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ABSTRACT

By use of the necessary calculus and the fundamental existence
theory for dynamic systems on time scales, in this paper, we develop
Lyapunov’s second method in the framework of general comparison
principle so that one can cover and include several stability results for
both types of equations at the same time.
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1. INTttODIJCION

As is well known [4, 5, 6], one can develop qualitative behavior of differential systems

as well as difference equations by employing Lyapunov-like functions and the theory of

corresponding inequalities. We also realize in this process, that several results of differential

equations do just translate themselves into analogous results in difference equations. This

naturally raises the question whether it is possible to unify the theory of differential and

difference equations into a single set up. The answer is yes and we now have necessary calculus

and the fundamental existence theory for dynamic systems on times scales [1, 2, 3].

In this paper, we shall develop Lyapunov’s second method in the framework of general

comparison principle so that one can cover and include several stability results for both types

of equations at the same time.
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2. COMPARISON PRINCIPLE

Let ql" be a time scale (any closed subset of R with order and topological structure in a

canonical way) with o >_ 0 as a minimal element. By an interval, we always mean in the

sequel the intersection of a real intervale with the given time scale. If a time sclae has a

maximal element which is also left-scattered, it is called a degenerate point. Let itk repesent

the set of all non-degenerate points of . We refer to [1,2] for further definitions on time

scales.

Let us begin with the following definition.

Definition 2.1: The mapping f:T x lRn---*Rn is said to be rd-continuous and is

denoted by f E Crd[’[ X Rn, Rn] if

(i) it is continuous at each (t,z) with right-dense or maximal and

-, x)f lira at z(ii) the limits f(t ) = lira s y) and u_y(t,y) exist each (t,) with
(, u)--,(t -,

left-dense t.

We refer to [1, 3] for further definitions regarding time scales.

Consider the dynamic system

za = f(t,z), E T, Z(to) = zo, to > O, (2.1)

where f Cd[T x Rn, Rn] and zA denotes the derivative of z with respect to E T. Assume,

for convenience, that the solutions z(t) = z(t, to,.o) of (2.1) exist and are unique for t > o and

f(t,0) = 0 so that we have the trivial solution z = 0. For local and global existence results for

(2.1) see [3].

Detion 2.2:

Then we define

and

Let V Crd[’k Rn, l+] and #*(t) be as in Definition 2.2-in [3].

infV(t,z) V(t #’(t),z #’(t)f(t,z))VA(t,x)D_ lira
*(t)-.0

(2.2)

D + Va(t,z) =_ lim supV(,t + #*(t),: + ](t)f(.t,.z) ,.V(t,z)
(t) (2.3)

If V is differentiable, then D_VA(t,z)=D+VA(t,:)=VA(t,:) where VA(t,:)=
V(t,:) + V(t,z)f(t,z). Here Vta is considered as in Definition 2.5 in [3] and V is taken

the normal derivative.
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Having the comparison theorem (see Theorem 5.2 in [3]) at our disposal, we can prove

the required comparison result in terms of Lyapunov-like functions.

Theorem 2.1-

each t. Assume that

Let V E Crd[T x Rn, R+] and V(t,z) be locally Lipschitzian in z for

D_VZa(t,x) <_ 9(t,V(t,x)),(t,x) . T xRn (2.4)

where gGrd[TR+,R] and 9(t,u)#*(t) be non.decreasing in u for each TIc

r(t) = r(t, to, Uo) be the mazimal solution of the scalar differential equation

Let

u" = (t, u), U(to) = (o) >- o

ezisting to the right of o. If z(t) = z(t, to, Uo) is any solution of (2.1) such that

V(to, Zo) <_ uo, (..5)

then

V(t,z(t)) <_ r(t), t fi T.

Define

Proof: Let z(t) be any solution of (2.1) defined for > o such that (2.5) holds.

re(t) = V(t,z(t))

so that re(to) < uo. Then,

re(t) m(t I’(t)) = V(t,z(t)) V(t u’(t),z(t) #’(t)f(t,z(t)) e#’(t))

= V(t,x(t))- V(t- #’(t), x- #’(t)f(t,x))+ V(t- #’(t),x #’(t)f(t,:))

v(t ,’(t),x(t) ,’(t)y(t,x(t)) ,u’(t)).

