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ABSTILA.CT

In this paper we develop the monotone method in the presence of
lower and upper solutions for the problem

u(n)(t) = f(t, u(t)); u(i)(a)- u(i)(b) A E , = 0,..., n- 1,

where f is a Carathodory function We obtain sufficient conditions for
f to guarantee the existence and approximation of solutions between a
lower solution c and an upper solution / for n >_ 3 with either a _< or

For this, we study some maximum principles for the operator
Lu -- u(n) + Mu. Furthermore, we obtain a generalization of the method
of mixed monotonicity considering f and u as vectorial functions.
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1. INTRODUCTION

In this paper we study the following class of boundary value problems for
the ordinary differential equations"

u(")(t) f(t, u(t)) for a.e. t e I --[a, b]

u(i)(a) u(i)(b) i e [; i = 0,1, \, n 1,

for n k 3 where f is a Carathodory function.

Definition 1.1" We say that f:I x Rt--+" is a Carathodory function, if

f- (fl, \, f,)satisfies the following properties"
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fi(" ,x)is measurable for all x Nt axtd i fi {1,..., m}.
fi(t, ) is continuous for a.e. t I.
For every R > 0 and i 6 {1,...,m}, there exists h, a 6 L(I) such that:

f(t,x) _< h,a(t) for a.e. t Z,

To develop the monotone method we use the concept of lower and upper

solutions:

Deflation 1.2: Let c e W"’X(I), we say that c is a lower solution for the

problem (1.1)-(1.2)if a satisfies

c(i)(a) (i)(b) = ,i; = O, l,..., n 2

("- )(a) ("- )() >_ ,_ 1.

Definition 1.3: Let fl E W"’(I), we say that /3 is an upper solution for

the problem (1.1)-(1.2) if satisfies

fl(")(t) _< f(t, fl(t)) for a.e. t I

(_() (-1() _< a_ .
We suppose that f satisfies one of the following conditions, depending on

various circumstances"

(Hx) f(t, x)- f(t, y) < M(x- y) for a.e. t I with a(t) < y <_ z <_ fl(t) and

M>0.

(g) f(t,x)- f(t,y) > M(x- y) for a.e. t I with fl(t) _< y _< x < c(t) and

M<0.

This problem has been studied by different authors for second order

equations when c < fl ([1]-[4], [6], [8], [10], [11]). If c _> fl the monotone method

is not valid if f satisfies the condition (H) for some M < 0 ([2], [7], [12], [14]).

For n >_ 3 the method of lower and upper solutions has been little studied

([2], [9], [13]). In [2] the author obtains the best value on the constant M for
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n = 2, n = 3 oaxd n = 4 (in this last case, if M < 0) for which he conditions (Hx)
or (H2) imply that he monotone method is valid.

To prove he validity of he monotone mehod o more general cases, we

presen some maximum principles for he operaor

defined by L,,u = u(") + Mu.
and

L.:F b--,L(I),a

Where M is a real constant different from zero,

F",b = {u W"’(I); u(’)(a) = u(’)(b),i = O, ...,n 2; u("-)(a)_> u("- )(b)}.
We say that an operator L is inverse positive in F" if Lu > 0 implies

u _> 0 for all u F", and that L is inverse negative in F", if Lu >_ 0 implies

u < 0 for all u F"

In Section 2, we obtain a new maximum principle for the operator L,
using that this operator is given by the composition of the operators of first and

second order.

This result is used in Section 3 to extend to more generM cases the

validity of the monotone method for the problem (1.1)-(1.2) and in Section 4 it is

applied to obtain a new generization of the method of mixed monotony [5]
when f and u are vectorial functions.

2. MAXIMUM PR/NCIPLES

In this section we improve the following result obtained in [2], which

generalizes theorem 4 in [15].
",t where [] is the integer parLemma 2.1" Let A(n) =_

[]"(b- )"(, )"- 1,

of . Then if M e (0,A(n)] (M e[-A(n),O)), the operator n is inverse positive

(inverse negative) on F"a,b"

Fa, b.

