THE METHOD OF LOWER AND UPPER SOLUTIONS FOR nth-ORDER PERIODIC BOUNDARY VALUE PROBLEMS¹,2

ALBERTO CABADA
Universidade de Santiago de Compostela
Departamento de Análise Matemática
Facultade de Matemáticas, SPAIN

Abstract

In this paper we develop the monotone method in the presence of lower and upper solutions for the problem $$
u^{(n)}(t)=f(t, u(t)) ; u^{(i)}(a)-u^{(i)}(b)=\lambda_{i} \in \mathbb{R}, i=0, \ldots, n-1
$$ where f is a Carathéodory function. We obtain sufficient conditions for f to guarantee the existence and approximation of solutions between a lower solution α and an upper solution β for $n \geq 3$ with either $\alpha \leq \beta$ or $\alpha \geq \beta$.

For this, we study some maximum principles for the operator $L u \equiv u^{(n)}+M u$. Furthermore, we obtain a generalization of the method of mixed monotonicity considering f and u as vectorial functions.

Key words: Periodic boundary value problem, lower and upper solutions, monotone method.

AMS (MOS) subject classifications: $\quad 34 \mathrm{~B} 15,34 \mathrm{C} 25$.

1. INTRODUCTION

In this paper we study the following class of boundary value problems for the ordinary differential equations:

$$
\begin{gather*}
u^{(n)}(t)=f(t, u(t)) \text { for } \text { a.e. } t \in I=[a, b] \tag{1.1}\\
u^{(i)}(a)-u^{(i)}(b)=\lambda_{i} \in \mathbb{R} ; \quad i=0,1, \backslash, n-1, \tag{1.2}
\end{gather*}
$$

for $n \geq 3$ where f is a Carathéodory function.
Definition 1.1: We say that $f: I \times \mathbb{R}^{l} \rightarrow \mathbb{R}^{m}$ is a Carathéodory function, if $f \equiv\left(f_{1}, \backslash, f_{m}\right)$ satisfies the following properties:

[^0]1. $\quad f_{i}(\cdot, x)$ is measurable for all $x \in \mathbb{R}^{l}$ and $i \in\{1, \ldots, m\}$.
2. $\quad f_{i}(t, \cdot)$ is continuous for a.e. $t \in I$.
3. For every $R>0$ and $i \in\{1, \ldots, m\}$, there exists $h_{i, R} \in L^{1}(I)$ such that:

$$
\left|f_{i}(t, x)\right| \leq h_{i, R}(t) \text { for a.e. } t \in I
$$

$$
\text { with }\|x\| \leq R
$$

To develop the monotone method we use the concept of lower and upper solutions:

Definition 1.2: Let $\alpha \in W^{n, 1}(I)$, we say that α is a lower solution for the problem (1.1)-(1.2) if α satisfies

$$
\begin{gathered}
\alpha^{(n)}(t) \geq f(t, \alpha(t)) \text { for a.e. } t \in I \\
\alpha^{(i)}(a)-\alpha^{(i)}(b)=\lambda_{i} ; \quad i=0,1, \ldots, n-2 \\
\alpha^{(n-1)}(a)-\alpha^{(n-1)}(b) \geq \lambda_{n-1} .
\end{gathered}
$$

Definition 1.3: Let $\beta \in W^{n, 1}(I)$, we say that β is an upper solution for the problem (1.1)-(1.2) if β satisfies

$$
\begin{gathered}
\beta^{(n)}(t) \leq f(t, \beta(t)) \text { for a.e. } t \in I \\
\beta^{(i)}\left(a 0-\beta^{(i)}(b)=\lambda_{i} ; \quad i=0,1, \ldots, n-2\right. \\
\beta^{(n-1)}(a)-\beta^{(n-1)}(b) \leq \lambda_{n-1} .
\end{gathered}
$$

We suppose that f satisfies one of the following conditions, depending on various circumstances:
$\left(H_{1}\right) f(t, x)-f(t, y) \leq M(x-y)$ for a.e. $t \in I$ with $\alpha(t) \leq y \leq x \leq \beta(t)$ and $M>0$.
$\left(H_{2}\right) f(t, x)-f(t, y) \geq M(x-y)$ for a.e. $t \in I$ with $\beta(t) \leq y \leq x \leq \alpha(t)$ and $M<0$.

This problem has been studied by different authors for second order equations when $\alpha \leq \beta$ ([1]-[4], [6], [8], [10], [11]). If $\alpha \geq \beta$ the monotone method is not valid if f satisfies the condition $\left(H_{2}\right)$ for some $M<0$ ([2], [7], [12], [14]).

For $n \geq 3$ the method of lower and upper solutions has been little studied ([2], [9], [13]). In [2] the author obtains the best value on the constant M for
$n=2, n=3$ and $n=4$ (in this last case, if $M<0$) for which the conditions $\left(H_{1}\right)$ or $\left(\mathrm{H}_{2}\right)$ imply that the monotone method is valid.

