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ABSTRACT

In this paper we consider an application of Rothe’s method to abstract
semi-linear hyperbolic integrodifferential equations in ttilbert spaces. With the
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I. INTRODUCTION

In this paper we are concerned with the application of Rothe’s method to the following

semi-linear hyperbolic integrodifferential equation

(I i) d:Zu(t) + Au(t):f a(t--s)k(s,u(s))ds+f(t), a.e. te I
dt2 o

where u is an unknown function from I:=[0,7, 0<T<oo, into a real Hilbert space %, A is a

bounded linear operator from another Hilbert space */" into its dual space ’*, k is a nonlinear

mapping from [0, 7]x into %, a and f, respectively, are real-valued and %-valued functions on
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Earlier, some of the applications of Rothe’s method to the homogeneous and

nonhomogeneous linear hyperbolic problems have been considered by lektorys [6], Putlar[5] and

Streiblova [8] (other references are cited in these papers).

Kaur [4] has applied Rothe’s method to a semilinear hyperbolic equation under a global

Lipschitz-like condition on nonlonear forcing term. Recently, Bahuguna [1,2] has employed

Rothe’s method to a more general case of the problem considered by KaPut [4] and has proved

the local existence under local Lipschitz condition on nonlinear forcing terms.

Similar kinds of nonlinear integral perturbations as in (1.1) have been investigated by

Bahuguna and lghavendra [3] (see also [2]) for nonlinear parabolic problems with the aid of

Rothe’s method.

2. ASSUMPTIONS AND MAIN RESULT

Let and % be two real ttilbert spaces such that *" is dense in % and the embedding of

"4" in % is compact. We denote by I1" II and I’1 the respective norms of and %. Furthermore, the

inner product in : and the usual duality pairing between "1"* and " are denoted by (n,v),
u, vE %; and <f,v> E *, v *’; respectively. Let I denote the interval [0, where 0< T<oo is

arbitrary. We introduce the following hypotheses:

(ttx) The bounded linear operator A: " -+ V* is symmetric and */’-elliptic, i.e.

<Au,v> = <Av,u> and <As,u> >_cllu]l 2

for all u, v *" and a>0 is a constant.

(H2) k Ix*/" ---, :1{; is continuous in both variables and satisfies

C ll,,ll+C ,
for all t I and all u ’, where Cx and C are positive constants.

(H3) The mapping k satisfies

_< II
for tE I a.e. and all n, vE , where/;E/;x(I) is nonnegative.

(lI4) Functions fi I -- 0 and a: I --. R are Lipschitz continuous.

To apply Rothe’s method to equation (1.1), we proceed as follows. For every positive

integer n denote by {/} the partition of the interval I defined by t--j.h, h=, j=l,...,n.

Setting

(2.1) u-- Uo, "
(2.2) un-=h2(f(O)-’A Uo)-’2hUx+ Uo
we successively look for a solution ui */" of the variational identity
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for all v(/V" and j=l,2,...,n. The existence of a unique solution satisfying (2.3) is a consequence of

Lax-Milgram Theorem, see lktorys [7, p. 383]. Denote

n Uj Uj_1 n.._ j j--1 j=0,1,...,nz,i= h s h

and define Pothe’s sequences { Un} and {Zn} of Lipschitz continuous functions respectively from

I into V" and from I into 3g by

(2.) {
and sequences { un}, {zn}, { sn} of step functions from (--h, 7] into *(, by

(t)=
(e.6) "(O=z c (-,0] "(0=7

(0= "(0=

After proving some a priori bounds for the sequences of functions { Un}, {Zn}, {nn}, {zn} and

{st*} we prove the following main existence result for equation (1.1).

Theorem 2.1. Assume that Hypotheses (Hx), (H:), and

Then there exists a function u in Lip(I, ) with the properties

d._u

oo(I, x), ,,(o)= Uo, (o)= vA

and u satisfies the identity

(2.7) (-t), v)+ <An(t) v> =(K(u)(O+f(O,v)dt:
for tEI a.e. and for all vE "1", where

(2.8) K(u)(t)= f a(t---s)k(s,u(s))ds
o

(tt4) hold and let A

In addition, if (Ha) is also satisfied, then u is unique.

