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ABSTRACT
An existence theorem for stochastic inclusions z,—=z,€ f F_(x.)dr
+ fG (z,)dw, + f fIR" r 2(Z;)V (d7,dz) with nonanticipative nonconvex-
valued right-hand s1des is proved.
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1. Imntroduction

Existence theorem and weak compactness of the solution set to stochastic inclusion

t
r,—x, € /FT(:cT)d'r-}- /G,.(zr)dwf—i-//HT,z(xr)?} (dr,dz),
8 8 8 Rn

denoted by SI(F,G, H), with predictable convex-valued right-hand sides have been considered in
the author’s paper [4]. These results were obtained by fixed points methods. Applying the
successive approximation method we shall prove here an existence theorem for SI(F,G, H) with
nonanticipative nonconvex-valued multivalued processes F,G and H. To begin with, we recall
the basic definitions dealing with set-valued stochastic integrals and stochastic inclusions
presented in [5].

Let a complete filtered probability space (2, F,(F,); > o, P) be given, where a family (%,), s o,
of o-algebras F, C ¥, is assumed to be increasing: F, CF, if s <t. Let R, =[0,00) and B, be
the Borel o-algebra on R . We consider set- valued stochastlc processes (F,); > 0, (G,): >0 and
(Rt,2); 50 2 cR" taking on values in the space Comp(R"™) of all nonempty compact subsets of n-

dimensional Euclidean space R™. They are assumed to be nonanticipative and such that
[e o] [e o] 2 o0 2 .

J I F || Pdt <o, p>1, [ |G |l%dt<oco and [ [ || R, , || “dtg(dz) < co, as., where ¢ is a
0 0 OR"

measure on a Borel o-algebra B" of R™ and || A||: = sup{|a|: a € A}, A € Comp(R"™). The
space Comp(R™) is considered with the Hausdorff metric h defined in the usual way, i.e.,

h(A, B) = maz{h (A, B),h (B, A)}, for A, B € Comp(R"), where h (A, B) = {dist(a, B):a € A} and
h(B, A) = {dist(b, A): b€ B}.
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2. Basic Definitions and Notations

Throughout the paper, we shall assume that a filtered complete probability space
(%, (F,): > o P) satisfies the following usual hypotheses:
(1) ¥, contains all the P-null sets of ¥ and
() F,=UF, al t 0<t<oo; that is, the filtration (%F,),s, is right
u>t Z

continuous.

As usual, we shall consider a set R, xQ as a measurable space with the product o-algebra
B, ®F.
+

An n-dimensional stochastic process z is understood as a function z: R, x Q—R" with ¥-
measurable sections z,, for ¢ > 0, and it is denoted by (z,); 5 o- It is measurable if z is B, ® F-
measurable. The process (z,), s o is ¥F,-adapted or adapfed if z, is ¥F,-measurable for t > 0.
Every measurable and adapted process is called nonanticipative. In what follows, the Banach
spaces LP(Q,¥,, P,R"™) and LP(Q, ¥, P,R"™) with the usual norm || - || are denoted by LE(¥,) and
LP(F), respectively.

Let M2%(¥F,) denote the family of all (equivalence classes of) n-dimensional

o o]
nonanticipative processes (f,);> such that [ | ft|2dt <00, a.s. We shall also consider a
= 0
o0
subspace £2 of M%(F,) defined by 22 = {(f,);> o € MX(F,):E [ | f,|%dt < oo} with the norm
- 0

- 22 defined in the usual way. The Banach spaces LP(R ,B ,dt,R ), p>1 and

L2(IR+ xIR" G.B_l_ ® B",dt x ¢q,R ), with the usual norms | -|_and || - ||, will be denoted by
LP(B ) and L*(B 4+ X B, respectlvely Finally, by M, (%,) we denote a space of all
(equivalence classes of) n-dimensional ¥,-measurable mappings.

Throughout the paper, by (w,), > o We mean a one-dimensional ¥,-Brownian motion starting
at 0, i.e., such that P(wy=0)=1." By v(t,A) we denote a F,-Poisson measure (see [1]) on
R, x®B" and then define an %F,-centered Poisson measure ¥ (¢,4), t >0, A € B", by taking
v (t,A) = v(t,A) — tq(A), t >0, A € B", where g is a measure on B" such that Ev(t, B) = tq(B)
and ¢(B) < oo for B € By.