To prove the validity of the monotone method to more general cases, we present some maximum principles for the operator

$$
L_{n}: F_{a, b}^{n} \rightarrow L^{1}(I),
$$

defined by $L_{n} u=u^{(n)}+M u$. Where M is a real constant different from zero, and

$$
F_{a, b}^{n}=\left\{u \in W^{n, 1}(I) ; u^{(i)}(a)=u^{(i)}(b), i=0, \ldots, n-2 ; u^{(n-1)}(a) \geq u^{(n-1)}(b)\right\}
$$

We say that an operator L is inverse positive in $F_{a, b}^{n}$ if $L u \geq 0$ implies $u \geq 0$ for all $u \in F_{a, b}^{n}$ and that L is inverse negative in $F_{a, b}^{n}$ if $L u \geq 0$ implies $u \leq 0$ for all $u \in F_{a, b}^{n}$.

In Section 2, we obtain a new maximum principle for the operator L_{n}, using that this operator is given by the composition of the operators of first and second order.

This result is used in Section 3 to extend to more general cases the validity of the monotone method for the problem (1.1)-(1.2) and in Section 4 it is applied to obtain a new generalization of the method of mixed monotony [5] when f and u are vectorial functions.

2. MAXIMUM PRINCIPLES

In this section we improve the following result obtained in [2], which generalizes theorem 4 in [15].

Lemma 2.1: Let $A(n) \equiv \frac{n^{n} n!}{\left[\frac{n}{2}\right]^{n}(b-a)^{n}(n-1)^{n-1}}$, where $\left[\frac{n}{2}\right]$ is the integer part of $\frac{n}{2}$. Then if $M \in(0, A(n)](M \in[-A(n), 0))$, the operator L_{n} is inverse positive (inverse negative) on $F_{a, b}^{n}$.

Furthermore, if $M \in\left[-[A(n)]^{2}, 0\right)$ the operator $L_{2 n}$ is inverse negative on $F_{a, b}^{2 n}$.

For this, we use the following known result.

Lemma 2.2:

1. L_{1} is inverse positive (inverse negative) on $F_{a, b}^{1}$ for all $M>0$ ($M<0$).
2. $\quad L_{2}$ is inverse negative on $F_{a, b}^{2}$ for all $M<0$.
3. ([13], Lemma 2.1) The operator $N_{A, B} u=u^{\prime \prime}-2 A u^{\prime}+\left(A^{2}+B^{2}\right) u$ is inverse positive on $F_{0,2 \pi}^{2}$ if and only if $(0<) B \leq \frac{1}{2}$.

Now, we prove the following preliminary lemma.
Lemma 2.3: Let $L u=u^{(n)}+\sum_{i=0}^{n-1} a_{i} u^{(i)}$ and $N u=u^{(m)}+\sum_{i=0}^{m-1} b_{i} u^{(i)}$. Then if L is inverse positive on $F_{a, b}^{n}$ and $\stackrel{i}{N}=0$ is inverse positive (inverse negative) on $F_{a, b}^{m}$ then $L \circ N$ is inverse positive (inverse negative) on $F_{a, b}^{n+m}$.

Proof: \quad Since $u \in F_{a, b}^{n+m}$ it is clear that

$$
(N u)^{(i)}(a)=(N u)^{(i)}(b), i=0, \ldots, n-2
$$

and

$$
(N u)^{(n-1)}(a) \geq(N u)^{(n-1)}(b)
$$

In consequence, since L is inverse positive on $F_{a, b}^{n}$, we have that $N u \geq 0$. Now, using that N is inverse positive (inverse negative) on $F_{a, b}^{m}$, we obtain that $u \geq 0(u \leq 0)$.

Thus, we are in position to prove the following lemma.
Lemma 2.4: Let $M>0$. The following properties hold:

1. Let $n=4 k, k \in\{1,2, \ldots\}$.

If $M \leq\left[\frac{\pi}{(b-a) \sin \left(\frac{n+2}{2 n} \pi\right)}\right]^{n}$, then L_{n} is inverse positive on $F_{a, b}^{n}$.
2. Let $n=2+4 k, k \in\{1,2, \ldots\}$.

If $M \leq\left[\frac{\pi}{b-a}\right]^{n}$, then L_{n} is inverse positive on $F_{a, b}^{n}$.
3. Let n be odd.

$$
\text { If } M \leq\left[\frac{\pi}{(b-a) \sin \left(\frac{n+1}{2 n} \pi\right)}\right]^{n} \text {, then } L_{n} \text { is inverse positive on } F_{a, b}^{n}
$$

Proof: Since, if $u \in W^{n, 1}(I)$ satisfies

$$
L_{n} u(t)=\sigma(t), u^{(i)}(a)=u^{(i)}(b), i=0, \ldots, n-2 \text { and } u^{(n-1)}(a)-u^{(n-1)}(b)=\lambda
$$

then $v(t)=\left(\frac{2 \pi}{b-a}\right)^{n-1} u\left(\frac{b-a}{2 \pi} t+a\right)$ satisfies

$$
v^{(n)}(t)+\left(\frac{b-a}{2 \pi}\right)^{n} M v(t)=\left(\frac{b-a}{2 \pi}\right) \sigma\left(\frac{b-a}{2 \pi} t+a\right)
$$

with

$$
v^{(i)}(0)=v^{(i)}(2 \pi), i=0, \ldots, n-2 \text { and } v^{(n-1)}(0)-v^{(n-1)}(2 \pi)=\lambda
$$

It is sufficient to study the operator L_{n} on $F_{0,2 \pi}^{n}$ because to obtain the estimate on the interval $[a, b]$ we multiply by $\left(\frac{2 \pi}{b-a}\right)^{n}$ the estimate obtained on $[0,2 \pi]$.