Since V(t,x) is locally Lipschitzian in z for each and (u*(t)) 0 as #*(t)0, we obtain, in

view of (2.4), the relation

D_mZa(t) < D_VX(t,x(t)) < g(t,m(t)), T,

where D mA(t)= tim infm(!) ".m(t ,* (t)) and noting that Theorem 5.2 in [3] remains
u*(t)--.o

valid when mA(t) is replaced by D_mA(t). Hence Theorem 5.2 in [3] yields the estimate

(2.6). The proof is complete.
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Corollary 2.1: The function 9(t, u) =. 0 is admissible in Theorem 2.1 to yield

v(t,x(t)) <_ V(to,o), r.

3. STABILITY CRITERIA

Let us begin by proving the following general result which offers stability criteria for

differential systems and difference equations at the same time.

Theorem 3.1:

()

(ii)

(iii)

Assume that

V E Cra[T x Rn, R+ ], V(t,z) is locally Lipschitzian in z for all

b( ll ll < V(t,z) < a( ll x ll for (t,z) r Rn where

[R + ,R + ]: a(0) = 0 and r(u) is increasing in u];
g Crd[’ x R +, R] and

D V(t,) < a(t, V(t,)), (t,) " a".

Then the stability properties of the trivial solution of

u" = a(t, u), U(to) = o >- o (3.1)

imply the corresponding stability properties of the trivial solution of (2.1).

Proof: Let e > 0 and o fi ]" be given. Suppose that the trivial solution of (3.1) is

stable. Then given b(e) > 0 and o E T, there exists a 1 = 61(to, e) > 0 such that

uo < 61=,u(t < b(e), t e T (3.2)

where u(t) = u(t, to, Uo) is any solution of (3.1). Choose 6 = 8(to, e > 0 such that

We claim that if zol < , then z(t) < e, e T, where z(t)= ,(t, to, Zo)is any solution of

(2.1). If this is not true, there would exist a 1 "1", 1 > to and a solution z(t) = z(t, to, Zo) of

(2.1) satisfying

Ix(t) < e, to < t < x and Ix(t1) > e. (3.4)

Setting re(t)= V(t,z(t)) for to < t < 1 and using condition (iii), we get by Theorem 2.1, the

estimate

v(t,(t)) <_ ,(t, o, Uo), to <_ t <_ tx (3.5)
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where r(t, to, Uo)is the maximal solution of (3.1) with V(to, Xo)< uo. Now the relations (3.2),

(3.4), (3.5) and the assumption (ii) yield

b() < 6( z(tx) < W(t,z(tx) < r(tx, to, Uo) < b(e),

since u0 = V(to, Zo) < (I z0l) < a(8) < 1 by (3.3). This contradiction proves the claim.

Other stability properties may be proved in a similar manner and hence the proof is

complete.

lmark: Usually when stability properties for differential systems are proved, one

imposes conditions on V(t,z) only in R+ x S(p), where S(p)= [z E Rn: z I< P], because

stability notions are of local nature relative to the trivial solution. On the other hand, when

we deal with difference equations, we need, either to assume S(p) is invariant or work in the

entire Rn, since we have no control of how large the solutions grow being discontinuous. To

avoid assuming the invariance of S(p) for some p > 0, we have imposed conditions everywhere.

In the present set up, all we need to concentrate is on the estimate (3.4). If is a non-

scattered point, that is, say left dense, we then get Ix(t1) = and if I is scattered point,

x(tx) > e and it may happen that z(tx) > p if we work in S(p).

We can obtain from Theorem 3.1, Lyapunov’s theorems for continuous and discrete

cases, immediately. This we state as corollaries.

Corollary 3.1:

(i) The function g(t,u)= 0 is admissible in Theorem 3.1 to yield uniform stability

of the zero solution of (2.1).