By M%(%,,q), we shall denote the family of all (equivalence classes of) B + ©F®B"-
measurable and ¥,-adapted functions h:R xQxR"—R" such that

o0
_ff Iht1z|2dtq(dz)<oo a.s. Recall that a function Ah:R, xQxR"—R" is said to

be %F,adapted or adapted if for every z€R™ and t>0, h(t,-,z) is %F,-measurable.
Elements of M? (¥,,9) will be denoted by h= (ht.z)t>0zelR" Fmally, let W2

{h € A% (Fp,0): || bl 352 < 0o} where || h||Z 5 = E] [ | by, | *dtg(d2).
n n OR"

Given g € MXF)) and h € M4 (F,,q), by (fg,.dw )t >0 and
(f S johr, ¥ (d7,d2)), 5o, we denote their stochastic integrals w1th respect to an F,-

Browman motion (w;);>o and an %F,centered Poisson measure ¥ (t,A), t>0, A€ B",
respectively. These integrals, understood as n-dimensional stochastic processes, have quite similar
properties (see [1]).

Let us denote by D the famlly of all n-dimensional ¥F,-adapted cadlag (see [6]) processes
(z,); > o such that Esup, 5, |z,|% < co. The space D is cons1dered as a normed space with the
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norm || £l = [l supy > o1& || 12 for £€=(&);>0€D, where [ ]| is a norm of
L%, %, P,R). It can be verified that (D, || - || ¢) is a Banach space.

Given 0 << f <oo and (zy); 5 € D, let e b = (z2P), >0 be such that P =g  and

L2

:10?”[3 =zg for 0<t<a and ¢ > f, respectively, and :v‘t’"ﬂ =z, for a <t<B. It is clear that
D*B: ={z*B:z € D} is a linear subspace of D, closed in the || - || gnorm topology. Then,
(DB - |l ¢) is also a Banach space.

Given a measure space (X,B,m), a set-valued function %: X—CI(R™) is said to be %B-
measurable if {z € X:R(z)NC # 0} € B for every closed set C C R™. For such a multifunction,
we define subtrajectory integrals as a set $(%®) = {g € LP(X,B,m,R"):g(z) € Ro(z) a.e.}. It is
clear that for nonemptiness of $(®) we must assume more then B-measurability of . In what
follows, we shall assume that B-measurable set-valued function R: X—CI(R™) is p-integrable
bounded, p>1, ie., that a real-valued mapping: X 3> z— | R(z)|| €R, belongs to
LP(X,®B,m,R ). It can be verified (see [2], Th. 3.2) that a ®B-measurable set-valued mapping
R: X—CI(R™) is p-integrable bounded, p > 1, if and only if $(®) is nonempty and bounded in
LP(X,B,m,R"). Finally, it is easy to see that ¥(%®) is decomposable, i.e., such that
14f4 —}-IIX/Af2 € $(®) for A€ B and f, f, € H(H).

We have the following general result dealing with the properties of subtrajectory integrals (see
2], 3])- '

Proposition 1. Let R: X—CI(R™) be B-measurable and p-integrable bounded, p > 1. Then,
¥(R) is a nonempty bounded and closed subset of LP(X,B,m,R™). Moreover, if R takes on
convez values then $(R) is conver and weakly compact in LP(X, B, m,R). O

Let §=(G;); > o be a set-valued stochastic process with values in CI(R"), i.e., a family of ¥F-
measurable set-valued mappings G,:Q—CI(R"), t>0. We call § measurable if it is B, ®F-
measurable. Similarly, § is said to be ¥,-adapted or adapted if §, is F,-measurable for each ¢ > 0.
A measurable and adapted set-valued stochastic process is called nonanticipative.

In what follows, we shall also consider B, ® ¥ ® B"-measurable set-valued mappings
F:R | x2xR"—CI(R™). They will be denoted as families (Ry,2), >0,z ¢R" and called
measurable set-valued stochastic processes depending on a parameter z € R®. The process
R = (%t' Z)t >0,z € R is said to be ¥F,-adapted or adapted if ‘:'R,t'z is F,-measurable for each ¢ >0

and z € R™. We call it nonanticipative if it is measurable and adapted.

