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ON THE THEORY OF ONE.SIDED MODELS IN
SPACES WITH ARBITRARY CONES

ABSTRACT
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The paper presents a way of constructing quasimonotone nonautonomous
systems ensuring x-stability of the nonautonomous system. There are
described extensions quasimonotone with respect to an arbitrary cone,
Perron condition and invadant surface stability under perturbations. U-
stability on the set of non-wandering points is proved to imply u-stability
of quasimonotone nonlinear system and exponential u-stability on
minimal attraction center provides u-stability of the total systems.
Examples are available.
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1. INTRODUCTION

One-side models appeared as a means of investigation of real systems dynamical
properties in connection with the application of vector Lyapunov functions the existence of
which was indicated by Azbelev [1], Bellman [2], Matrosov [12], Melnikov [14]. The
comparison method created hereat is presented in [4, 5, 6, 9, 12, 14, 18, 19] and some
other papers. In 1977 Lakshmikantham and Leela [7] offered a comparison method for
cone-valued Lyapunov functions. The present contribution develops further the ideas of
the comparison technique for the case of autonomous and non-autonomous quasimonotone
extensions.

In the paper various sufficient conditions for equilibrium state stability in linear and
nonlinear models are determined and a relation between the dynamical properties of these
models and their behavior on limiting sets established. The concept of "extension"
employed allows us to apply the fundamental results from theory of dynamical systems in
the investigation of non-autonomous one-side models.

2. QUASIMONOTONE MODELS IN GENERAL

Let B be a compact metric space, Rn be an n-dimensional Euclidean space. The
Cartesian product B x Rn = E with projection p" E B is a phase space for the given
comparison system.
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Let cone K with interior ( be given in Rn, u _> u;z __clef Ul U2 E K for each u
Rn, < u1,u2 > = u Rn" U l -< u < u2 is a cone segment, and K* is a cone

conjugated with K. We consider a dynamical system Ht" E E.

Definition 2.1. Dynamical system H is called monotone (strictly monotone) extension if

a) pHt(v) = Ht(pv) = Ft(tp) for each v = (tp,u) B x Rn;

for each (V1,V1) E E such that p(v) = P(v2) inequalities v >_ V2 and v V2 imply
O

Ht(v1) >- Ht(v:z) (Ht(v 1) > Ht(v)) for all t R/.

The general monotone extension is generated by system

(2.1) Ft. B B
(2.2) f = g(tp,u), tpB, u Rn,

where F is a dynamical system in B, which has unique solution (F (tp0), u(t; tp0, u0))
defined for all t _> 0 and (qo, Uo) E.

Classes of functions W0(Wr) [15] that form the montone extensions have the
following generators:

Functions of the type of g(tp,u) = o (tp)u, where ct: B R, belong to class
W0 (extension of the monotonicity);

2 Convex linear combinations of mappings of the type of
h(9,(u, z*(p)))z(9), (,) is a scalar product, h(tp, s): B x R R is

montone (strictly monotone) increasing with respect to S R for all tp B,
z(p) K, and z*(tp) (*, belong to class W0 (Wr is a strictly monotone
extension).

Functions of the type of g(tp,u) = A(tp)u, where A(tp) is an element of Lie
algebra corresponding to Lie group of homogeneous cone K
transformations, belong to class W0.

It should be noted that the class W0 is closed with respect to the limiting transition on
compact sets in E.

Definition 2.2. Monotone extension (2.1), (2.2) is called

u-stable in cone K if for any e > 0 there exists 5(e) > 0 such that

5(e)e u0 K for any 9 M c B implies inclusion ee u(t; q0,u0) K for

allt 1+, e I;
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ii) asymptotically u-stable in cone K if it is u-stable in the sense of Definition
2.2.i and for any (p B a neighborhood u( c Rn exists such that for

uo utp fl K, lim u(t; 9, Uo) = 0 takes place as t --) ,.

3. STABILITY AND ASYMPTOTIC BEHAVIOR

Let L be a dynamical system in E = B x Rn generated by system of the type of

(3.1) Ft’B B,

= f((p, %), Z Rm.

Together with system (3.1), (3.2) we consider a vector-function V C [ B x Rm, K ],

V((p,Z) is locally Lipschitzian on Z.

Let there exist a function Q(tp,Z): B x Rm K, Q((p,0) = 0, which is non-negative

relatively cone K and function g C [ B x K, Rn ], g(tp,u) W0(K).

The following assertion is an extension of Theorem 3.1.3 from [8] for system
(3.1), (3.2).

