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ABSTRACT

In this paper, we study initial and boundary value problems for functional
integro-differential equations, by using the Leray-Schauder Alternative.
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1. Imntroduction

The purpose of this paper is to study the existence of solutions for initial and boundary value
problem (IVP and BVP, for short) for functional integro-differential equations. The paper is
divided into two parts.

In Section 2 we consider the following IVP for nonlinear Volterra type integro-differential
equations

t
2(t) = A(t,z,) + / k(t,)f(s,z,)ds, ¢ €[0,T] (11)
0

Ty = ¢, (12)

where A, f:[0,T]x C—R" are continuous functions, and for ¢t € [0,T], A(t, -) is a bounded linear
operator from C to R", and k is a measurable for ¢t > s > 0 real valued function. Here C =
C([-r,0],R™) is the Banach space of all continuous functions ¢:[ —r,0]—R" endowed with the
sup-norm

l¢1l = sup{|4(6)]: —r <6 <0}.

Also, for z € C([—r,T),R") we have z, € C for t €[0,T], z,(0) = z(t+6) for § € [—r,0] and
¢eC.

The results of this section generalize recent results of Ntouyas and Tsamatos [5] when the
following degenerate case
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t
2(t) = A(t)o(t) + / k(t,s)f(s,2,)ds, ¢ €[0,T] (L.1y
0

To=¢ (1.2)

is studied. In Section 3 we study the following BVP for nonlinear Volterra integro-differential

equations
t

a'(t) = A(t,z,) + /k(t,s)f(s,:cs)ds, te€(0,T) (1.3)
0

Le=h, (1.4)

where A,f and k are as above and L is a bounded linear operator from a Banach space
C([—r,T],R™) into R™ and h € ImL, the image of L. The results of this section extend previous
results on BVP for functional differential equations [2], [3], [4], and [7] to functional integro-
differential equations.

2. IVP for Volterra Functional Integro-Differential Equations

In this section we consider the following initial value problem

t
2()=Az)+ [Keo)f(ba)ds, 0St<T 1)
0

2o = 4. (2.2)

Before stating our basic existence theorems, we need the following lemma which is an immediate
consequence of the Topological Transversality Theorem of Granas [1], known as “Leray-Schauder
alternative”.

Lemma 2.1: Let S be a convex subset of a normed linear space E and assume 0 € S. Let
F:5—S be a completely continuous operator, i.c., it is continuous and the image of any bounded
set ts included in a compact set, and let

E(F)={z € S:z = )Fz for some 0 < A < 1}.

Then, either E(F) is unbounded or F has a fized point.
For the IVP (2.1)-(2.2) we have the following existence theorem.

Theorem 2.2: Let f:[0,T]x C—R" be a completely continuous function (i.e., it is continuous
and takes closed bounded sets of [0, T]x C into bounded sets of R™). Suppose that:
(HA) There exists a nonnegative integrable function p on [0,T] such that | A(t,¢) <

p) |l 81l,(t¢)€[0,T]xC.
(Hk) There ezists a constant M such that | k(t,s)| <M, t>s>0.
Also we assume that there exists a constant K such that

“mlllsKa

for each solution = of
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t
(1) = M(t,2,) + A / k(t,5)f(t,2,)ds, 0<t<T 2.1),
0

Ty=¢ (2.2)

for any X € (0,1).
Then the initial value problem (2.1)-(2.2) has at least one solution on [ —r,T].
Proof: We will rewrite (2.1) as follows. For ¢ € C define ¢ € B, B = C([—r,T],R™) by

If () = y(t) + pt (t), t e[ —r,T]it is easy to verify that y satisfies

yo = 0,
t t r
y(t) = /A(s,ys +$ )ds + / /Ic(t, 5)f(s,y, +$3)dsdr, 0<t<T
0 00

if and only if z satisfies
t t T

z(t) = ¢(0) + /A(s, z,)ds + / k(t,s)f(s,x,)dsdr, 0<t<T
0 00

and z = ¢.
Define N: By— B, B, = {y € B:y, = 0} by
0, —~h<t<0
Ny(t) = t ~ t T ~
JA(s,y,+d,)ds+ [ [k(t,s)f(s,y,+ ¢,)dsdT, 0<t<T.
0 00

N is clearly continuous. We shall prove that N is completely continuous.