Denote by M2 _ (%,) and M?_ (%, q) families of all nonanticipative set-valued processes
oo}

(_30—_- G)e>0 and FR=(R, ), >0,z € R™ respectively, such that { I6 || 2dt < 00 and
I [ |, , |l %dtg(dz) < oo, a.s. Immediately, from Kuratowski and Ryll-Nardzewski measurable
OR" ’
selection theorem (see [3]) it follows that for every F,§€ M2 _ (%,) and % € M2
subtrajectory integrals

$(F): = {f € #*(F,): f(w) € Fy(w),dt x P —a.e.},

$(§): = {g € M3(F,): 9,(w) € G,(w),dt x P-a.e.} and

4(R): = {h € MX(F},q):h, () € Ry ,(w),dEx P xg-ae.}

are nonempty. Indeed, let ¥ ={Z € B + ©F:Z,€F, each t > 0}, where Z, denotes a section of
Z determined by t>0. It is a oc-algebra on R, xQ and a function f:R x Q—-R" (a
multifunction F:R  x Q—CI(R")) is nonanticipative if and only if it is X-measurable. Therefore,

(%,,q) their
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by Kuratowski and Ryll-Nardzewski measurable selection theorem every nonanticipative set-
valued function admits a nonanticipative selector. It is clear that for F € M2 _ (%F,) such
selector belongs to ./11;2(%) Similarly, define on R | x Q2 xR™ a o-algebra

={Z€B, @FQ@B™ Z} € F, each t >0 and ueR"},
where Z} = (Z"), and Z" is a section of Z determined by u € R".

Given the set-valued processes
= (Ft)t >0€ J“’s —o(%F) §=(Gp), >0€ Jﬂ’z— »(%;) and
= (Py,2), >0,zeR" €M o(Fed)

by their stochastic integrals we mean families

fF d"')t>o’(f§ dwr)t>0,and(ff‘5" v (dr,dz)), 5 o
of subsets defined by
zFTdT = {2frr:f € I(F)},
t t
[6.du, = ([ 8,du,9 € %)} and
t
{f S R, P (dr,dz) = {‘gn{nhf’z’;} (dr,d2):h € § (%)}

oR"
Given 0 < a < f < oo we also define

B B
!Fsds: = {ifsds:f € ¥(F)},

»

8
fgsd“hﬁ = {fy,dw,,:y € ¥(§)} and

[ R, , dsdz)_{ffhszu(dsdz)heﬂ’(%)}
Rn alRﬂ

R

3. Stochastic Inclusions

Let F = {(F(z)), >0t €R"Y}, G= {(Gy(2)), >0 T € R"} and H ={(H, , (:c))t >0,z € R™
z €R™}. Assume F,G and H are such that (F(2)),50€ MP_(F), (Gy(2))s> o € M _ (F,)
and (H, ,(2)), 50, cRn € M2 (F,,q) each z € R™

By a stochastic inclusion, denoted by SI(F,G,H), corresponding to given above F,G and H
we mean a relation

t t t
s-z,€ [Foairt [Goadw,+ [ [H, (o (@rd2)
S 8 8 R

8§ —V

that is to be satisfied for every 0 < s <t < oo by a stochastic process z = (z,), 5 o € D such that
Fore MP_(F,), Goz€ M:_(F,) and Hoz € M2_ (F,q), where Foz = (F,(z,));> o

Gox=(Gyz,);>0 and Hoz = (Ht A2, >0 . ¢Rm Every stochastic process (:ct)t >0€D,

satisfying conditions mentioned above is said to be a global solution to SI(F,G, H).
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A stochastic process (z,),s o€ D is a local solution to SI(F,G,H) on [a, ] if and only if
2P is a global solution to SI(F“ﬂ, G""B,Haﬂ), where Fo8 = "[a,b]F’ GB = ll[a ﬂ]G and
Haﬁ:n[a’ﬂ]H.