Let $m>0$ such that $m^{n}=M$.
First, we suppose that n is even.
In this case the polynomial function $p(\lambda)=\lambda^{n}+m^{n}=0$ if and only if

$$
\lambda=\lambda_{l}=m\left[\cos \left(\frac{2 l+1}{n} \pi\right) \pm i \sin \left(\frac{2 l+1}{n} \pi\right)\right] \equiv a_{l} \pm i \beta_{l}
$$

$l=0,1, \ldots, \frac{n-2}{2}$.
As consequence we have that

$$
\lambda^{n}+m^{n}=\prod_{l=0}^{\frac{n-2}{2}}\left(\lambda^{2}-2 \alpha_{l} \lambda+m^{2}\right)
$$

and

$$
\begin{equation*}
L_{n} \equiv T_{0} \circ T_{1} \circ \ldots \circ T_{\frac{n-2}{2}} \tag{2.3}
\end{equation*}
$$

Where $T_{l} u=u^{\prime \prime}-2 \alpha_{l} u^{\prime}+m^{2} u$.
If $n=4 k$ for some $k \in\{1,2, \ldots\}$, then $\beta_{l} \leq \beta_{\frac{n}{4}}=m \sin \left(\frac{n+2}{2 n} \pi\right)$ for all $l \in\left\{0,1, \ldots, \frac{n-2}{2}\right\}$. Thus, using lemma 2.2 , if $m \leq\left[2 \sin \left(\frac{n+2}{2 n} \pi\right)\right]^{-1}$ the operator T_{l} is inverse positive on $F_{0,2 \pi}^{2}$ for all $l \in\left\{0,1, \ldots, \frac{n-2}{2}\right\}$. Therefore lemma 2.3 implies that L_{n} is inverse positive on $F_{0,2 \pi}^{n}$.

If $n=2+4 k$ for some $k \in\{1,2, \ldots\}$, then $\beta_{l} \leq \beta_{\frac{n-2}{4}}=m$ for all $l \in$ $\left\{0,1, \ldots, \frac{n-2}{2}\right\}$ and as a consequence, T_{l} is inverse positive on $F_{0,2 \pi}^{2}$ when $m \leq \frac{1}{2}$. By (2.3) and the two previous lemmas, we obtain that L_{n} is inverse positive on $F_{0,2 \pi}^{n}$.

Now, we suppose that n is odd.
In this case, $p(\lambda)=0$ if and only if $\lambda=-m$ or $\lambda=\lambda_{l}=\alpha_{l} \pm i \beta_{l}$,
$l=0, \ldots, \frac{n-3}{2}$. Thus

$$
\lambda^{n}+m^{n}=(\lambda+m) \prod_{l=0}^{\frac{n-3}{2}}\left(\lambda^{2}-2 \alpha_{l} \lambda+m^{2}\right)
$$

and

$$
L_{n} \equiv T_{0} \circ T_{1} \circ \ldots \circ T_{\frac{n-3}{2}} \circ S_{1}
$$

Where $S_{1} u=u^{\prime}+m u$.
In this case $\beta_{l} \leq \beta_{\frac{n-1}{4}}=m \sin \left(\frac{n+1}{2 n} \pi\right)$ for all $l \in\left\{0,1, \ldots, \frac{n-3}{2}\right\}$. Thus, if $m \geq\left[2 \sin \left(\frac{n+1}{2 n} \pi\right)\right]^{-1}$ lemmas 2.2 and 2.3 imply that the operator L_{n} is inverse positive on $F_{0,2 \pi}^{n}$.

Analogously we can prove the following result for $M<0$.
Lemma 2.5: Let $M<0$. The following properties hold:

1. Let $n=4 k, k \in\{1,2, \ldots\}$. If $M \geq-\left[\frac{\pi}{b-a}\right]^{n}$ then L_{n} is inverse negative on $F_{a, b}^{n}$.
2. Let $n=2+4 k, k \in\{0,1, \ldots\}$. If $M \geq-\left[\frac{\pi}{(b-a) \sin \left(\frac{n+2}{2 n} \pi\right)}\right]^{n}$ then L_{n} is inverse negative on $F_{a, b}^{n}$.
3. Let n be odd.

$$
\text { If } M \geq-\left[\frac{\pi}{(b-a) \sin \left(\frac{n+1}{2 n} \pi\right)}\right]^{n} \text { then } L_{n} \text { is inverse negative on } F_{a, b}^{n}
$$

Remark 2.1: Note that these estimates are not the best possible for all $n \in \mathbb{N}$.

