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ABSTRACT

Using connection between stochastic differential equation with
Poisson measure term and its Kolmogorov’s equation, we investigate the
limiting behavior of the Cauchy problem solution of the integro-
differential equation with coefficients depending on a small parameter.
We also study the dependence of the limiting equation on the order of
the parameter.
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It is well known that investigation of a nonlinear oscillating systems with

a small stochastic white noise at the input, can be accomplished applying the

averaging method for Kolmogorov’s parabolic equation with coefficients

depending on a small parameter [1]. If both white and Poisson types of noise are

present, then the corresponding Kolmogorov’s equation is integro-differential [2],
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and we shall exend here he averaging principle o such equations.

Let us study behavior, as e--,0, of the following equation

k2tU(t, x) + e(f(t, x), V U(t, x)) + --Tr(g(t, x)g*(t, x) V U(t, x)) (i)

-4- f [U(t, x + ek3q(t, x, y)) U(t, x) e’3(q(t, x, y), ’ U(t, x))]II(dy) 0,
Rd

(t, x) [0, T) x Rd,

where e > 0 is a small parameter and k,k2, k3, are some positive numbers, and

Ox, ,i = 1,...,d :U(t,x)=[ 0-’/0 ,i,j = 1,...,d

Here H is a finite measure on Borel sets in Rd, f(t,x), q(t,x, y) are d-dimensional

vectors, and g(t, x) is a d x d square matrix.

Lemma: If
s+A

f
A

uniformly with respect to A for each x, the function b(x) is continuous, and b(t, x)
is continuous in x uniformly with respect to (t,x) in arbitrary compact Ix <_ C,
and stochastic process (t) is continuous, then

0 0

The proof is similar to that in [2].

Now, replacing t with t/k in (1), where k = min(k,k2,k), and denoting

V(t, x)= U(t/e,x), we can derive the following equation:

k2-ktV(t, gg) "Jr" kl (f(t/e, x), V V(t, x)) + e-
2 Tr(g(t/e, x)g*(t/e, x) V :V(t, x))

+ i [V(t, z + 3q(t/, z, y)) V(t, z) ek3(q(t/e, x, y) V V(t, x))JH(dy) O,
Rd

(t,z)[O,T)xR.
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Theorem: Let the following conditions hold:

1) the functions f(t, x), g(t, x), q(t, x, y) are continuous in (t, x), bounded

and twice continuously differentiable with respect to x, with derivatives also

bounded;
2) uniformly with respect to A for each x Ra, y Rd there exists the

following three limits
s+A s+A

A A
and

s+A

li,oo 1-
5 f q(t, x, y)q*(t, x, y)dt O(x, y).

A

3) The functions f (x), G(x), Q(x,y) satisfy the Lipschitz condition in x,
and the matrix

is uniformly parabolic.

[3(z) (z) + fQ(x, y)II(dy)
Rd

a) if kx = k: = 2k3 and V,(t, x) satisfies (2) and the "Cauchy" condition

lira V,(t, x)= F(x) F(x) e C(Rd),
tTT

then lira V,(t, x) = V(t, x), where V(t, x) is a solution of the problem"

ttff’(t, x) + ( (x), V fir(t, x)) + 1/2Tr(3(x) V (t, x)) O,

(3)

p(t, = (5)
ttT

b) If k < k, then V satisfies (4)-(5) but in this case there is no term

containing ?(x) in (4); Similarly, if k < k:, then [3(x) does not depend on (x);
and if k < 2k3, then B(x) does not contain the term

f
Proof: Applying the results of [2-3] to the coaditions of the theorem, it

follows that the solution of the problem (2)-(3) exists for each e, is unique

can be represented in the form
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V(t, x) = E[F((t, x, T))],

where (t, x, T) is the solution of the stochastic equation

(t,,) = +2 f(/, (t, ,
1

+ / f
Rd

where w(t)is a d-dimensional Wiener process, u(,A)is a Poisson measure

independent of w, A is a Borel seg of Re and

(t, A) (t/e, A) tH(A)/e; E(t, A) = tII(A).

Let

E (e, x, s)- (t, z, Sl)[ 2 C[e2(h -a)ls- s 12 -t-(ek2 -k

(t, , :) ((, , 1) : --< C(: +-) I"
From these estimates we infer that the family of processes ((t, x, s), C(t, x, s))
satisfies the Skorokhod’s compactness conditions [4]. Therefore, for any sequence

e0 there exists a subsequence e,0, m-1,2,..., and processes (t,z,s),
(t,z,s) such that ,(t, z, s)(t, z, s), ,(t, z, s)--+(t, z, s) in probability as

e,0. From (6) we can also find that

ff(,/, (t,, ,))d + (,, ). (7).(t,,)=+

Then, for any fixed (t, x)e [0, T] we have"



The Probabilistic Approach to the Analysis of the Limiting Behavior 29

Therefore,

E i (t,x, sz)- (t,x, sx) a _< C[Is sx I’ + s sx e],
E I (t, z, sz)-- (t, x, sx) 4 < C lsz s 2,

and he processes (t,z,s), (t, z, s) sa:isfy he Kolmogorov’s continuity condition

Let us consider the case kx = k2 = 2k3. Then from (7) we obtain:

(,(t, z, s) = z + ff(r/e, ,(, z, r))dr + (,(, z, s). (8)

From this point we shall omit the subindex m in e, for simplicity.

each fixed (t, x) [0, T] the process

Rd
is a vector-valued margingale with matrix chacerisgic

d
Using ghe above lemma, ig is ey o show

and

i,,_0 (,(t, , ), ,(t, , )) fB( (t, , ,)),.

Then for

(10)

Hence, from (8), (9), and (10) we obtain a continuous square inegrable vector-

valued margingale

(t, , ) = + f ( (, ,,)) + (t, , ),

with matrix characteristic
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It follows from [6] that there exists a d-dimensional Wiener process w(t) such

hat

where

e()e’()=

Consequently, the process (t,z,s) satisfies he equation which, according [2], has

a unique solution:

(t,z,s) = z +/((t,z,r))dr + [e((t,z,r))de(r). (ii)

The matrix (z) is positive definite for all z E Ra, satisfies Lipschitz

conditions, and therefore matrix (z) satisfies Lipschitz condition as well. Then,
using the Lebesgue dominated convergence theorem, we obtain

lira V,(t, x) fr(t, z) E[F( (t, x, T))]
rn--*O

for any sequence e,0. But as it follows from [7] the function (t,x)is a unique

solution of the problem (4)-(5), which completes the proof of the par a) of the

When k < k, the boundedness of f(t,x) implies that
$

E f f(r/e, ,(t, x, r))dr < C

and therefore the second term in the right side of (6) converges to 0 with e0 in

probability. The matrix characteristic of the martingale ,(t,z,s)in (7) has the

form
$

(,, ,) = , (,/,, ,(t, z,,))o’(/,, ,(t, ,
$

Rd

(12)

From the boundedness of g, q, similarly to the inference made above, we obtain
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that either first or second term in the right side of (12) converges to 0

(respecgively go ghe k < k or k < 2ka case) as e--O, which allows to complete he
proof of the heorem as in part a).
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