A stochastic process (z,), 5 o € D is called a global (local on [, 8], resp.) solution to an initial
value problem for stochastic inclusion SI(F,G,H) with an initial condition y € L%(Q, Fo, R™)
(y € F,,R™), resp.) if (z,);> o is a global (local on [, (], resp.) solution to SI(F,G < h) and
o=y (z, =y, resp.). An initial-value problem for SI(F,G, H) mentioned above will be denoted
by SI,(F,G,H) (S;*ﬂ(F, G,H), resp.). In what follows, we denote a set of all global (local on
[a, 8] solutions to SI,(F,G, H) by A(F,G,H) (AS'P(F,G, H), resp.).

Suppose F,G and H satisfy the following conditions:

(Ay) (1) F={(Fyz)),>0z€R"}, G={(Gyx)); >0t €R"} and H =
{(H, (), 5 01_2 cRVT € R™} are such that mappings RT xQxR" > (t,w,z)
—F(z)(w) € Comp(R"), R xQxR" 3 (t,w,z)—G(z)(w) € Comp(R") and
R, xQxR"xR"> (t,w,2,2)—H, ,(z)(w) € Comp(R") are Z® B" and ¥ ® B"-
measurable, respectively, where ¥ and ¥ are o-algebras on R, xQ and
R, xQxR" defined above,

(i) (Fy(®) >0 (Gz))y >0 and (H, ,(z)), 5, , ¢ Rn 2Te square integrable bounded
for fixed z € R™. =7

Corollary 1:  For every (x,),>o€D and F,G,H satisfying (A;) one has Fouz,
Goz € M2_ (F,) and Hoz € M2 _ (F,,9). 0

Now, define a linear mapping @ on ./ﬂaz(?ft)x./ﬂaz(?)‘t x./ﬂoz(fft, q) by taking ®(f,g,h)
t t t
= (j)'frd'r+ {grdwr -+ ‘({ fnhr,z?} (d1,d2)); > o to each (f,g,h) € ME(F,)x MXF,)x MNX(F,,q).
R 2

It is clear that ® maps Li X Li X ‘Wﬁ into D.

In what follows, we shall deal with F = {(Fy(z)),>¢:z €R"}, G= {(Gy(2));>¢: 2 €R"}
and H = {(H, ,(z)) R * €R"} satisfying conditions (A4;) and any one of the following
conditions. oo
(Ay) There are kL€ 22 and meW? such that | [h[(Foz), (Foy)ldt|| 22 S

0 1

t>0,z€

o0 [o o]
E{kt|xt~yt|dt, ||h(Gom,Goy)||£%SEgltlxt—yt|dt and || h(H oz,
(o ]
Hoy)l|lgps <E[ [m, ,|z,—y,]|dtg(dz) for all z,y € D.
Wl oRr '

A There are k,0¢€ L%(B and meL) (B, xB") such that h(F,(zy)(w),
3 + + t\"2

Fy(e))(w)) < k(1) |2y -2, ], h(G(22)(w), G(z1)(w)) < &1) [ 2; — 25 | and
h(H, ,(z,)(w),H, (z1)(w)) <m(t z)|z; —z,]| ae., each t>0and ), z; € R™

Lemma 1: Let ¢ € L(Q,%,R"™). Suppose F,G and H satisfy (A;) and (A,) or (A3). Let
2=+ ®(f" 1, g" LAY, each n=1,2,..., with (£°,¢% k%) € $(F 0 0)x $(G 0 0) x $,(H 00)

and (f*" g™ h") € F(Foz™)x $(Goz™)x S (Ho z") satisfying | fE~ Lw) - fr(w)|

= dist(f} ~ 1(w), (F oz™), (w)), | g7~ H(w) — g7 (w) | = dist(g} ~ (), (G 0 2™)y(w)) and

|hY S H(w) =AY J(w) | =dist(h} [ }(w),(Hoa™), ,(w)), on R,xQ and R, xQxR"

respectively. I Lt = || Tkt || o2 Jedtll o+ 201 T [ gom, drad)ll z<1 or
0 1 0 1 0 1