In [2] it is proved that L_{3} is inverse positive (inverse negative) on $F_{0,2 \pi}^{3}$ if and only if $M \in\left(0, M_{3}^{3}\right]\left(M \in\left[-M_{3}^{3}, 0\right)\right)$. Where M_{3} is the unique solution of the equation

$$
\arctan \left(\frac{\sin \sqrt{3} m \pi}{\cos \sqrt{3} m \pi-e^{m \pi}}\right)+\pi=\frac{\sqrt{3}}{3} \log \left(\frac{e^{3 m \pi}-e^{m \pi}}{\sqrt{1+e^{2 m \pi}-2 e^{m \pi} \cos \sqrt{3} m \pi}}\right)
$$

Furthermore, L_{4} is inverse negative on $F_{0,2 \pi}^{4}$ if and only if $M \in\left[-M_{4}^{4}, 0\right)$, with M_{4} given as the unique solution in $\left(\frac{1}{2}, 1\right)$ of the equation

$$
-\tanh m \pi=\tan m \pi
$$

Note that the estimates obtained in lemmas 2.4 and 2.5 are the best possible for $n=1$ and $n=2$.

3. THE MONOTONE METHOD

In this section we study the existence of solutions of the problem (1.1)(1.2) in the sector $[\alpha, \beta]$ or $[\beta, \alpha]$, where $[v, w]=\left\{u \in L^{1}(I): v \leq u \leq w\right.$ on $\left.I\right\}$. We improve the following result given in [2], which generalizes theorem 5 in [15].

Theorem 3.1: The following properties hold.

1. If there exists $\alpha \leq \beta(\alpha \geq \beta)$ lower and upper solutions respectively of the problem (1.1)-(1.2), and f satisfies the condition $\left(H_{1}\right)\left(\left(H_{2}\right)\right)$ for some $M \in(0, A(n)](M \in[-A(n), 0))$ then there exists a solution of the problem (1.1)-(1.2) in $[\alpha, \beta]([\beta, \alpha])$. Furthermore, there exist two monotone sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ with $\alpha_{0}=\alpha$ and $\beta_{0}=\beta$ which converge uniformly to the extremal solutions in $[\alpha, \beta]([\beta, \alpha])$ of the problem (1.1)-(1.2).
2. The previous property is true when n is even and f satisfies the condition $\left(H_{2}\right)$ for some $M \in\left(-\left[A\left(\frac{n}{2}\right)\right]^{2}, 0\right]$.

Using lemma 2.4 we prove the following result.
Theorem 3.2: If there exists $\alpha \geq \beta$ lower and upper solutions respectively of the problem (1.1)-(1.2) and if any of the following properties are true:

1. Let $n=4 k, k \in\{1,2, \ldots\}$. Suppose that f satisfies the property $\left(H_{2}\right)$ for some $M \in\left[-\left[\frac{\pi}{(b-a) \sin \left(\frac{n+2}{2 n} \pi\right)}\right]^{n}, 0\right)$.
2. Let $n=2+4 k, k \in\{1,2, \ldots\}$. Suppose that f satisfies the property $\left(H_{2}\right)$ for some $M \in\left[-\left[\frac{\pi}{b-a}\right]^{n}, 0\right)$.
3. Let n be odd. Suppose that f satisfies the property $\left(H_{2}\right)$ for some $M \in\left[-\left[\frac{\pi}{(b-a) \sin \left(\frac{n+1}{2 n} \pi\right)}\right]^{n}, 0\right)$.
Then there exists u a solution of the problem (1.1)-(1.2) in $[\beta, \alpha]$.
Furthermore, there exist two monotone sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ with $\alpha_{0}=\alpha$ and $\beta_{0}=\beta$, which converge uniformly to the extremal solutions in $[\beta, \alpha]$ of
the problem (1.1)-(1.2).
Proof: We consider the problem:

$$
\begin{gather*}
u^{(n)}(t)-M u(t)=f(t, \eta(t))-M \eta(t) \text { for a.e. } t \in I \tag{3.1}\\
u^{(i)}(a)-u^{(i)}(b)=\lambda_{i}, i=0,1, \ldots, n-1 \tag{3.2}
\end{gather*}
$$

with $\eta \in L^{1}(I), \beta(t) \leq \eta(t) \leq \alpha(t)$.
We have:

$$
\begin{gathered}
(\alpha-u)^{(n)}(t)-M(\alpha-u)(t) \geq-f(t, \eta(t)) \\
+M \eta(t)+f(t, \alpha(t))-M \alpha(t) \geq 0 \\
(\alpha-u)^{(i)}(a)-(\alpha-u)^{(i)}(b)=0 ; i=0, \ldots, n-2 \\
(\alpha-u)^{(n-1)}(a)-(\alpha-u)^{(n-1)}(b) \geq 0
\end{gathered}
$$