Theorem 3.1. Let system (3.1), (3.2) be such that

i) there existfunctions V, Q, and g mentioned above;

inequality D+V((p,Z) + Q((P,Z) z<- g(tp,V(tp,Z)) takes placefor all

(tp,Z) B x Rm;

iii) for all t R+ there exists a unique solution of system (2.1), (2.2) when

t >_ 0 and (qo,Uo) E.

Then for any solution (Ft ((P0), Z(t; (P0,Zo)) of system (3.1), (3.2) estimate

(3.3) V(Ft ((p), (t; (P,Xo)) u(t; (Po,U0)

is valid as soon as v(tP0,;t0) u0 for each (Po B.

Theorem 3.2. [15]. Iffor the monotone extension H there exists an invariant strictly

monotone surface F B x R E, then asymptotic behavior of the extension H on E is

defined by its asymptotic behavior on F.

Let strictly monotone extension H be generated by system Q

(3.4) Ft. B B,
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g = A(cp) u, u Rn, q B.

Definition 3.1. Strictly monotone extension H satisfies Perron condition if there exists a

couple of invariant subspaces L(9) and L2(q) in E such that dim( L1(p) Iq p-(cp)) = 1
where p-l(q) is a pre-image of p(cp); dim( L2(q) fl p-l(q)) = n 1;

Ll(q)) C (I U-k) n

L2(cp) n (K \ 0 ) n p-l(cp) =

and constants c > 0 and 0 < 8 < I exist such that

lIH.(v) II lIH:(v I) II,v /
IIv211 Ilvlll

_<c8 for each t >_0.

Here v = (q,ui), u : 0, u Li.(cp), i = 1,2.
Lemma 3.1. Strictly monotone extension H satisfies the Perron condition if mapping
A(p)u is continuotts, bounded, and strictly quasimonotone relatively homogeneous cone
K.

Theorem 3.3. If linear approximation (3.4), (35) ofquasilinear extension

(3.6) Ft. B B,

(3.7) a = A(p) u + tf(q,u)

satisfies the Perron condition, f(qg,u) satisfies the Lipschitz condition, flqg,0) = 0 and is

quasimonotone on u relatively cone K, there exists/.to > 0 such that for 0 < # < I.to
extension (3.6), (3.7) has monotone invariant surface F.
Proof. For the proof see [ 15, 16].

Further we designate by Z a set of nonwandering points of dynamical system F
and by C/ a minimal attraction center of this system.

Theorem 3.4. Let H E .9 E be a monotone extension over a compact metric space B and
there exist an open in E neighborhood U of a set of nonwandering points Z belonging to

dynamical system pHt(z) = Ht(p(.)) = F such that for Z U and p() Z,
IHt(z) pHt(z)l =# 0 as t +oo. Then for any p B there exists a neighborhood
V(tp) C E such thatfor any Z V(tp) 13 K [3 pl(tp), IHt(z) pnt()l -9 0 takes place as
t -9 +oo, Ht(z) is asymptotically stablefor t
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Proof. Let us set u 1 a K arbitrary and consider element Ul(qO) = .(qo)u 1 in space E,
.(q) > 0 and u1 U for all qo Z c B. Since the set of nonwandering points Z is

compact, there exists ,1 = const > 0 such that constant u(q) = .1 x u = u, belongs to U
for all qo Z. As the set Z is invariant and by hypotheses of the theorem there exists a
sequence {T0i}, i = 1, 2,... such that

(u)_< Z,i 1,2,.(3.8) 0 _< Ho 8.2i, q0 =
for all t > T0i.

As the dynamical system Ht" E E is continuous, there exist neighborhoods
W C B of set Z in B such that estimate

0 <_ H __a.

4.2 9 Wi, i = 1, 2,...

holds for all qo Wi.

We note that Wi+l c Wi. Let D c W t::: B be a set of points qo W for which t > 0

and Ft(q) Wi. Sets D are nonempty because any point from B is wandering out ofW for
a finite time only; Z c D and closures D are compact.

k.J_ Htq0(u)>Let gl =

_
_D <0,

O<_tTo
Set g is closed compact and as extension Ht: E - E

is monotone, gl is positive invariant. Thus, trajectory Ht(7) is positive stable in the sense of

Lagrange for every X E and a g.

By choice of sequence T0i and monotonicity of extension Hr. E E inequality

0 <_ HmTOi(u) <_
4.2i i = 1, 2,...

takes place for q0 , where m is a positive integer.

For an arbitrary D we can take m(9,i) such that correlation
t

0< H (u)< i= i 2
tp 2.2i’ ’""
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holds true for all t [(m(q,i) + 1)T0i, (m(q,i) + 2)T0i ].

Suppose on the contrary.

