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This paper is concerned with the generalization, numerical
implementation and testing of the non-parameter penalty function algorithm
which was initially developed for solving n-dimensional optimization problems.
It uses this method to transform a constrained optimal control problem into a
sequence of unconstrained optimal control problems. It is shown that the
solutions to the original constrained problem. Convergence results are proved
both theoretically and numerically.
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1. Introduction

Penalty function methods were initiated and developed in the area of nonlinear

programming ( cf. [1] ). These methods solve a constrained optimization problem via

a sequence of unconstrained optimization problems. In recent years, these method
have been widely used to solve infinite dimensional optimization problems. Applica-
tions of interior and exterior penalty function methods can be found in [3] and [4].
The combination of these two methods forms the so-called mixed penalty function

method which has been used by Chen [2] to solve constrained optimal control prob-
lems. One difficulty in using these methods is the adjustment of the penalty parame-
ters. In this paper, we apply the non-parameter penalty function method to solve the

following constrained optimal control problem:

subject to

T

min J(u(t)) = min ! fo(x(t), u(t), t)dt + L(x(T)]

(t) f (x(t), u(t), t),

(i)

g(x(t), u(t), t) >_ 0

x(0) xt, (2)

(3)

h(x(t), u(t), t) O (4)

where T is a fixed positive number and, for each [0, T],

x(t) (x:(t) x,,(t)) R" u(t) = (u:(t) ur(t)) a Rr,

f(.) fit(.), f,,(.)) e R’ g(-) (g:(.), g,(.)) e R"

and h (.) (h (.) ht (.)) R f ( k O, n ), gi ( 1, m ) and

hi (j 1, l) are assumed to be continuously differentiable functions on R+’+.
L(.) is a continuously differentiable function on R. A vector is said to be zero or

non-negative if each of its components is.

u(t) is the control of the system and is assumed to be a piece-wise continuous

vector-valued function. Its norm can be defined as follows ( cf. [5] )"

sUr lu (t)! = + (u, (t))Ilu(t)ll--,, t0.sUPrl[(U(t)) +
Let

f2 = u(t) gi(x(t), u(t), t) >_ O, 1 m; h)(x(t), u(t), t) O, j 1,
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where x(t) is the response corresponding to the control u(t). Then, the constrained

optimal control problem is to find a control u (t) f such that

J (u (t)) = min J (u (t)).

This is a standard optimal control problem with state variable constraints ( cf. [6] ).
The modified maximum principle gives necessary conditions for a control to be

optimal ( cf. [6] ). In this paper, let us assume that there exists at least one optimal
solution u’(t) and a lower bound w* of the minimum performance measure

J* J (u* (t)) carl be obtained; i. e. a real number w is known a priori such that

w: < J* J (u* (t)).

For any control u = u (t)e R’, let

P (u, w’) (w ’ J(u))G(w" J(u)) + J(u),

where

m T T

J (u Z f (gi (x u, ))2G (,gi )dt + Z f (h) (x u, ))2dt
i=1 0 j=t 0

and G(g)= 0 if g >_ 0 and 1 if g < 0. Then, we consider the following unconstrained

optimal control problem:

min P (u, w) (5)

subject to (2).

It will be shown how a sequence {w of real numbers can be generated automati-

cally by the non-parameter penalty function method. For each w‘, solve (5) to get a

sequence {u(t)} of unconstrained solutions which converges to a solution to the origi-

nal constrained optimal control problem (1) (4).

2. Theoretical Results

Since fi ( 1, n ) are continuously differentiable functions on R"+’+, it can

be proved, by the continuous dependence of solutions on parameters, that J(u) is a

continuous functional of u. Let u --u(t) denote the solution of problem (5). Then

we have

Theorem 1- Assume that Jr(u) satisfies the condition of a "distance function",

that is, for any " = (t) R’, J(’) > 0, and for any e > 0, one can always find a control
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u = u(t) such that

Ilu fill _< e, y(u) < J(ff).