Furthermore, if M el-[A(n)],0) the operator L is inverse negative on

For this, we use the following known result.
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Lemma 2.2:

L is inverse posiiv (inverse negative) on F for all M > 0a,b

(M < 0).
L2 is inverse negative on F for all M < 0

([13], Lemma 2.1) The operator gA,sU = u"-- 2du’ + (d + B2)u is

oiti, o fo. =do if (0 < ) <_ .
Now, we prove the following preliminary lemma.

Lemma 2.3: Let Lu = u(") + aiu
(’) and Nu = u(’) q-iiu(). Then

i=0 i=0

if L is inverse positive on F" and N is inverse positive (inverse negative) ona,b

F" hen L o N is inverse positive (inverse negative) on F" + ’a,b a,b

Proof: Since u E F"+ " it is clear thata

(Nu)(’)(a) = (Nu)(’)(b), i 0,..., n- 2

(Nu)("- )(a) >_ (Nu)(- )(b).

In consequence, since L is inverse positive on F",s, we have that Nu > O.

Now, using that N is inverse positive (inverse negative) on F",,b, we obtain that

>0 (u<0). t3

Thus, we are in position to prove the following lemma.

Lemma 2.4: Let M > O. The following properties hold:

Let n 4k, k

IfM <_ ’-/ then L
a)sn

Let n = 2 + 4k, k {1,2,...}.
If M < [___]n, then L, is inverse positive on Fa

Let n be odd.

a,b"

is inverse positive on F"a,b"

Since, if u W"’(I) satisfies

L,u(t) = o’(t), u(i)(a) u(i)(b), i 0,..., n 2 and u

shIi y()-" (b2_a)n- ilz( "1" a)satisfies
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wih

,(’)(o) = ,(’)(2), i = o,...,, 2 a ,,("- )(o) ,("- x)(2) = a.

It is sufficient to study the operator L, on Fo", because to obtain the

estimate on the interval [a,b] we multiply by the estimate obtained on

Let m > 0 such that m" = M.

First, we suppose that n is even.

In this case the polynomial function p(A) = " + m" = 0 if and only if

As consequence we have that

2

A" + m" = I (A2 2atA + m2)
/=0

L, To o Tx o... o T,_ . (2.3)
2

Where Tu = u"- 2cqu’ + mu.
+ _’If n =4k for some k {1,2,...}, then /t-< _- = msin 2:) for all

4

l {0,1,...,..."-..=.} Thus, using lemma 2.2, if m _< 2sin-T--r the operator T
is inverse positive on F, for all l {0,1,...,n-=-}. Therefore lemma 2.3 implies

that L. is inverse positive on F,,.
If n = 2 +4k for some k {1,2,...}, then fit-< fin-: = m for all l

1{0,1,...,"} and as a consequence, T is inverse positive on F02,2r when m < .
By (2.3) and the two previous lemmas, we obtain that L, is inverse positive on

Now, we suppose that n is odd.

In this case, p(A)=O if and only if A=-m or A=
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"- ThusI=0,..., 2
n-3

+. = + m)YI +

L, =_ To o T o... o T,_ a o S.

Where Su = u’ + mu.

In this case fit-< ,- = msin("-r)for all lfi {0,1,...,-). Thus, if

m >_ [2sin(w)]- lemm 2.2 and 2.3 imply tha he operator Ln is inverse

positive on F0.
Analogously we can prove the following result for M <-0.

Lemm& 2.5: Let M < O. The following properties hold:

1. Let n = 4k, k e {1,2,...}.
If M > -[b----] then L is inverse negative on F"a, b"

2. Let n = 2 + 4k, k e {0,1,...}.
If M> + the L is iverse negtive o F

3. Let n be odd.

( + 1’ the L is iverse negative on F

hEN.