Lemma 2.4 implies that $u \leq \alpha$.
Analogously we can prove that $u \geq \beta$.
Let $u_{i}=Q \eta_{i}$ the unique solution of the problem (3.1)-(3.2) for $\eta=\eta_{i} \in$ $L^{1}(I)$. Since for $\beta \leq \eta_{1} \leq \eta_{2} \leq \alpha$,

$$
\begin{gathered}
\left(u_{2}-u_{1}\right)^{(n)}(t)-M\left(u_{2}-u_{1}\right)(t)=f\left(t, \eta_{2}(t)\right) \\
-M \eta_{2}(t)-f\left(t, \eta_{1}(t)\right)+M \eta_{1}(t) \geq 0 \\
\left(u_{2}-u_{1}\right)^{(i)}(a)-\left(u_{2}-u_{1}\right)^{(i)}(b)=0 ; \quad i=0, \ldots, n-1,
\end{gathered}
$$

the following property holds:

$$
\text { If } \beta \leq \eta_{1} \leq \eta_{2} \leq \alpha \text { then } u_{1}=Q \eta_{1} \leq Q \eta_{2}=u_{2}
$$

The sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are obtained by recurrence: $\alpha_{0}=\alpha, \beta_{0}=\beta$, $\alpha_{n}=Q \alpha_{n-1}$ and $\beta_{n}=Q \beta_{n-1} ; n \geq 1$.

By standard arguments we prove that $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ converge to the extremal solutions on $[\beta, \alpha]$ of the problem (1.1)-(1.2).

Analogously, using lemma 2.5 we can prove the following theorem.
Theorem 3.3: If there exists $\alpha \leq \beta$ lower and upper solutions respectively of the problem (1.1)-(1.2) and any of the following properties are
verified:

1. Let $n=4 k, k \in\{1,2, \ldots\}$. Suppose that f satisfies the property $\left(H_{1}\right)$ for some $M \in\left(0,\left[\frac{\pi}{b-a}\right]^{n}\right]$.
2. Let $n=2+4 k, k \in\{1,2, \ldots\}$. Suppose that f satisfies the property $\left(H_{1}\right)$ for some $M \in\left(0,\left[\frac{\pi}{(b-a) \sin \left(\frac{n+2}{2 n} \pi\right)}\right]^{n}\right]$.
3. Let n be odd. Suppose that f satisfies the property $\left(H_{1}\right)$ for some $M \in\left(0,\left[\frac{\pi}{(b-a) \sin \left(\frac{n+1}{2 n} \pi\right)}\right]^{n}\right]$.
Then there exists u a solution of the problem (1.1)-(1.2) in $[\alpha, \beta]$.
Furthermore there exist two monotone sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ with $\alpha_{0}=\alpha$ and $\beta_{0}=\beta$ which converge uniformly to the extremal solutions in $[\alpha, \beta]$ of the problem (1.1)-(1.2).

Remark 3.1: Similarly to the remark 2.1, note that the estimates obtained for the function f in theorems 3.2 and 3.3 are not the best possible for all $n \in \mathbb{N}$.

4. THE METHOD OF MIXED MONOTONY

In this section we study the method of mixed monotony, studied by Khavanin and Lakshmikantham in [5], in which they consider the initial and periodic first order problems. In this case, under stronger conditions on the function f it is possible to guarantee the unicity of the solution when we have an n th-order system.

In [5] the following results are obtained.
Theorem 4.1: Consider the following system

$$
u^{\prime}(t)=f(t, u(t)) ; t \in[0, T]
$$

with $f \in C\left([0, T] \times \mathbb{R}^{N}, \mathbb{R}^{N}\right)$.
If there exists $F \in C\left([0, T] \times \mathbb{R}^{N} \times \mathbb{R}^{N}, \mathbb{R}^{N}\right), \quad \alpha, \beta \in C^{1}\left([0, T], \mathbb{R}^{\mathbf{V}}\right)$ which satisfy the following conditions:
(i) $\quad \alpha^{\prime}(t) \geq F(t, \alpha(t), \beta(t)), \beta^{\prime}(t) \leq F(t, \beta(t), \alpha(t))$. With $\beta \leq \alpha$ on $[0, T]$.
(ii) $F(t, u, v)$ is nondecreasing on u and nonincreasing on v.
(iii) $\quad F(t, u, u)=f(t, u)$ and

$$
\begin{aligned}
& \qquad-B\left(z_{1}-z_{2}\right) \leq F\left(t, y_{1}, z_{1}\right)-F\left(t, y_{2}, z_{2}\right) \leq B\left(y_{1}-y_{2}\right) \\
& \text { with } \beta(t) \leq y_{2} \leq y_{1} \leq \alpha(t), \beta(t) \leq z_{2} \leq z_{1} \leq \alpha(t) \text { and } B \text { an } N \times N \\
& \text { matrix with nonnegative elements. }
\end{aligned}
$$