Then

w
, <_ j(u.).s j*

Proof: First, it will be proved that J(u

J (u) > J*. Then, since w < J*,
)_<j*. Suppose, on the contrary, that

P (u*, w’) = (w" J(u* ))2 < (w j (u.))2 <_ p (u., w.).

This is a contradiction since u is an optimal solution to problem (5). Hence

J (u) _< j"

Now, if w > J(u), then P(u, w) J(u). Since J(u) is a continuous functional, there

exists an e > 0 such that J(u) s w for all u satisfying lu ull < e. By the assumption

of the theorem, an ff if(l) may be found such that I1" u II < e and J(ff) < J(u).
Thus,

P (if, w) J(ff) < J(u’).

This contradicts the fact that u is an optimal solution to problem (5). Therefore,

J (u) _> w

Theorem 2: Let the assumptions in Theorem 1 hold.

J (u) <_ J (u)

If Wk < Wk+l <_ J*, then

where u+= u+t(t) is an optimal solution of (5) with w replaced by w+t.

Proofi By the definition of u* and u+t,

P (u w:) < e (u+, w), P (u+, wTM) _< P (u, w+).

Summing the two inequalities gives

(w
, J (u’)):G (w’ j (u)) + (w+ J(u+))G (w+t J(u+))

< (w" J(u+)):ZG(w. J(u+l)) + (w+ J(u’))2G(w+ J(u’)).

From Theorem 1 it follows that

J (u) _> w J (uTM) >_ w+

(6)

(7)
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If J(u) < w+, there is nothing to prove. If J(u) >_ w+, by (6) and (7) it follows that

(w J (u)):z + (w+ J(u+)) <_ (w J(u:+))2 + (w+ J(u))

That is,

(J (u) J(u+))(w+ w) 0

and, therefore,

J(u) < J(u+t).

(4).
Theorem 3" If w= J’, then u is also a solution to the original problem (1)

Proof: By the assumption,

P(u w)<P(u* w)=0

where u’= u* (t) is the optimal solution to problem (1) (4).
any u u (t), e (u w) 0 and this implies

Since P (u, w) >_ 0 for

(w J (u))2G (w J (u)) O, J l(u) O.

By the definitions of J(u) and G(g), and by our assumptions on g(.) and h/(.), J(u) 0

implies that u satisfies the constraints (2) (4). Therefore,

J (u) _> j"

From this and the fact that (w -J(u))G(w -J(u))= 0, it follows that

(wk j(u))2 0,

which means J(u) J. Therefore, u is an optimal solution to problem (1) (4).

Theorem 4- Let u u(t) be a solution of problem (5). Then

k+l kW + [P (u, w)] z _< j"

Furthermore, if w+= w for some k, then u is also a solution to problem (1) (4).

Proof: By the assumption,

/’ (u w) <_/’ (u’, w) = (w J" )z,

and, therefore,
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k+l k
14 ---W + [p (u, w)] 2 j.

If wk+’ w then, by the definition of wk+’

/’ (u w) = 0

Therefore, uk is an optimal solution to problem (1) (4) by the proof of Theorem 3.

Theorem 5- If there exists a subsequence of {u] which converges to some

u"= u"(t), then u" is a solution to the original constrained optimal control problem (1)
(4).

Proof: Assume that there exists a subsequence {u of {u such that

Since (w is increasing and bounded above (w _< J* by Theorem 4),

lim wk = w** or lim (w+ w)2 O.

Therefore,

limP (uk wk) lira (wk+ wk)2 O.

In particular,

limP (u wi) = O.

Since P (u, wk) iS a continuous functional of u and w, it follows that

P (u**, w**) 0.

Therefore, u" is an optimal solution to problem (1) (4) by the proof of Theorem 3.

Theorem 4 implies that if w J* we can solve the constrained optimal control

problem (1) (4) by solving one single unconstrained problem (5). In general, it is

difficult to know the exact value of J. But, if we can obtain a lower bound w of J
then we can construct a sequence of unconstrained optimal control problems and solve

problem (1) (4) by solving the sequence. The computing procedure is summarized as

follows:

(i) Start from w < J" and set k 0.
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(ii) Solve (5) by some algorithm and get the solution u.
(iii) Calculate w+ by the formula given in Theorem 4.