Remark 2.1" Note that these estimates are not the best possible for all

In [2] it is proved that La is inverse positive (inverse negative)on F,, if

and only if M (O, Maa](M [-M, 0)). Where Ma is the unique solution of the

equation

Furthermore, "/"4 is inverse negative on F,2, if and only if M el-M44, 0),
with M4 given as the unique solution in (1/2,1) of the equation

tanhmr = tan mr.



The Method ofLower and Upper Solutions 39

Note that the estimates obtained in lemmas 2.4 and 2.5 axe the best
possible for n = 1 and n = 2.

3. THE MONOTONE METHOD

In this section we study the existence of solutions of the problem (1.1)-
(1.2) in the sector [a, fl] or [fl, a], where Iv, w] = {u e Lx(I)’v <_ u <_ w on I}. We
improve the following result given in [2], which generalizes theorem 5 in [15].

The following properties hold.Theorem 3.1"

1. If there exists c <_ fl (c > 1) lower and upper solutions respectively of
the problem (1.1)-(1.2), and f satisfies the condition (Hx) ((H)) for
some M (0,A(n)] (M [-A(n),O)) then there exists a solution of
the problem (1.1)-(1.2) in [a,/] ([/,a]). Furtheore, there exist two

monotone sequences {a,} and {ft,} with ao = a and fl0 = fl which

converge unifoly to the extremal solutions in [a,Z] ([fl, a]) of the

problem (1.1)-(1.2).
The previo propey te when n even and f satisfies the

o=to (H) foo M (-[A()], 01.
Using lemma 2.4 we prove the following result.

Theorem 3.2: If there exists a> fl lower and upper solutions

respectively of the problem (1.1)-(1.2) and if any of the fottowing properties are

true:

1. Let n = 4k, k {1,2,...}. Suppose that f satisfies the property (Hz)

for some M [" +1 0 ).

Let n = 2 + 4k, k {1,2,...}. Suppose that f satisfies the property

(H) for some M e [_r___]", 0).
Let n be odd. Suppose that f satisfies the property (H) for some

Then there exists u a solution of the problem (1.1)-(1.2) in [, c].

Furthermore, there exist two monotone sequences {a,} and {/,} with

= = to of
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the problem (1.1)-(1.2).

We consider he problem:

u(")(t)- Mu(t) = f(t, l(t))- My(t) for a.e. t e I

’() (O(b) = A,, = o, ,. .,

with y LI(I), fl(t) <_ rl(t) <_ a(t).

(3.1)

We h&ve:

(a u)(")(t) M(a u)(t) >_ f(t, y(t))

+ Mri(t) + f(t, a(t))- Ma(t) >_ 0

(a u)(’)(a)- (a u)(’)(b) = O; i = 0,..., n 2

(a tZ)(n-1)(a)- (a z)(n- 1)(b)
_

0.

Lemma 2.4 implies that u _< a.

Analogously we can prove that u >_/.

Let u- Qrh the unique solution of the problem (3.1)-(3.2) for - r/

L(I). Since for fl _< rh _< 2 -< a,

(u2 Ul)(")(t)- M(uB- u)(t) = f(t, yB(t))

Mh(t) f(t, y(t)) + Mrh(t) >_ 0

(u u)(’)(a) (u u)(O(b) = O; i = 0,..., n 1,

the following property holds"

If _< T/1

__
T]2 C then u Qr]l

_
Q2 : u2’

The sequences {a,} and {ft,} are obtained by recurrence" a0 = a, fl0 =/3,
Qa,_ and , = Q,_ ; n >_ 1.

By standard arguments we prove that {a,} and {ft,} converge to the

extremal solutions on [,a] of the problem (1.1)-(1.2).

Analogously, using lemma 2.5 we can. prove the following theorem.

Theorem 3.3: If thera ez/sts a<_ lower and upper solutions

ti, o th o, (.)-(.2) ,d , o th oo poti



The Method ofLower and Upper Solutions 41

verified:
1. Let n = 4k, k e {1,2,...}. Suppose that f satisfies the property (H)

for some M (0,[=-] 1.
2. Let n = 2 + 4k, k {1, 2,...}. Suppose that f satisfies the property

3. Let n be odd. Suppose that f satisfies the property (H) for some

M e (0,[([

mk 8.1: Similarly go ghe remark 2.1, noe ghag ghe esgimaes

obtained for ghe Ncgion f in gheorems a.2 and a.a are no he besg possible for

all n N.