Let {h,} be a bounded sequence in B, i.e.,
|| h, || <b, for all v,

where b is a positive constant. We obviously have || h,,|| <b, t€[0,T], for all v. Hence we
obtain

” Nhu “ Spo(b-}- “¢”)+MM0m0’

where

T
Po = / p(t)dt,
0
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My =sup{| f(t,u)|:t€[0,T], ||u]l <b+ || &)}

T =
mg = //p(t)dtdr.
0 0

This means that {Nh,} is uniformly bounded.

and

Moreover, the sequence {Nh,} is equicontinuous, since for t,,t, € [ — r,T] we have
| Nhy(ty) = Nhy(t3) <[po(d+ [ ¢ | )+ MMomo] |t — .

Thus, by the Arzela-Ascoli theorem, the operator N is completely continuous.

Finally, the set E(N)={y € B,y =ANy, A€ (0,1)} is bounded by assumption, since
||z ||y < K implies

lylly <K+ 4.

Consequently, by Lemma 2.1, the operator N has a fixed point y* in By. Then z* = y* +’$ is a
solution of the IVP (2.1)-(2.2). This proves the theorem.

The applicability of Theorem 2.1 depends upon the existence of a priori bounds for the
solutions of the initial value problem (2.1),-(2.2), which are independent of A. Conditions on f
which imply the desired a priori bounds are given in the following:

Theorem 2.3: Assume that (HA) and (Hk) hold. Also assume that
(Hf) There exists a continuous function m such that |f(t,¢)| <m()Q||¢]l),
0<t<T,p€C where Q is a continuous nondecreasing function defined on [0,00)
and positive on (0,00).
Then, the initial value problem (2.1)-(2.2) has a solution on [ —r,T] provided

T )
/ml(s)ds < / ;—T-iﬂ%s—)’ m,(t) = sup{1, p(t), Mm(t)}.
0 el

Proof: To prove the existence of a solution of the IVP (2.1)-(2.2), we apply Theorem 2.1. In
order to apply this theorem, we must establish the a priori bounds for the solutions of the IVP
(2.1)4-(2.2). Let x be a solution of (2.1)y. From

t t T
z(t) = ¢(0) + /\/A(s,a:s)ds + /\/ /k(t,s)f(s, x)dsdr, 0<t<T
0 0 0

we have
t T

t
1201 < 1601 +2 [ 14z 1ds+ [ [ 1k60)] 1£s,2) | dsdr, 05 15T,
0 0 0

from which, by (HA), (Hf), and (Hk), we get

t

t T
201 < 161+ [p) 2, l1ds+M [ [mieaiz, | )dsar
0

0 0
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We consider the function p given by
p(t) = sup{|z(s)|: —r<s<t}, 0<t<T.
Let t* € [ — r,t] be such that u(t) = |z(t*)|. If t* €[0,t], by the previous inequality we have

t t

uO< Nl + [ peues+ [ [misa(ue)dsir, 0<t<T (2.3)
0 0 o0

If t* €[ —r,0] then u(t) = || ¢ || and (2.3) obviously holds.
Denoting by u(t) the right-hand side of (2.3) we have

u(t) <u(t), 0<E<T,

u(0)= |41,
and
t
(1) = PO + M [ m(s)(u(s))ds
: 0
< p(t)u(t) + M/m(s)Q(u(s))ds
: 0
< my(Ofu(t) + [ Qu(s)ds), 0t<T.
Let °
t
u(t) = u(t) + /Q(u(s))ds, 0<t<T.
Then °
o0) = u(0), u(t) <o(t), w(t) < my(t)u(t), 0<L<T
and

v'(t) = w/(t) + Q(u(t))

< my(t)o(t) + Q(v(t))
< ml(t)[v(t) + Q(v(t))], 0<t<T
;,(T)‘J?(s%mﬁml(t), 0<t<T.

