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1. INTRODUCTION

Since the concept of weakly inward mappings was introduced by B.R. Halpern and G.M.

Bergman in [5], many papers about weakly inward mappings have been published. This concept

has wide applications to differential equations in Banach spaces, modern calculus, theory of fixed

points, optimizationt theory, etc.

The purpose of this paper is to prove a theorem of three fixed points for weakly inward

mappings. For the sake of convenience, we first recall some definitions and notations.

DEFINITION. Let E be a real Banach space, D a closed convex set of E. Suppose

that A is a mapping from D into E. Then A is said to be a weakly inward mapping on D if

for each z E D, where

ID(Z) is called the inward set of x with respect to D and ID(Z)is the closure of ID(Z).
LEMMA (cf. [2]). Lel E be a real Banach space, O a closed convex set of E, and A:

DE a mapping. Then A is a weakly inward mapping on D if and only if
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}d(x+t(Az-x), D)=0, z C D,lira
--,+0

where d(x+t(Ax-x), D) denotes the distance between z+t(Az-x) and n.

2. MAIN RESULT

We now state the main result of this paper.

TtIEOIEM. Let E be a real Banach space, D a bounded closed convex set of E,
and A: D ---,E a strict-set-contraction and weakly inward mapping. Suppose that A satisfies a lo-

cal Lipschitz condition; and there exist two relatively open convex sets D1 and D2 of D,

D1 n D2 5 , such that A is weakly inward on D1 adn D2 respectively. Suppose further that A

has no fixed points on OD1 and OD2 (where OD1 and OD2 are the boundary of D1 and D2 with res-

pect to D respectively). Then A has at least three fixed points on D.

PROOF. Consider the IVP

u,=Au-u, u(0)=x E D (2)

It can be proved that IVP(2) has a unique solution u(t, x) on [0, + c,) forin Banach space E.

each z E D, and

Define, for each >_ 0,

u(t, z)Dforanyt>0. (3)

Then U(t) is an operator and from (3)it follows that

U(OD C D. (5)

We know, in the same way, that

(6)

since A is weakly inward on D1 and D2 respectively. It follows from A I satisfying local

Lipschitz condition that U(t) is continuous by continuous dependence of solutions on the initial

values.

It is possible to show, by using the same arguments as those of the proof of Theorem 4.8

in [3], that

a( U(t)(B)) <_ e-(-k)tc(B)
for any >_. 0 and B C D, where a(. is Kratowskii’s measure of noncompactness and 0 _< k < 1 is

the coefficient of strict-set-contraction of A (i.e., a(A(B)) < k.a(B) for any B C D). From this it

follows that U(t): D---,D is strict-set-contraction for each > 0.

U(t)z-=u(t,z), z C D. (4)
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We now show that a positive number c can be found such that U(t) has no fixed points

on the boundary of D for any 0 < < c. In fact, if it is the contrary, then n > 0 (n= 1, 2, ...)
can be found such that tn---*O and U(ln) has fixed point Xtn on the boundary of D1. Therefore, we

ht,v

u(tn, ztn)=U(tn)Xtn=Ztn OD, a=l, 2,

Let Un(S)=U(S x for s >_ 0. Then it follows from the proof of Theorem 4.8 in [3] that there

exists a subsequence uni(s) of lUn(S) which uniformly converges to z E on [0, +c)as n

goes to infinity, where z is a fixed point of A. Therefore,

lim z = lim U(tni, z )= lim Uni(tni)=zr$i’*oo n ni’-*oo n

and z E OD1. This is in contradiction with A having no fixed points on the boundary of D1. This

implies that a positive number c can be found such that U(t) has no fixed points on the boundary

of D1 for any 0 < _< c. In the same way we can show that a positive number c, can be found

such that U(t) has no fixed points on the boundary of D2 for any (0) < < c,. Let c*=min{c, c,).
Then U(t) has. no fixed points on the boundary of D1 and the boundary of D2 for any 0 < < c*.
And

from this and (5), (6) it follows that, for any 0 < < c*,

i(U(t), D1, D)=I, (7)

i(U(t), D2, D)=I, (8)

i(U(t), D, D)=I, (9)

where i(.,., ,) is the fixed point index, whose definition and properties can be found in [6]. Let

D3=DI(D:t UD2). Then by (7), (8)and (9) we have

i(U(t), D3, D)=1-1-1=-1.