For the notational convenience, we drop the superscript n and denote for O<_i,j<_ n by
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aji=a(tj---ti)
=(t,)(2.9)

k

Henceforth, C will represent a generic constant independent of j, h and n. Below we state and

prove 11 lemm required in the proof of Theorem 2.1 which is proved at the end.

Lemma 2.1. Assume that hypotheses (H1), (Hz) and (H4)
positive integer N such that

Izjl z/ Ilujil z <_ C, j= 1,2,...,n, n> N.

hold. Then there exists a

Proof. Using the notations of (2.4) and (2.9) in (2.3), for all v " and j= 1,2,...,n, we have

a, v +(I, v).

Putting v=z in (2.10), using (H) d the identiti

22<Auj, uj-uj_l>-- II llt- II ---xll-- II -xllA,
we obtain

(2.11) Izjl--Iz-xl2/llujll--Iiuj-xll < Chlzjl2+chz E Ilull+Ch.
i=o

Choose a positive integer N such that CT]N<I. Then for n>N inequgy (2.11) impli thag

(2.12) (1--Ch)[izjl+llujll(l+Ch)[lzj_tl+llu_xlll+ChZ Xllu,ll+ Ch.
i=0

Applying inequality (2.12) recursively, we obtain

(x-- h)[l=jlZ+ Ilujll] < (1

Inequality (2.13) implies

lzl+llll_< c
which together with the -ellipticity of A proves the assertion of the lemma.

Lemma 2.2. Assume the hypotheses of Lemma 2.1 and let A Uo . Then there exists a po-

sitive integer N such that

Ilzll+lsjl <_ c, j=l,2,...,n, n>N.

We rewrite (2.10) as
i--1

(2.14) (sj, v)+ <Auj, v> = h E (ajiki, v)q- (fj, v).
i=0

Proof.

Thus we have

(sl, v) + <Aul- Auj_t, v> = ($j-1, 11) + h (ajj_l]Cj_l, 1?)

j--1

+ h E ([ali aj-ti] ki, v)
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Putting v = sj in (2.15) using (It2) and (It2) and (It4) we obtain

2Isl --Is_xl + IIzll IIz_xlla

j-1

<chlsl/Ch E IIz, ll/Ch.
$---o

We assume that N is large enough such that 6’ < 1.

(2.16) then implies that

Forn> N,

(1 C h)[Isjl 2 + I111]]
< (1 + (7 h2) [Is_l + IlZ-lll]

(2.17) + c E IIzll + c h.
i=0

Proceeding similarly as in Lemma 1.1 we obtain the required result of the lemma.

inequality

Remark 2.1. Lemmas 2.1 and 2.2 imply the estimates

I1"(011 + II 0(011 + IIz"(011 + IIZ"(011 + I,"C0t _< c,

II (t)- "(t)ll + ig"(t)- z"(t)l < 6’_

II o(t) v"()li + IIZ"(0 z"(,) _< C lt- i

for allt, s E Iandn> N.

Lemma 2.3. Assume the hypotheses of Lemma 2.2. Then there exists uE ip(I,’) with the

properties

d
d" e Loo(I,’lc) f e(I,%), d Lo(I,Y*)

such that

’ --. u in (I,V)and Zn in ((I,:}{;).

Proof. Since { un} and { zn} are uniformly bounded in a/-, and V is compactly embedded in

there exists a subsequence {n} of of the indices {n} such that

nku (t) -- u(t) and znl(t) ---} z(t) in as k oo

for some functions u and z from I into %. Remark 2.1 implies that

Un;()--+ u()and Zn}()---+ z(O as k--+ c.