This implies
u(t)

ds
/s+mﬂ5
v(0)

[ ]
ml(t)dt</;-+de(s—), 0<t<T.

v(0)

o~—"~
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This inequality implies that there is a constant K such that u(t) < K, ¢t €[0,7T], and hence
u(t) < K, t€[0,T]. Therefore,

) < K, (2.4)

and the proof of the theorem is complete.

By applying Theorem 2.3, we have the following result which concerns the global existence of
solutions for the IVP (1.1)-(1.2). The proof is omitted since it is similar to that of Theorem 2.3
of [5].

Theorem 2.4: Assume that (HA) and (Hk) hold. Also assume that
(Hf) There exists a continuous function m such that |f(t,6)| < m)Q||¢|),
0<t<oo, ¢ €C, where Q is a continuous nondecreasing function defined on [0,00)
and positive on (0,00),
and
[e o]

/;;igs—(-‘;;= + oo.

t

Then the initial value problem

o'(t) = A(t,z,) + / k(t,s)f(t,z,)ds, t>0 2.1y
0
zo=¢ (2.2)'

has a solution defined on [0,00).

Consider now the following special case of initial value problem (2.1)-(2.2), i.e.,
t
z'(t) = A(t)=(t) + /k(t,s)f(t,:ct)ds, 0<t<T (2.5)
0

Ty = ¢, (2.6)
where A(t) is an nxn continuous matrix for ¢t € [0,7] and f is a continuous mapping from
[0,T]xC to R™.

Any solution of this problem may be represented as follows:

t T
z(t) = ®(2)® ~ 1(t)$(0) + / ®(t)® ~1(t) [ k(t,s)f(s,2,)dsdr, 0<t<T,
0 0
where ®(t) is the fundamental matrix of solutions of the homogeneous system z'(t) = A(t)x(t),
0<t<T. ®(t) is extended to [ —r,0] by I, the identity matrix.

Let M, = maz{sup|®(t)®~'(t)|:t,s €[0,T],1}. Using this formula, we obtain the
following theorem proved earlier in [5].

Theorem 2.5: If (Hf) and (Hk) hold, then the initial value problem (2.5)-(2.6) has at least
one solution on [ —r,T), provided that
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T t 00
MM, / m(s)dsdt < ] Q—fg—).
0 o Myl ¢l

3. BVP For Volterra Functional Integro-Differential Equations

Consider in this section the following BVP for nonlinear Volterra type integro-differential
equations

t
(1) = A(t,z,) + / k(t,5)f(s,z,)ds, t€[0,T] (3.1)
0

Lz = h, (3.2)

where A, f and k are as in the previous section and L is a bounded linear operator from a Banach
space C([—r,T],R") into R™ and h € ImL, is the image of L.

We will now introduce some necessary preliminaries. Consider a linear nonhomogeneous
system of differential equations

z'(t) = A(t,z,) + g(t) (3.3)
2o = ¢ (3.4)

for which we assume that (H A) holds.

For any initial function ¢ € C we denote by z(¢,g)(t), the solution of (3.3) satisfying
z(#,9) = ¢. For each ¢ € C and g as above, the initial value problem (3.3)-(3.4) has a unique
solution z(¢, g) defined on [ — 7, T] such that

t
2(6,0)(0) =2(6,0)0) + [ Ut 9)s(s)ds, te[0,T) (3.5)
0
where U(t,s) is the fundamental matrix of z'(¢) = A(t,z,). Denote by |U(t,s)]|, the operator
norm of the matrix U(t,s) and set

P =sup{|U(t,s)|:0<s,t<T}

Set S:C—C([ —r,T], R"™) be the solution mapping defined by

S¢ = z(¢,0).

