}(z) are continuous functions of z,

Vz C ’(F) zt"(F), then there exists a compact subset

such that H is positive, bounded and twice continuously differentiable on

0 c o-1! 0- } Vz c and t(z) g/, Vz C F.
By (3.1) and Lemma 2.3 the function h is a composition of two analytic

functions in , hence it is analytic in O. Therefore, for fixed z in Fz, we can

expand h(O, z)in a power series in a neighborhood of 0(z). Let z C F then

such that 11<50/2

(3.7)
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,,’here Dij(z)= (1/i!j!)Oi+Jh(;z)/O0O. Hence

(.s)

where

(3.9) Q(, Z, z) = iI( + )exp{Z N-/ Z Di(z)ZZJp}

and Z = (Z+/-, Z) = (N2/Z_L, N/z,). By Lemma 2.4, there exists M > 0,

such that

(3.o)

Let 50 = 0/2. By (3.10), for N >_ max(5, 1) N, SM: > 0 such

that lw--/D(z)l M, V 3 and Vz F. Hence for N _> N the

series Ea_> E2+j=: N-/DJ(z) Z_Z is uniformly convergent on the

interior of the unit circle {Z e 1t z [l< }, Vz Fx, hence it is analytic

inside the unit circle Vz F. Since II is twice continuously differentiable

on {0 O’ll 0- (z)11< o}, Vz Fx, therefore for N >_ N, tl !1< 5o,

Q(, z, z) =Q(O, o, z) + [VQ(O, o, z)]. (, z)’

+ 5(,z). Q(#, ,z). ( z

where X7Q(0,0, z)is the gradient of Q with respect to (,Z) at (0,0, z) and

X72Q(,,z) is the hessian of Q with respect to (,Z) at the intermediary

point (, , z).
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Moreover by computing V2(, Z,z)it can be easily checked that all the

second derivatives of Q with respect to (, Z) are bounded whenever N >_ 1,

and z Fa. Hence SM > 0 (independent or N) such

that for It ]1-< 50, II Z ]]< 1, N _> N and Yz F

{ o N Oh }
which proves the lemma.

Lemma 3.2" Let z0 ’(F)x ’(F). If (z0) q 9t then there ezists a compact

subset F, Zo F:, of ’(F) ’(F) and a constant > 0 such that for

3 Oh 1 cgh() ( + ’) (’) <- 0 (’) + -,(’)

Proof of Lemma 3.2" By the same argument leading to (3.7), there exists

compact subset F of ’(F)x ’(F) and a constant 0 > 0 such that Vz F
and II I1< 0

Vz F. Hence Vz F,

D(z)(z( /9
2

( -)
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where p = max(l . I,I s ])/60=. Observe that for 0 <l]

p/(1 p) G 4p. Hence, by (3.2), (3.3) and the continuity of

and 02h(O, z)/O0 with respect to z, B2 > 0, 2 o2/2, such that Vz F1

1 Oh 1 202h(3.15) 7 +/- 08. (,z) + #, O02-(,z) + 4p2M < 0 Vz e F.

The lemma follows by (3.13)-(3.15).

Remark 3.1" Observe that Lemma 2.2 can be restated in the O-axises. That

is, let F be a compact subset of ’(F) x ’(F) then V6 > 0 e > 0 such that

B(z) C C ((z)), Vz F, where Ce((z))is as defined in Lemma 2.2 and

B,(z) = {0 e F/" h((z), z)- h(O,z) _< e}.

Proposition 3.1" Let Zo e ’(F) x ’(F). Assume that II i bounded, twice

continuously differentiable in a neighborhood of (Zo) and Ii((Zo)) > 0.

t(Zo) a then there ezists a compact subset Fz, Zo

such that

as N +oc, Vz e Fz, where E- Oh(,z)/O02. and F = -O2h(, z)/08.