4. THE METHOD OF MIXED MONOTONY

In this section we study the method of mixed monotony, studied by

Khavnin and Lakshmikntham in [5], in which they consider the in2til and

periodic first order problems. In this case, under stronger conditions on the

function f it is possible to guarantee the unicity of the solution when we hve n

nth-order system.

In [5] the following results are obtained.

Theorem 4.1" Consider the following system

u’(t) = f(t, u(t));t e [0, T]

with f e C([0, T] IN, IN).

If there exists F C([0, T] N x N,N),
satisfy the following conditions:

(iii)

a, fl e C([0, T], .v) which

a’(t) > F(t, a(t), fl(t)), ’(t) < F(t, fl(t), a(t)). With fl < a on [0, T].
F(t, u, v) is nondecreasing on u and nonincreasing on v.

F(t, u, u) = f(t, u) and
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B(z z) <_ F(t, y, z) F(t, y, z) <_ B(y y),

with fl(t)

_
y

_
y

_
a(t), fl(t)

_
z z a(t) and B an g x g

matx with nonnegative element.

Th:

ff (o) o (o), th th t to q {,} d
nonincreing and nondecreasing respectively which converge unifoly to the

unique solution of the problem

’() = f(, u()); (0) = 0.

Furthermore, if (T = 2r) (0) _</(2) and ah(O) >_ a(2r) with

the same result is valid for the problem

u’(t) f(t, u(t)); u(0)= u(2r).

Theorem 4.2:

verifying:
If there exists a, e C([0, T], Y), with fl <_ a on [0, T]

a’(t) >_ f(t, a(t)) + B(a(t) fl(t)) and fl’(t) <_ f(t, (t)) B(a(t) (t)),

and f satisfies

B(x-- y) <_ f(t, x)- f(t, y) <_ B(x-- y),

with 5(t)

_
y < x <_ a(t), here B is an N x N matrix with nonnegative elements,

then the conclusions of theorem 4.1 are valid.

Using lemma 2.5 we prove the following result.

Theorem 4.3: Let

u(")(t) = f(t, u(t)) for a.e. t e [a, b]

u’)(a) u)(b) A,,i g, i= 0,..., n- 1; j = 1,..., N,

with f: I x NN--+ a Carathodory function and n >_ 2.

If there exists a Carathodory function F:IxNNxNN---NN

e W"’(I, NN), a

_
on I, verifying the following properties:

c("(t) >_ F(t, c(t),(t)) for a.e. t I

(4.)

and ,
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(i)

(i.)

ci)(a)- ai)(b) = Ai,./; i = 0,...,n 2;j = 1,...,N

,-)(a) ("- )(b) _> ,,_ ,./; j = 1,...,N.

(")(t) _< F(t,(t), ,(t)) o .. t X

,’)(,) -/’)(,) = ,, ;i = o,..., r Z; j = ,..., N
/n 1)(a) __. ? 1)(b)

_
’n-1,j; J = 1,..., N.

F(t, u, v) is nonincreasing on u and nondecreasing on v.

F(t, u, u) = f(t, u) and

F(t, y, z) F(t, z, y) = S(y z),

B being an NN matrix with nonnegative elements such that

(c(- )) # . Wh C g, tho

0 I(n-)N)O"
Here I(, )N is the (n 1)N x (n 1)N identity matrix.

Th th o .oooq. {..} d {Z.), ih o = d
/3o = [3, which converge uniformly to the unique solution of the problem (4.1)-(4.2).

Proof: Let Mx = [b ] and , u e L(I, Y), , u e In,/3].