Then:
If $\beta(0) \leq u_{0} \leq \alpha(0)$, then there exist two sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ nonincreasing and nondecreasing respectively which converge uniformly to the unique solution of the problem

$$
u^{\prime}(t)=f(t, u(t)) ; u(0)=u_{0}
$$

Furthermore, if $(T=2 \pi) \beta(0) \leq \beta(2 \pi)$ and $\alpha h(0) \geq \alpha(2 \pi)$ with $I \neq e^{2 B \pi}$ the same result is valid for the problem

$$
u^{\prime}(t)=f(t, u(t)) ; u(0)=u(2 \pi)
$$

Theorem 4.2: If there exists $\alpha, \beta \in C^{1}\left([0, T], \mathbb{R}^{N}\right)$, with $\beta \leq \alpha$ on $[0, T]$ verifying:

$$
\alpha^{\prime}(t) \geq f(t, \alpha(t))+B(\alpha(t)-\beta(t)) \text { and } \beta^{\prime}(t) \leq f(t, \beta(t))-B(\alpha(t)-\beta(t))
$$

and f satisfies

$$
-B(x-y) \leq f(t, x)-f(t, y) \leq B(x-y)
$$

with $\beta(t) \leq y \leq x \leq \alpha(t)$, where B is an $N \times N$ matrix with nonnegative elements, then the conclusions of theorem 4.1 are valid.

Using lemma 2.5 we prove the following result.
Theorem 4.3: Let

$$
\begin{gather*}
u^{(n)}(t)=f(t, u(t)) \text { for a.e. } t \in[a, b] \tag{4.1}\\
u_{j}^{(i)}(a)-u_{j}^{(i)}(b)=\lambda_{i, j} \in \mathbb{R}, i=0, \ldots, n-1 ; j=1, \ldots, N \tag{4.2}
\end{gather*}
$$

with $f: I \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ a Carathéodory function and $n \geq 2$.
If there exists a Carathéodory function $F: I \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ and α, $\beta \in W^{n, 1}\left(I, \mathbb{R}^{N}\right), \alpha \leq \beta$ on I, verifying the following properties:

$$
\begin{equation*}
\alpha^{(n)}(t) \geq F(t, \alpha(t), \beta(t)) \text { for a.e. } t \in I \tag{i}
\end{equation*}
$$

$$
\begin{gathered}
\alpha_{j}^{(i)}(a)-\alpha_{j}^{(i)}(b)=\lambda_{i, j} ; i=0, \ldots, n-2 ; j=1, \ldots, N \\
\alpha_{j}^{(n-1)}(a)-\alpha_{j}^{(n-1)}(b) \geq \lambda_{n-1, j} ; j=1, \ldots, N .
\end{gathered}
$$

(ii)

$$
\begin{gathered}
\beta^{(n)}(t) \leq F(t, \beta(t), \alpha(t)) \text { for a.e. } t \in I \\
\beta_{j}^{(i)}(a)-\beta_{j}^{(i)}(b)=\lambda_{i, j} ; i=0, \ldots, n-2 ; j=1, \ldots, N \\
\beta_{j}^{(n-1)}(a)=\beta_{j}^{(n-1)}(b) \leq \lambda_{n-1, j} ; j=1, \ldots, N
\end{gathered}
$$

(iii) $F(t, u, v)$ is nonincreasing on u and nondecreasing on v.
(iv) $\quad F(t, u, u)=f(t, u)$ and

$$
F(t, y, z)-F(t, z, y)=-B(y-z)
$$

B being an $N \times N$ matrix with nonnegative elements such that $\exp (C(b-a)) \neq I$. Where C is given by the expression

$$
C \equiv\left(\begin{array}{l|r}
0 & I_{(n-1) N} \\
\hline-B & 0
\end{array}\right) .
$$

Here $I_{(n-1) N}$ is the $(n-1) N \times(n-1) N$ identity matrix.
Then there exist two monotone sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$, with $\alpha_{0}=\alpha$ and $\beta_{0}=\beta$, which converge uniformly to the unique solution of the problem (4.1)-(4.2).

Proof: Let $M_{1}=-\left[\frac{\pi}{b-a}\right]^{n}$ and $\eta, \nu \in L^{1}\left(I, \mathbb{R}^{N}\right), \eta, \nu \in[\alpha, \beta]$.
Consider the following linear problem for each $j=1, \ldots, N$:

$$
\begin{gather*}
u_{j}^{(n)}(t)+M_{1} u_{j}(t)=F_{j}(t, \eta(t), \nu(t))+M_{1} \eta_{j}(t) \text { for a.e. } t \in[a, b] \tag{4.3}\\
u_{j}^{(i)}(a)-u_{j}^{(i)}(b)=\lambda_{i, j} \in \mathbb{R}, i=0, \ldots, n-1 ; j=1, \ldots, N . \tag{4.4}
\end{gather*}
$$

Let $u=A[\eta, \nu]$ be the unique solution of the problem (4.3)-(4.4) for each η, ν.