Therefore, by the solvability of fixed point index, U(t) has fixed points in D1, D2 and D3for each

0 < t < c*, respectively.

We finally show that A has a fixed point in D3. In fact, if we select m > 0(re=l, 2,...)
such that tm--*O as m goes to infinity, and let Xtm be the fixed point of U(tm), then

t(Tlm, Xtm)-- U( tm)Xtm-Xtrn 03.

Denote Um(S)=u(s xt,) for s > 0. Then it follows from the proof of Theorem 4.8 in [3] that a

subsequence __Umk(S) of__tUm(S))can be found such that umk(s uniformly converges to Zl( E on

[0, + c) as mk goes to infinity and zl is a fixed point of A. This implies

lira x = lim u(tmk, x )= lira
mk"*cx mk mk"* mk

mk"*cx
Umk mk
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so z E 33, and hence it follows from A having no fixed points on the boundary of D3, which is

the union of the boundary of D1 and the boundary of D2, that z1 is in D3. Thus, A has a fixed

point in D3. We can prove, by the same reasoning, that A has fixed points in D1 and D2

respectively. Hence A has three fixed points on D and the proof is completed.

REMAI’CK 1. We can only conclude that A has two fixed points in D under the

conditions of this Theorem by using Theorem 4.8 in [3], i.e., A has fixed points in D1 and D2

respectively, and the third fixed point of A in D can not be obtained.

3. EXAMPLE

Let us now show an example. Suppose that the real Banach space E is R2. Let

0_<

Ol={(x y) E2. 0<$<1, O<y<l),
D2=D U D and

2 < < 0 20 -40},
D" f’z 2

and let the operator A from D into 2 be

A(z,y)=(y-z(x-1)(z-5),-y).

The Theorem will be applied to show that A has

three fixed points in D. In order to do this,

we verify that A is weakly inward on D, D1

and D2 respectively and A has no fixed points

on the boundary of D1 and D2 with respect to D.
5 x

In fact, it is easy to show that A" D--+R2 is weakly on D and on D-’’. We now show
that A is weakly inward on D’-. Clearly, it is sufficient to show that A(x, y) is on the right side
of the line y=20x-40 for 2 < x < 9/4 and y=20x-40, and to verify the following:

the z coordinate of A(2,0) _> 2, (0)

the y coordinate of A(2,0) >_ 0, (11)

the z coordinate of A(9/4, 5) >_ 9//4 (2)

the y coordinate of A(9/4, 5) _< 5. (13)

It is easy to check that (10) (13) hold. We now show that A(x,y) is on the right side

of the line y=20x-40 for 2 < x < 9/4 and y=20z-40. In order to do this, we should show
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-y <_ 20y-2Oz(x-1)(x-5)-40
holds for 2 < x < 9//4 and y=20z-40. Substituting y=20x-40 in (14) gives

(i4)

20x(:-l)(z-5)-21(20z-40)+40 _< 0, 2 < < 9/4. (15)

Define a function g(z) on R1 by

g(x)=20z-(z-1)(x-5)-21(20x-40)+40.

Then

g(2)=40. (1). (-3)+40=-80 < O,

and

g,(x)=20z-(z- 1 )+20 z-(z-5)+20(x- 1 )(z-5)-420=20(32_12-16).

We know that equation g,(z)=O has two real solutions

zl.-2-8/3,

Since g(z) is a quadratic function that opens upward, we get

g’(xl)=g’(x2)=O,

and

g,(z) < 0 for zl < z < z2. (16)

And hence,

g,(z) < 0 for 2 <_ z <_ 9/4 (17)

by virtue of (16) and x1 < 2 < 9/4 < z2.
that

From g(2) < 0 and g,(z) < 0 for 2 _< x < 94, it follows

g(z) < 0 for 2 <_ z <_ 9/4.

This implies that (15) holds, i.e., (14) holds. Hence, A(z, y)is on the right side of the line

y=20z-40 for 2 < z < 9/4 and y=20x-40. This yields that A is weakly inward on D2.

On the other hand, we can show that A has no fixed points on the boundary of D1 and

D2 with respect to D. Therefore the conditions of the Theorem are fulfilled by the operator A,

and hence A has three fixed points in D.

REMARK 2. The fixed points of operator A in the above example can be

obtained by solving the equation A(z, y)=(z, y) directly, which are (0, 0)in D1, (3+-, 0)in D2

and (3--, 0) in D3.
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