T [T0i, 2T0i ] exist such that

Then sequence mt(9,i)-+ +oo as l--} o,, and numbers

m, ((p,i)T m’ ((P’i)Ti + x (0 22iH
o,

(u) ----r.,u H (u)
4.2

0

Taking from sequences Hmt(q’i)Ti (u) and Hmt(q’i)Ti+Xt(u) subsequences converging to

some uoo and vo,, p(uoo) a Z and p(voo) Z we make sure that uoo e ( 0,
__v_

)
4.2

v ( 0,
_a.

). Then a " e [T0i 2T0i] exists such thatoo 2.2i

(3.9) H (Uoo) = voo.

Equality (3.9) contradicts to the choice of T0i and to inequality (3.8). Since

_.R.
(3.10) 0 < I-I(u) < 2.2

<u, i=1,2,...,9 Di,

for all t a [(m(q,i) + 1) T0i, (m(9,i) + 2) T0i ], then applying operator H/T to inequality
(3.10) we obtain by virtue of the extension monotonicity

(3.11) 0 < H(u)
for all t _> (m(9,i) + 1) T0i.

2.2i ,(p Di, i= 1,2,...,

As closure 13 is compact, the choice of m(9,i) can be made independently of

q e Di, where inequality (3.11) ensures correlation

0_< I--I(u)<_2i ,q) Di, i=l, 2,...

for all t >_ m(i).

Let Tij(q), i < j, be a wandering time of arbitrary points p e D out of Wj. Then
the arguments-above imply that inequality

0 _< Ho(u) <
holds for any t > m(j) Toj + Tij + m(i) T0i.

2J ’q) Di

nThus, q(u) --+ 0 as t -+ +0o and 9 D1-
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As the extension is monotone for any X E, p(x) D, X = (p,y) and y (0, u),
then IHt(x) pHt(x)I ---) 0 as t

We set q B arbitrary and take T > 0 such that FT(p) D1 The required

neighborhood V(p) exists as a pre-image of cone segment (0, u)* for mapping H
:r
F(o)

Theorem 3.5. Let in system (3.4), (3.5)

matrix A(tp)u be continuous bounded and quasimonotone relatively cone K;

b) there exist an invariant subspace L(9) "dim(L(q)) fl p-l(q))) = 1,

Ll((p) f’l ( # O with respect to H

c) trajectories p(H+(v)), v E be exponentially u-stablefor p(v) C/.

Then H is exponentially u-stable in cone K.

Proof. Due to the continuity of L1 and its differentiability along system F+(q) trajectories,
the system (3.4), (3.5) on L1 is generated by a system of the form

Ft’B B

s=g(9)s,s R, ge B

with continuous bounded function g" B R.

As B is compact and system (3.4), (3.5) is linear, it is enough to show that there exists a

I < 0 such that

for all o B.

1 fg(FX(tp)) dx < [T
o

Let us set q) B arbitrary and find a sequence T ,,,, as 1 oo such that

’It

T 0 o
Let mo.(u) be a normed measure concentrated at q) B. For an arbitral function f" B R
we define a sequence of measures by equality
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= 1 )dm(uIf()m,T,(dll/) tldxlf(FX(9) ).
B 0 B

By definition of m(u)

B 0

From the sequence of measures mq,T we take a subsequence weakly convergent to some

limiting measure g(u).

For the limiting measure g(u) there exists a sequence of measures

ggi Eg, of fundamental system of measures and numbers %i, =1 i = 1, such that

measures 1 .i l’tg are weakly convergent to the measure g(u) for rn -, oo, and
equalities

f g(g(d = ]’i-rto.--lt I g(FX(q))dx
B 0

m

lnmoo E f g(g (d
i=1 B

take place.

There exists a constant 13 < 0 such that for any gVi e Xla9, IBg(llt)gVi (dg) <_ 13. In fact,

assuming on the contrary we find a sequence of invariant normed transitive measures laj,

IAj El.t, such that 1.i fBg()l-tj (d) > O.

The weak limit of measures t.tj is the measure go which is normed transitive and invariant

for dynamical system Ft(q0). Choosing g0 C+ so that 0 is regular with respect to

measure go we make sure that

I 1 I g(F’:()) dx >0.g(go (d) = lim y
B 0

The inequality obtained contradicts to the exponential U-stability of C/. In the view of the
extension monotonicity the theorem is proved.

Let the comparison system be of the form
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(3.12) t = g(u)

where u Rn, g C[K, Rn] and g(u) W0(K).

The following assertion is the development of results obtained in [3, 10, 15].