We notice that the families { Un} and {Z"} are equicontinuous in (I,). Also, { Un}(t)} and
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{Zn(t)} are relatively compact in % for every t E I. Therefore

U"t --, u and gnt z in e(l, X) as

Now we show that Un --. u in C( I, V) as k --. oo. We denote by

K"(0).= axoo, K"(0:= E a,,,
i=0

fo teCt_,,

/"(0):= f(o), f(0:=

Clearly, {Kn(t)} and { ]n(t)} are uniformly bounded and ]n(t) --* f(t) uniformly on I as n -- oo.

From (2.14) for positive integers p, q > N, t E (0, 7] and all v(T’, we get

(sP(t) sq(t), v)+, AuP(t)- Auq(t), v>

= (K(t) K(t) + fCt) -/(0, ).

Putting v = uP(t) uq(t) in (2.18) and rearranging the terms, we obtain

II(t) d(011 _< [Is(t) sa(t)l + Ig(0

+If(0 --fl(t)l]lu(t) n(t) l< C’lu(0 d(0 I-
Since {unt} converges in C(I, %), inequality (2.19) implies that {unt} is a Cauchy sequence in

From Remark 2.1 it follows that u I *( and z" I % are Lipschitz continuous hence

d_ndt Loo(I ’if) and 6 Loo(I, 3). Now for all v V,

(u"(0, )= f,(_a (,1, v) d, + (Uo, )
o

(e.eo) = f’(z"(,), ) d + (o, ).
0

We pass through the limit as k oo in (2.20) to obtain

0

Therefore (t)
complete.

= z(t) a.e. on I and hence d2u/’(0 e Loo(I, ). The proof of the lemma is

Then

Lemma 2.4. Assume the hypotheses of Lemma 2.3 and let u(t) be defined as in Lemma 2.3.

Kn(t) ---, K(u) (t) as k --, o in 3 uniformly on I.

The proof of Lemma 2.4 is same as the proof of Lemma 2.4 in [3] (also, see [2, Chapter IV]).
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(2.21)
Proof of Theorem 1.1. For n,, we write (2.3) as

(tt Zn(t)’ v) + <Aun(t), v>= (Kn’Ct) + ff’(t), v)

for all v "1" and all (0, T]. Integrating (2.21) over (0, t), we get

(z(0, v) (u, 1 + l’<a(,), >
0

(.1
=I’(K() + f(,), 0 -0

Passing throught the limit as k --, x), using Lemma 2.4 and bounded convergence theorem, we have

((t), ) (, 0 + I’ <A(0, >
0

(2.2) = ’(K()(0 +/(0, 0
0

Differentiating (2.23) with respect to t, we get

(2.24) (t), v) + <Au(t), v> = (K(u)(t) + f(t), v)
for all v and a.e. t I which implies identity (2.7). Now we prove the uniqueness under

hypothesis (Ha). Let u and u be two functions satisfying the assertions of Theorem :2.1. Let

u:= u uz and let

(2.25) W- = ao T

(c)]2 fo w(s)ds, where ao = maxi a(0 i.

We divide the interval I into a finite number of subintervals of equal lengths p such that
1w< .(.)

Let 1, t: E [0, p] be such that

(2.27)

(2.28) II (tu) II A = max II u(t) II A"[0, ]

Then we have
u d + l’ d I! (t)II dt

o

Now from identy (2.7) for v- (t), we have

dt (01 2/ II u(t)II A

(2.30) = 2 (()(0 g(:) (0, (0)-

Therefore
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+ II (t)ll ] dr< 2 ao
()x/=

fp (ft wCs)il (’)II a ds) dn (01 dt
0 0

(2.31) _< 2 w p II (t)IIA (tx)I--< W p2 [[ (tx)12 + II u(tz)II I.
From inequalities (2.29), (2.26) and (2.31) we have

du
d-7 (’) = 0, (,) -_- 0 o [0, ].

Repeating the above arguments for [ip, (i + 1) p], i= 1, 2, ..., we have that n(t) 0 on I.

Therefore u1 -- u2. The proof of Theorem 2.1 is thus complete.
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