First, we prove that $\alpha \leq A[\alpha, \beta]=\alpha_{1}$,

$$
\begin{gathered}
\left(\alpha_{j}^{(n)}-\alpha_{1, j}^{(n)}\right)(t)+M_{1}\left(\alpha_{j}-\alpha_{1, j}\right)(t) \geq 0 \\
\left(\alpha_{j}^{(i)}-\alpha_{1, j}^{(i)}\right)(a)-\left(\alpha_{j}^{(i)}-\alpha_{1, j}^{(i)}\right)(b)=0 ; i=0, \ldots, n-2 \\
\left(\alpha_{j}^{(n-1)}-\alpha_{1, j}^{(n-1)}\right)(a)-\left(\alpha_{j}^{(n-1)}-\alpha_{1, j}^{(n-1)}\right)(b) \geq 0
\end{gathered}
$$

Thus, lemma 2.5 implies that $\alpha \leq \alpha_{1}$ on I.
Similarly, we obtain that $\beta \geq \beta_{1}=A[\beta, \alpha]$.
Let $\eta_{1}, \eta_{2}, \nu \in[\alpha, \beta]$, with $\eta_{1} \leq \eta_{2}$. Let $u_{1}=A\left[\eta_{1}, \nu\right]$ and $u_{2}=A\left[\eta_{2}, \nu\right]$. We have that

$$
\begin{aligned}
\left(u_{1, j}-u_{2, j}\right)^{(n)}(t) & +M_{1}\left(u_{1, j}-u_{2, j}\right)(t)=F_{j}\left(t, \eta_{1}, \nu\right)+M_{1} \eta_{1, j} \\
& -F_{j}\left(t, \eta_{2}, \nu\right)-M_{1} \eta_{2, j} \geq 0
\end{aligned}
$$

which implies that $u_{1} \leq u_{2}$.
Analogously, one can prove that $A\left[\eta, \nu_{1}\right] \leq A\left[\eta, \nu_{2}\right]$ if $\nu_{1} \geq \nu_{2}$.
It is now easy to define the sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ with $\alpha_{0}=\alpha, \beta_{0}=\beta$, $\alpha_{n+1}=A\left[\alpha_{n}, \beta_{n}\right]$ and $\beta_{n+1}=A\left[\beta_{n}, \alpha_{n}\right]$.

Clearly, $\alpha \leq \alpha_{1} \leq \ldots \leq \alpha_{n} \leq \beta_{n} \leq \ldots \leq \beta_{1} \leq \beta$ on I.
By standard arguments we can show that $\lim _{n \rightarrow \infty} \alpha_{n}=\phi$ and $\lim _{n \rightarrow \infty} \beta_{n}=\psi$ exist uniformly on I and ϕ and ψ satisfy

$$
\begin{gathered}
\phi^{(n)}(t)=F(t, \phi, \psi), \psi^{(n)}(t)=F(t, \psi, \phi) \\
\phi_{j}^{(i)}(a)-\phi_{j}^{(i)}(b)=\psi_{j}^{(i)}(a)-\psi_{j}^{(i)}(b)=\lambda_{i, j}
\end{gathered}
$$

$$
i=0, \ldots, n-1 ; j=1, \ldots, N
$$

That is

$$
\begin{gather*}
(\phi-\psi)^{(n)}(t)=F(t, \phi, \psi)-F(t, \psi, \phi)=-B(\phi-\psi) \tag{4.5}\\
(\phi-\psi)^{(i)}(a)=(\phi-\psi)^{(i)}(b) ; i=0, \ldots, n-1 \tag{4.6}
\end{gather*}
$$

Now, we define $p(t)=\left((\phi-\psi)(t),(\phi-\psi)^{\prime}(t), \ldots,(\phi-\psi)^{(n-1)}(t)\right) \in \mathbb{R}^{n N}$. Therefore $p^{\prime}=C p, p(a)=p(b)$. Since $p(b)=\exp (C(b-a)) p(a)$, we obtain that $p \equiv 0$ and, in consequence, $\phi=\psi$. That is, $\phi^{(n)}(t)=F(t, \phi, \phi)=f(t, \phi)$, which concludes the proof.

Similarly, using lemma 2.4 we prove the following result.
Theorem 4.4: The conclusions obtained in theorem 4.3 are valid if $\alpha \geq \beta$ and the properties (iii) and (iv) are changed by
(iii) $F(t, u, v)$ is nondecreasing on u and nonincreasing on v.
$(i v)^{\prime} \quad F(t, u, u)=f(t, u)$ and

$$
F(t, y, z)-F(t, z, y)=B(y-z)
$$

B being an $N \times N$ matrix with nonnegative elements as such that $\exp (D(b-a)) \neq I$, where D is defined as follows:

$$
D \equiv\left(\begin{array}{c|c}
0 & I_{(n-1) N} \\
\hline B & 0
\end{array}\right) .
$$

Here $I_{(n-1) N}$ is the $(n-1) N \times(n-1) N$ identity matrix.
As consequence of the two previous lemmas we prove the following result.
Theorem 4.5: Let $n \geq 2$. Suppose that there exist α and $\beta \in$ $W^{n, 1}\left(I, \mathbb{R}^{N}\right), \alpha \leq \beta(\alpha \geq \beta)$ and f a Carathéodory function, satisfying

$$
-B(x-y) \leq f(t, x)-f(t, y) \leq B(x-y)
$$

with $y \leq x$ between $\alpha(t)$ and $\beta(t)$, where B is an $N \times N$ matrix with nonnegative elements.