L= |k|,+ 2|€|y+2||m| o<1, respectively then (2")3_; is a Cauchy sequence of
Dy I - 11 g)-
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Proof: Let (2");°_ ; be such as above. By (A,) it follows
2 oo 2

t
n_ -1 n__ -1
up [(f, 2 Vydr SE[[H, 21 dr

o~~238

2 0o 2
ﬁ((Fox")T,(Fox"“)f)dT} S(E/ k"“”"l*x:_lldr)
0

SE[
2

[e o] [e o] 2
n n-—1 n -1y2
< E(s:z?pio |y —xf ™ - [krd'r) SE(-O/deT) A el |3

Similarly, by Doob’s inequality, we obtain

2
o0
<4E/ gt —g" 1| %dr
w2, <az [ 152"

t
E| sup /(g'r'——g:,"'l)dw,r
0

[o ] o0 2
§4E‘/[I_1 ((Gox"),_,(Goz"_l)r)]zdrS4(E/€T|x¢—x¢'l |d1')
0 0
1) 2 00 2
< E(stugolx?—m;‘_ll -/érd'r) §4E(/Zrdr) . ||m"—x"‘1||i.
- 0 0
Quite similarly we also get

t>0

t
sup / / (k7 — b} 1P (dr,dz)
0 R"

0o 2
Sw(/ / mf,,drqw)) Rl

0 R"

Therefore, || ™1 —z" || eS| | ¢ Where L is such as above. This implies that

L ||«
m_ .n [/
” T -z “ [’} < 1—=L
each m > n > 1. Using conditions (.A3) instead of (A,) we also get
()" Nzl
m
”l’ "mn“gS 1=1 3

for m >n > 1. Therefore, ||z™ 2" || ,—0 as n—oo.
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Lemma 2: Let ¢ € L*(Q,%,,R"). Suppose F,G and H satisfy (A,) and (Ag). IF
L= |k, +2]|€]3+2]||m]| 5 <1, then A (F,G,H) # 0.

Proof: Let (z");°~; be such as in Lemma 1 and let z =lim z™. The existence of such a

sequence follows immediately from the measurable selection theorem given in [3] (see Th. II,
3.13). We shall now show that (f™)%°_;, (¢™)%° ; and (h™)2°_, are Cauchy sequences of £2 and
w 2, respectively. Indeed, one obtains

™=l e = 30 U= ]

j=n+1

IA

S5 (8 [ (o s (Fosi=h), yarl?
i=n+l 4

m ;o 1yl g k102 1l
< Y kLI s Y DTk lle s it
- L

j=n+1 j=n+1

Therefore, (f™)3°_, is a Cauchy sequence of 1,21. Quite similarly, it also follows that (¢")3°_ ;
and (h™)>°_, are Cauchy sequences of .&2 and ‘Wz, respectively. Let f,g € L2 and h € W?: be
such that || f"—f|| 2—-—»0 g™ —gll 2—)0 and |h"—h| W2—>0 as n—oo. One gets

|| 2™ — ¢ —®(f,9,h) || e-—-»O as n—oo. Therefore, z=p+9(f,g,h) To prove that
r,—z, € /(Fo:c)rd'r+ /(Goz)fdw,r+ / /(Hox),r,z?/' (dr,dz)
S 8 8 Rﬂ

for every 0 <s <t < oo it suffices only to verify that (f,g,h) € f(Foz)x $(Goz)x¥ (H oz).
For this aim, denote by Dist(a, B) and H the distance of a € L to a nonempty set B C L and
the Hausdorff subdistance, respectively induced by the norm of L2 Now let v be a fixed element
of $(Foxz™). Select u€f(Foz) such that |v (w)—u (w) | = dist(v, (w),(F oz), (w)) for
(r,w) € R, xQ. Then

Dist(v,$(Foz)) < ||v—ul] 22

o0 2
< (E [ oam @), ¢ ox»(w))dr) <Lkl ll= =zl
0

which implies H($(F oz™), $(Foz)) < |k|,||a" -z ||, each n=1,2,.... Thus H($(Foz"),
f(Fopz))—0 as n—oo. In a similar way we also get H(tf(G’ ox") (G ox)—0 and
H(ﬂ’ (Hoz"),3,(H ox))—0 as n—oo. Now we get

Dist(f,3(Foz)) < || f = full p2 + Dist(f,, $(F oz" "~ )
n
+H($(Foz"~ 1), I(F oz))
for n=1,2,..., which implies that Dist(f,¥(Foz))=0. But, (Foz) is a nonempty closed

subset of L?’,. Therefore, f € $(F oz). In a similar way we can also verify that g € $(G oz) and
he?,(Hoz). ]
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Lemma 3: Let 0<a<fB<oo and p € Lz(Q,G.Fa,R"). Suppose F, G, and H satisfy (A,)
and (A3). If Ly g = |lig gk |1 +2 1 0g gl 2+ 2y gmlly <1 then AZP(F,G,H) # 0.