(ii) The function g(t,u)=-Co(U), where co %, is admissible to imply uniform
asymptotic stability of the trivial solution of (2.1).

Usually Lyapunov’s theorem on uniform asymptotic stability should have the

assumption Ya(t,z) < -c(Izl). However, it is easy to see that if V has an upper estimate as

in (ii) of Theorem 3.1, one can obtain the assumption of Corollary 3.1, (ii).

As an example, consider the linear system

zh = Az, z(O) = zo (3.6)

with to = 0, where A is an n x n matrix. As usual, we choose

V(t,x) = zTPz (3.7)

where P is an nxn symmetric matrix that is positive definite. Then
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VZX(t,z) = zT[ATp + PA]z. If the Lyapunov equation

ATp+PA+Q=O (3.8)

is satisfied for a positive definite n xn matrix Q, then it is clear that VX(t,x) is negative

definite and therefore, the trivial solution of (3.6) is uniformly asymptotically stable by

Corollary 3.1.

We shall next consider the case when V(t,z) is not decrescent, that is, V(t,O) = 0 and

extend Marachkov’s result in the present set up. Since Salvadori’s [5] generalization of

Marhkov’s theorem for differential equations exist, we shall consider the extension in that

generality.

Theorem 3.2: Let the assumptions (i) and (ii) of Theorem 3.1 hold for V.

Further assume for W E Crd[T x Rn, R+] that W(t,z) is locally Lipschitzian in z, it is positive

definite, D + Wa(t,z) is bounded from above or from below for (t,z) qi" x IR",

D+VZa(t,z) <_ -c(W(t,x)), c C %. (3.9)

Then, the system (2.1) is asymptotically stable.

Proof: Suppose that Ilx0ll < a0, The stability of the zero solution of (2.1)
follows from Corollary 3.1 since D+VZX(t,z)<_ -c(W(t,x)) readily implies D + VZa(t,x)<_ O.

Since W(t,x) is positive definite, it is enough to prove that lira W(t,z(t)) = 0 for any solution

z(t) of (2.1). We first note that lira infW(t x(t))= 0, for otherwise in view of (3.9) we get

v(t,x(t))-.- oo

Suppose that ltimoosupW(t,x(t)) : O.

sequences {tn} {t} such that < t < + 1, = 1,2,... and one of the following holds:

with

(i)

(ii)

(iii)

(iv)

Then for any e > 0, there exist divergent

t is right dense, t’ is left dense

t is left dense, t’ is right dense

is right or left dense, t’ is right or left scattered

t is right or left scattered, t’ is right or left dense,

W(t,x(t’)) = e and

9te(ti, ti),i=l,-,

W(ti’x(ti)) = 93 and

9. (ti, ), = 1,.,

Of course, we could have, instead of (3.10), given

= ,,- < W(t,z(t)) < e for
(3.11)
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Suppose that D+WX(t,x)<_ M. Then it is easy to obtain, using (3.10) the relation

t- > 2-/" In view of the assumptions (i) and (ii) of Theorem 3.1, (3.9) and (3.10), we have

for large n,

t
0 <_ V(t,(t)) <_ V(t0,0) + f D + V(,())a

< V(to, xo) < 0

which is a contradiction. Thus W(t,x(t))---,O as t---<x and hence x(t)--O as t--c. The case

when D + Wx is bounded from below can be proved using (3.11) with similar arguments. In

the case that and t’ are both left or right scattered, we assume W(ti, x(ti))= ,
e Then by use of 4.3 of [2] for definition of= = =

Cauchy integrals for scattered points, (3.12) becomes

0 <_ V(t,x(t)) <_ V(to, Xo) + E [D + V(ti, x(ti) + D +

<_ V(to, Xo)- n2c()< 0 for large n.

Hence we still have W(t,x(t))--O as t--oo and the proof is complete.

Note that, in the above set up, the importance played by points of different nature

(such as scattered or dense) of a time scale is clearly seen.
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