If α and β satisfies

$$
\begin{gathered}
\alpha^{(n)}(t) \geq f(t, \alpha(t))+B|\beta(t)-\alpha(t)| \text { for a.e. } t \in I \\
\alpha_{j}^{(i)}(a)-\alpha_{j}^{(i)}(b)=\lambda_{i, j} ; i=0,1, \ldots, n-2, j=1, \ldots, N \\
\alpha_{j}^{(n-1)}(a)-\alpha_{j}^{(n-1)}(b) \geq \lambda_{n-1, j} ; j=1, \ldots, N
\end{gathered}
$$

and

$$
\begin{gathered}
\beta^{(n)}(t) \leq f(t, \beta(t))-B|\beta(t)-\alpha(t)| \text { for a.e. } t \in I \\
\beta_{j}^{(i)}(a)-\beta_{j}^{(i)}(b)=\lambda_{i, j} ; i=0,1, \ldots, n-2, j=1, \ldots, N \\
\beta_{j}^{(n-1)}(a)-\beta_{j}^{(n-1)}(b) \leq \lambda_{n-1, j} ; j=1, \ldots, N .
\end{gathered}
$$

And $\exp (C(b-a)) \neq I(\exp (D(b-a)) \neq I)(C$ and D given in theorems 4.3 and 4.4).

Then there exists a unique solution u between α and β of the problem (4.1)-(4.2). Furthermore, there exist two monotone sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$, with $\alpha_{0}=\alpha$ and $\beta_{0}=\beta$, which converge uniformly to the solution u.

Proof: If $\alpha \leq \beta$ we define F as follows:

$$
F(t, u, v)=\frac{1}{2}[f(t, u)+f(t, v)-B(u-v)] .
$$

It is easy to prove that the function F satisfies the conditions of theorem 4.3. If $\alpha \geq \beta$ the function F is defined as follows:

$$
F(t, u, v)=\frac{1}{2}[f(t, u)+f(t, v)+B(u-v)] .
$$

Clearly, the function F satisfies the conditions of theorem 4.4.

REFERENCES

[1] Bernfeld, S.R. and Lakshmikantham, V., An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York 1974.
[2] Cabada, A., The method of lower and upper solutions for second, third, fourth and higher order boundary value problems, J. Math. Anal. Appl. (to appear).
[3] Cabada, A. and Nieto, J.J., A generalization of the monotone iterative technique for nonlinear second order periodic boundary value problems, J. Math. Anal. Appl. 151 (1990), 181-189.
[4] Cabada, A. and Nieto, J.J., Extremal solutions of second order nonlinear periodic boundary value problems, Appl. Math. Comput. 40 (1990), 135-145.
[5] Khavanin, M. and Lakshmikantham, V., The method of mixed monotony and first order differential systems, Nonlinear Anal. 10:9 (1986), 873-877.
[6] Ladde, G.S, Lakshmikantham, V. and Vatsala, A.S., Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston 1985.
[7] Nieto, J.J., Nonlinear second order periodic boundary value problems, J. Math. Anal. Appl. 130 (1988), 22-29.
[8] Nieto, J.J., Nonlinear second order periodic boundary value problems with Carathéodory functions, Appl. Anal. 34 (1989), 111-128.
[9] Nieto, J.J., Periodic solutions for third order ordinary differential equations, Commentat. Math. Univ. Carol. 32 (1991), 495-499.
[10] Nieto, J.J. and Cabada, A., A generalized upper and lower solution method for nonlinear second order ordinary differential equations, J. Appl. Math. Stoch. Anal. 5 (1992), 157-166.
[11] Omari, P., A monotone method for constructing extremal solutions of second order scalar boundary value problems, Appl. Math. Comp. 18 (1986), 257-275.
[12] Omari, P., Nonordered lower and upper solutions and solvability of the periodic problem for the Liénard and the Rayleigh equations, Rend. Ist. Mat. Univ. Trieste 20 (1991), 54-64.
[13] Omari, P. and Trombetta, M., Remarks on the lower and upper solutions methods for second and third order periodic boundary value problems, Appl. Math. Comput. 50 (1992), 1-21.
[14] Rudolf, B. and Kubacek, Z., Remarks on J.J. Nieto's paper: Nonlinear second order periodic boundary value problems, J. Math. Anal. Appl. 146 (1990), 203-206.
[15] Šeda, V., Nieto, J.J. and Gera, M., Periodic boundary value problems for nonlinear higher order ordinary differential equations, Appl. Math. Comput. 48 (1992), 71-82.

[^0]: ${ }^{1}$ Received: August 1993. Revised: January 1994.
 ${ }^{2}$ Partially supported by DGICYT, project PB91-0793 and Xunta de Galicia, project XVGA 20702B92.