(iv) If wTM -w 5, stop and print u*. u is an approximate solution. If
w*+x- w > 5 then replace wbyw+ and go to (ii). > 0 is a prescribed tolerance.

3. A Numerical Example

Consider the brachistochrone problem with an inequality constraint on the state

space:

min J(u) = min [- x(T)]

subject to

: x:os (u ), xt(0)=0, (8)

Ycz = x3sin (u ), x(O) 0, (9)

sin (u ), x3(0) 0.07195, (10)

and the inequality constraint

g\x, xz, x3) 0.2 + 0.4x x >_ 0,

where T 1.8.

This problem was solved in [4] by the exterior penalty function method and the

minimum value of J(u) is J =-1.0794. Here we solve this problem by the non-

parameter penalty function method by minimizing

T

P(u, wk) (wk + x(T))2G(w + x(T)) + (g(x ,xe ,x3))2G(g)dt
0

subject to (8) (10). The Hamiltonian for this problem is

H gG(g) + Xx3cos (u) + x3sin (u) + X3sin (u),

the adjoint system is, = 0.8gG (g ), )(T) 2(w + x(T))G(w + x(T))

2gG (g), (T) O,

,3 Xcos (u ) Lsin (u ), X(T O,

and the gradient is
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H = -Xx:in (u ) + cos (u + cos (u ).Ou

A Fortran program was written to solve this problem by the gradient method.

The numerical integrations are carried out using the fourth-order Runge-Kutta-Gill
method and Simpson’s composite role with double precision arithmetic. The integra-
tion interval is 0.1 unit.

Numerical results were obtained for w=- 1.1,- 1.2,- 1.3 with convergence index

0.00001. The results show that when w gets closer to J" the convergence gets fas-

ter. For w=- 1.3 it takes 7 steps in order to get a constrained solution. While, for

w=- 1.1 only 4 steps are needed. Each step solves an unconstrained optimal control

problem and the iteration stops when either the change of the cost function

IP () -P(+)l <_ 10-6 or the norm of the gradient IIHi u ll _< 10-z. At the first step, the

initial guess of the control is u(t)= r6. After that, each of the following steps uses the

solution obtained at the last step. The trajectories at the steps 1, 2 and 7 are shown

below. It can be seen that the trajectory at step 7 lies above the constraint line and is

almost indistinguishable from the optimal trajectory.

step 7
step 2

step

Xa= 0.2 / 0.’iX

Trajectories at steps I. 2. azct 7
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4. Summary

in this paper, we applied the non-parameter penalty function method to solve a

constrained optimal control problem via a sequence of unconstrained optimal control

problems. Convergence results were obtained. A numerical example was presented to

illustrate the findings. The assumption made in Theorem 5 is still an open question

and further research will be discussed in other papers.

References

[1] M. Avriel, Nonlinear programming, Analysis and methods, Prentice-Hall, Inc.,

Englewood Cliffs, N. J. (1976).

[2] Zuhao Chen, "The mixed penalty function method for solving constrained

optimal control problems", Control Theory Appl. 1, 98-109 (1984).

[3] L. S. Lasdon, A. D. Waren and R. K. Rice, "An interior penalty method for ine-

quality constrained optimal contro! problems", IEEE Tran. Auto. Control, AC-

12(4), 388-395 (1967).

[4] An-Qing Xing, "Applications of the penalty function method in constrained

optimal control problems", J. Applied Mathematics & Simulation, 2(4), 251-265

(1989).

[5] An-Qing Xing, et al, "Exact penalty function approach to constrained optimal

control problems", J. Optimal Control Applications & Methods, Vol. 10(2), 173-

180 (1989).

[6] L. S. Pontryagin, The Mathematical Theory of Optimal Processes, Wiley, New

York (1962).