Consider the following linear problem for each j = 1,..., N:

u.")(t) + Muj(t) = Fj(t, y(t), u(t)) + Mlj(t) for a.e. t e [a, b]

ui)(a) ui)(b) = A,,j e N, i = 0,..., n 1; j = 1,..., N. (4.4)

Let u = A[,u] be the unique solution of the problem (4.3)-(4.4)for each

First, we prove that
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Thus, lemma 2.5 implies that a _< a on I.

Similarly, we obtain that fl >_ f = A[fl, a].

Let rh, rh, e [a, f], with rh <_ rh.
have that

Let u, = A[rh, ,] and u = A[rh, ,].

(u,j u,i)(")(t) + M(u,s uz, s)(t) = Fs(t, y,) +
Fi(t, ,u)-M,i >_ 0

which implies that u _< u.
Analogously, one can prove that Air/, ,] _< A[U,] if , _> .
It is now easy to define the sequences {a,} and {ft,} with a0 = a,/0- t,

a+ A[a,,/,] and ,, + = A[,,, a,].

Clearly, a _< a _<... _< a,, _< fl, _<... < _< on I.

By standard arguments we can show that

exist uniformly on I and and satisfy

"(t) = F(t, , ), "(t) = F(t, ,)
:)(a)- :)(1 = :)(a)- :)(b) =

i- 0,...,n- 1; j = 1,...,N.

That is

( )(’)(t) -- F(t, ,) F(t, ,) B( )

(- )(’)(a) = (- )(’)(b); i= 0,..., n 1. (.6)

Now, we define p(t) ((- )(t), (- )’(t),...,( )(n-1)(t)) nN.
Therefore p’= Cp, p(a)= p(b). Since p(b)= exp(C(b-a))p(a), we obtain that

p = 0 and, in consequence, - . That is, (")(t)= F(t,,)- f(t,), which

concludes the proof.

Similarly, using lemma 2.4 we prove the following result.

Theorem 4.4: The conclusions obtained in theorem 4.3 are valid if a >_ 13
and the properties (iii) and (iv) are changed by

(iii)’ F(t, u, v) is nondecreasing on u and nonincreasing on v.
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(iv)’ F(t, u, u) = f(t, u) and

F(t, y, z) F(t, z, y) = B(y z),

B being an N x N matrix with nonnegative elements as such that

exp(D(b- a)) 7 I, where D is defined as follows"

D B O
Here I(,, }g is the (n 1)N x (n 1)N identity matrix.

As consequence of the two previous lemmas we prove the following result.

Theorem 4.5: Let n>_2. Suppose that there exist a

Wn’(i,N), a <_ (a >_ fl) and f a Carathodory function, satisfying

B(x- y) <_ f(t, x)- f(t, y) < B(x- y),

with y <_ x between a(t) and fl(t), where B is an N x N matrix with nonnegative

elements.

If a and fl satisfies

a(n)(t) >_ f(t, a(t)) q- B fl(t)- a(t) for a.e. t I

a.i)(a)- a.0(b) = Ai, fii = 0,1,...,n 2,j = 1,...,N

On-l)(a)--O?-l)(b) >-- An-l,j;J- 1,...,N

and

fl(")(t) < f(t, fl(t)) B (t)- a(t) for a.e. t e I

fli)(a) fli)(b) Ai, i; i = 0,1,..., n 2, j = 1,..., N

Z,- )() Z.- x)() <_ a, a, ; J = ,..., N.
And exp(C(b- a)) 7 I (exp(D(b a)) 7 I) (C and D given in theorems 4.3

and 4.4).

Then there exists a unique solution u between a and fl of the problem

(.)-(..). Fth,o, th, it to ,ooto {,} d {Z,}, oith

ao = a and o = , which converge uniformly to the solution u.

If a _< fl we define F as follows"
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F(t, u, v) = f(t, u) + f(t, v) B(u v)].

it is easy to prove that the function F satisfies the coaditions of theorem 4.3.

a >_/3 the fuaction F is defined as follows:

F(t, u, v) = 21-If(t, u) + f(t, v) + B(u v)].

Clearly, the function F stisfies the conditions of theorem 4.4.

If
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