Proof of Proposition 3.1" By Lemma 3.1 and Lemma 3.2 there exist two

compact subsets F and F2 of ’(F) x ’(F) such that (3.5) and (3.12) hold,

respectively. Let Fz = F Fz, the compact set F3 is non-empty since

z0 e F F2. So, by Lemma 3.2, $62 > 0 such that for I1< =, (3.12)

holds Vz F3. Now choose 6 in Remark 3.1 such that 5 <_ 32- Then : > 0

such that B,(z)C C,(t)(z)) Vz e F. Hence, Vz F,
o

(3.17)
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where T = Tx(.z) = exp{N[h( + t,z)- h(,z)] }H( / ). Let 53 =

min(5,5) where 5 is as defined in Lemma 3.1. Now note that for N _>

max(t/", 1) the r.h.s, of (3.17) can be written as

o o ]5 6 6 N-I

By Lemma 3.1,

(3.19)
0 -N-’1: 0 -N-’/3

/_ /_ [T-S]d <_/_ /_ (thefightsideof(3.5))d.
N-213 N-I.13 N-:I3 N-1.13

By (.2), (a.a) and he continy of h and 0 in , the r.h.s, of (.19) can be

found, using orary calculus,

Vz F,

(3.20) _N- 13 [T (, z) S(, z)]d
N-I.13

< O(N-/o).

Similarly, by (3.2), (3.3) and Lemma 3.2, Vz e F,

(3.21)

f [,,_;’-" I; ] I’+ T(,z)d _< exp N6 -./:3

and

/ Oh } /

o0
(0,z) = o(v- )

(3.22)

T(,z)d < exp N
N_.I3

/ Oh }O0+/-(O’) = O(N-/).

So by (3.17), (3.18), (3.20)-(3.22) and the definition of

/. f -/_.--"’Tx(8 O,z)dO S(,z)d <_ 2 T(O O,z)dO
N-2/a N-/a

0 0 -N-I

5 N-I N-I
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The proposition follows by evaluating the integral of S((,z) in the left side

of

4. APPROXIMATING P(;z)- M.L.E. fl

Let f/ be a closed convex subset of F2 and let fl0 denote its interior.

In this section we approximate P(fZ; z) when the Maximum Likelihood Es-

timator &(z) f0. The approximation of P(f; z) is given in Proposition

4.1. Next we introduce some lemmas that be will needed in the proof of

Proposition 4.1.

Lemma 4.1" Let z0 ’(F) x ’(F). Assume that H is bounded, thrice

continuously differentiable in a neighborhood o.fS, = 5.,(zo) and II(d.,(Zo)) > O.

Then there exists a compact subset Fa, z0 Fa, of ’(F) x y)’(F) and three

positive constant 5, Ma and N such that for N >_ N:, 1! It < 5 and

where

! (1,1) and prime denotes transpose.

Proof of Lemma 4.1" By a similar argument as in the proof of Lemma 3.1,

there exists a compact subset F of ’(r) x ’(r) such that Vz F4, II
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is positive bounded and thrice continuously differentiable on {w F2 "li
a -&(z)li<_ o4/2}. By Lemma 2.3, the function/(.,z) is .analytic on P2.

Let z F4 then V : such. that ti l 04/2

where Dij(z)- (1/i!j!)Oi+Jt(d,z)/OwiOw. The rest of the proof follows as

in the proof of Lemma 3.1.

Lemma 4.2: Zo ’(r) x ’(r). There ezist a compact subset F, Zo F,

of ’(F) x ’(F) and a positive constant such that for I1 II 5, Vz F

1 Ol 1 0t
(4.2) l(& + , z) /(&, z)

_
0.,(&,z)+22"aW(&’z)"

The proof of this Lemma is similar to the proof of Lemma 3.2, so it will be

omitted.

p0position:4.!: Let Zo ’(r) x ’(r). Asume that II is bounded, thrice

continuously differentiabIe in a neighborhood of &(z0) and II(&(Zo)) > 0. If

&(Zo) flo then there ezists a compact subset FT, z0 F7, of ’(F) ’(F)

such that

(4.3)

[ 1N1/D] <_ o(v-/)

a N --, +e, Vz e F, where C- Ol(&,z)/Ow and D = Ol(&,z)/Ow.