Proof: The proof follows immediately from Lemma 2 applied to FoB :II[ o ﬂ]F ,
G =1, 4G and H* =1, g H. o

Lemma 4: Let <p€L2(Q,°.F0,IR") and let (1.)>° be a sequence of positive number

n/n=1

increasing to +oco. Suppose F,G and H satisfy (A,) and (A3). If 2 EAZ’TI(F,G,H) and
T 2T

gt eAxIT% "+YF,G,H) for n=12,.., then z= )Pt lu[Tn—lan)xn

AW(F,G’, H), where 7y = 0.

Proof: It is clear that ry=¢ because z;= .r(l, =¢. Let 0<s<t<oo be fixed and
suppose s € [Ty _q,7Tg), and t € [7,. _;,7,.), for 1 <k < m. One obtains

belongs to

-1 k+1 k+1 k k
—x:'"m_z)+"’+(mr:=l—xr: )+(xrk—xs)'

-1
R T R .

Let (f7,¢7,h%) € S(Fo:cj)xS(Gomj)xSq(Homj), each j =k, k+1,...,m be such that
t

t t
:c:"-—me__l = / frdr + / grdw, + ] /h:,"?/' (dr,dz),

Tm-1 Tm—1 "m-1R"
T T T;
xlj—xij_lzj ff;dr—}-/ gzdwr+/ /hi?/'(dt,dz),
Tio1 Ti-1 Ti1R"
each j=k+1,...,m—1, and
Tk Tk Tk
z'rck—xf: /f’rcd7'+/g’,ﬁdwr—}-//hfi}'(dr,dz).
8 8 8 Rn
— k m 7 m _ k m
Let  f=hor "+ XFable, et e o™ 9=l o0t BT
. _ k N .
ﬂ[fj_l,rj)gj+n[rm,oo)gm and h_ﬂ[o,rk_l)h + Z;n= knf]-_l,rj)hj"'ﬂ[rm,oo)hm' It is clear
t t
that (f,9,h) € S(F oz) x S(Goc) x S (H o z) and z,—z,= [f.dr+ [g.dw,
8 8
t
+ [ [ h, ¥ (dr,dz). Therefore
S R" !
t t t
r,—r, € /(Foz),,dr—{- /(Gox)wa,r+//(Hoz)T’z'17 (dr,dz). 8]
8 8 8 Rn

We can prove now the main result of this paper.

Theorem 5: Let <p€L2(Q,°.FO,IR"). Suppose F, G and H satisfy (A,) and (A3). Then
A (F,G,H) #0.

Proof: Let (7,)7°_,; be a sequence of positive numbers increasing to co. Select a positive
number o such that Lka, ke <1 for k=0,1,..., where Lko,(k+1 » 1s such as in Lemma 3.

Suppose a positive integer n; is such that njo <7, <(n; +1)o. By virtue of Lemma 3, there
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is 2l e AS,’”(F,G, H). By the same argument, there is z2 € A%%(F,G,H). Continuing the
z

o
above procedure we can finally finc a 21 tle AnA;"Tl(F,G,H). Put
z

nyo
- 1
ny 1

1 _ k+1 ny
= ;;—:o ko, (k+1)0)% T ha o,r1?

+ ny+1

'
+ (’1’°°)z’1'

Similarly as in the proof of Lemma 4, we can easily verity that z' € Ag’rl(F,G,H).

Repeating the above procedure to the interval [ry,7,], we can find zzeAli’T2(F,G,H).
T

1

Continuing this process, we can define a sequence (z™) of D satisfying conditions of Lemma 4.
Therefore A (F,G,H) # 0. 0
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