Theorem 3.6. State u = 0 ofsystem (3.8) is

asymptotically stable in K if and only if there exists a c such that the
system of inequalities

g(c) < 0
has solutions in cone K;

b) stable in cone K ifthere exists a sequence {Ck} in K, ck > 0 and Ck $ O, for
k -+ oo such that

g(ck) = 0
for all k;

c) unstable in cone K if there exists a sequence {rk} in , rk >_ 0 and rk $ O,

for k - , such thatfor all k, g(rk) K \ 0 and sets Ke fl U do not contain

singular points ofsystem (3.8).

Here Kr = {r Rn, r > rk } and U is a neighborhood of state u = 0.

4. APPLICATION

Theorem 3.1 establishes the relation between dynamical properties of solution of equations
(3.1), (3.2) and dynamical properties of solutions of one-side model (2.1), (2.2) similarly
to the method of comparison with scalar and vector Lyapunov functions (see [15] and
References to Chapter II).

Example 4.1. We consider a problem on Z-stability of system

=
2

(u+ u22)v;

(4.1a)
2

91=- (U1 + U22)1.11;
2

fl2= ,( U1 + U)V2;

(4.1b) = A(Ul,U2,Vl,V2 ) ,
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where Rn, (u1,vl), (u2, v2) R2, andA C[R2x R2,Rn] and is bounded.

System (4. la) has a family of invariant tori of the form u + v 1 = r, u + v2 = r

r1, r2, > 0- const.

System (4.1) in polar coordinates has the form

f = 0, f2=0;

(4.2a) Pl =" ( rcs2q)l+ r22cOs2q)2);

(P2 =" ( rlCOS2fpl+ r cos2(p2)

(4.2b) = A(rl, r2, (Pl, q)2 )

Let us consider in n(n2.+!) -dimensional space a monotone extension induced by

mapping W = [wii] = [i’j] (i, j) [1, n], reducing system (4.2b) to the differential
Lyapunov equation

=-( cos2,2 

(4.3a)
P2 =" ’( r12cs2ql+ r cos2q2)

(4.3b) V =AW + ,VAT

We transform (4.3b) to the following

(4.4b) W0 = AW0 + WoAT + g(W0, E) E,

where (,) is a scalar product of matrices (W, E) = spWE, E is a unique matrix.

For l.t > 0 equation (4.4b) majorizes equation (4.3b) and generates strictly monotone
extension relatively cone of positive definite symmetric matrices. Therefore we can apply
Lemma 3.1 and Theorem 3.5 to system (4.4b).

For system (4.3a)

C+ = { ql = " + kx; q2 = - + kx, k is an integer
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According to Theorem 3.6 one can observe exponential W-stability in system (4.3) if the
system of inequalities

(4.5) AW0 + WoAT + IA.(/0, E) E < 0

has solutions on C/. Due to the definition ofW we find that condition (4.5) is equivalent
to Routh-Hurwitz condition on C/ for system (4.1)when Z-stability is under
consideration.

Example 4.2. Let in an isodromic control system

(4.6a) di
d--i- = "Pii + air, i = 1,2,...,n

ds n
(4.6b) d-’i- = a7; ai Pn+lS- if(s)

i=2

the conditions 0 < p < rnin (Ok), k e [2, n + 1], f(s) > 0, for each ;e 0, frO) = 0,

> 0 be fulfilled

Remark 4.1. In contrast to the classical statement of the problem on stability of isodrorrfic
control system here we take into account the signs before coefficients a and this allows us
to separate from the general class of isodromic control systems those generating
quasimonotone semi-groups. Also it should be noted that the sign of coefficients a are
really different when the real automatic control systems are under consideration.

Systems of equations (4.7) generate quasimonotone semi-groups with respect to a circular
2 n 2

cone K = (Zi, ) e Rn+l 1 > 0, 1 > i + er2 }.
i=2

The zero solution of (4.7) is uniformly asymptotically stable if and only if the system of
inequalities

-PlXl + alo < 0,

11 n
(’Pll + alCr)2 -> E (-Pii + ai(s)2 +( E (aii- Pn+l- f(cr) )2,

i=2 i=2

)1>- 0,
2 n 2

i=2

has solutions. This is valid if and only if

2 2
n a al fro)

(4.7) Pn+ + E >
i=2 Pl Pl O
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for cY 0.

Remark 4.2. In [ 10] we established sufficient conditions for uniform asymptotic stability
as follows

(4.8) Pn+l ->
2

i=l Pi

where the signs before coefficients a were not taken into account.

It is easily seen that condition on parameters (4.7) extends (4.8).

5. CONCLUDING REMARKS

The consideration of comparison system as an extension of dynamical system
defined on compact manifold allows

a) more detailed investigation of linear non-autonomous systems;

more complete collection of dynamical properties of comparison and initial system,
such as, for example, oscillating processes.
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