The proof of this proposition is similar to the proof of Proposition 3.1. It

will be omitted.

5. APPROXIMATING POSTERIOR PROBABILITIES
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Let f2 be a closed convex subset of F2 nd let f0 denote its interior. In

the next proposition we give an approximation to the posterior probability

of f2 given the sufficient statistics z (X, Y), that is P(F/tz ).

proposition 5.1: ;Let z0 ’(1;’) x ’(F). Assume that II is bounded, thrice

continuously differentiabIe in the neighborhood of 5(z0) and &(z0). Alo

suppose that iI(&(zo)) > 0 and H(&(Zo)) > O.

i) If &(Zo) f2 then there ezists a compact subset Fs, Zo E Fs, of ’(F) x

such that

exp{N [/(&, z)-/(&, Z)] }P [ftlz

<_

as N +oc, Vz e Fs, where E = Oh(,z)/O0+/-, F = -Oh(,z)/O0,
c- D =

ii) If &(Zo) fi ft then there ezists a compact subset F, Zo F, of’C’(r) x

’(F) such that P [Ftlz] >_ 1- O(N-/), Vz e F, as N -, /o.

Proof of Proposition 5.1" Let z0 b’(F)x ’(F). First we will evaluate

r i op and b(z0) e F then there exists

a closed convex subset A of F such that &(z0) A. By Proposition 4.1,

there exists a compact subset Fr, z0 FT, of ’(r) x ’(F) such that

where R2(z)is the approximation of exp{ -N/(&, z) }P [f" z] in Proposi-

tion 4.1. Similarly, let R(z) denote the approximation to exp{-Nh(,z)}
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P[ft" z in Proposition ,3.1. If &(z0) ft then by Proposition 3.1 and (5.3)

there exists a compact subset Fs of ’(F) x ’(r) such that

2(z) o(2v-/
(z) + o(-/)

O(N,I(5.4) < exp{N[/(& z)- l(& z)] }P(alz) < +
()- o(-/)

Now observe that R(z) = O(N-/) and R(z) = O(N-), Vz S Fs. So

the right side of (5.4)is equM to R(z)/R(z)+ O(N-S/). By the same

argument we find that the lea side of (.4)is so a R(z)/R(z)+O(N-s/)
and the first part of the proposition follows. The case where &(z0) 0 is

proved similarly.

Next we approximate the Bayes posterior risk r(g, z), as defined in (1.2),

for testing H0" w versus H" w , using a zero-one loss %nction

with indifference zone r -(a Ua). Let &()(z), i = 1,2, denote the M.L.E.

of w over , i = 1,2, and g()(z) denote ()(z) deer the reparetrization

of section 3.

Corollary 5.1" Let zo ’(r) x ’(r). Assume that II i bounded, thrice

continuously differentiable in a neighborhood of &(i)(Zo), i = 1,2, and &(Zo).

Alo suppose that iI (&(i)(Zo)) > O, i 1,2, and II(&(Zo)) > O.

i) If d.,(z0) a a2 then there ezists a compact subset Fo, Zo Fo, of

,’(r) x ’(F) such that

as N +oc, Vz Fo.
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ii) If&(zo) 9i then there ezists a compact subset F, Zo E F, of e’(r).

such that

min{1; Uj .exp{N[/(f;(J,z)-/(5;,z)]}} O(N-/2) < r(II, z)

<_ (Uj + O(N-S/)) exp{N[/(&(/),z)-/(&,z)]}, j #i

as N ---+ +oc, Vz F, where

U = r i= 1,2

The proof of the corollary follows directly from Proposition 5.1. It will be

omitted.
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