Then S is a bounded linear operator and hence the composite mapping Lg = LS is a bounded
linear operator from C into R"™. We assume that
(HL) There exists a bounded linear operator Lg: R"—C such that LgLgLg = L,.

Therefore L% is the generalized inverse of Lg. Then any solution to the BVP (3.1)-(3.2) is a
fixed point of the operator F' with

Fz = Fz+ Fyz,
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where
(Fiz)(t) = SLg(h— LF,z)(t), —r<t<T, (3.6)
and
Pyt =4 ¢ Tretst 3.7
22)(1) = _tf }U(t,s)k(t,s)f(s, x,)dsdr, 0<t<T. 37
00

For a proof of this fact, the reader is referred to Kaminogo [4].
Now, we present our main result on the existence of solutions of the BVP (3.1)-(3.2).

Theorem 3.1: Assume that (HA), (Hk), (Hf) and (HL) hold, then, if
T r 00
me(1sz3| 121 +1) [ [meoysir < [ e =mas{|SL51 181, 1811}
00 c

the BVP (3.1)-(3.2) has at least one solution on [—r,T].

Proof: To prove the existence of a solution of the BVP (3.1)-(3.2), we apply Lemma 2.1. In
order to apply this lemma, we must establish the a priori bounds for the BVP (3.1),-(3.2),. Let

x be a solution of the BVP (3.1),-(3.2),. Then,
2(t) = MSL5(h - LF,2)() + (Fyz)(1)}, t €[0,T]

where F,(t) is given by (3.6). From this, we get

t T
2] < 15251 (1h] + 1217 [ [ ma(lz, | dsdr)
0 0

T

t
+P//m(s)ﬂ(||ms||)dsdr
0 0
t 7
< 1SL5|1h]+P(ISE5] L] +1) [ [m(s)()2,)dsdr, 05t <T.
0 0

As in Theorem 2.3, we consider the function p given by
p(t) = sup{|z(s)|: —-r<s<t}, 0K<t<T.

Let t* € [ —r,t] be such that u(t) = |z(t*)|. If t* € [0,t], by the previous inequality we have

t T
p(0)= 12(t)] < 1SL5] b1 +PUSEE| L] +1) [ [ me)(us)dsdr
0 0

t T
<e+ P(|SL5| L] +1) / / m()Qu(s))dsdr,
0 0
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where ¢ = max{|SLg| | k|, || ¢] }.
If t* € [—7,0], then u(t) = || #|| and the previous inequality obviously holds true.
Denoting by u(t) the right-hand side of the above inequality, we have

u(t) <u(t), 0<t<T,

u(0) = ¢,
and
w()= P(ISL5| 121 +1) [ m&(u(s)ds
0
t
< P(1SL51 2] +1) [ me)(u(s)ds
0
t
< P(ISLL| L] +1)R(u() / m(s)ds, 0<t<T.
0
v'(t)
) < PUSIE L] +1)/m(s)ds, 0<t<T.
Then,
u(t)
ds ds
ué)ﬂ( S<P(ISI3| | L] +1)//ms)dsdr<u4)9( . 0<t<T.

This inequality implies that there is a constant K such that u(t) < K, t €[0,T], and hence
u(t) < K, te€[0,T)]. Since for every t € [0,T], ||z, || < u(t), we have

2l <K,

where K depends only on T and the functions m and .
In the second step, we notice that any solution of the BVP (3.1)-(3.2) is a fixed point of the
operator F' with
Fr=SLg(h— LFyx)+ Fyzx

which is a completely continuous operator ([4]).

Finally, the set E(F)={z € B: « = AFz for some 0 < A < 1} is bounded, since in the first
step we have proved that ||z ||; < K.

Consequently, by Lemma 2.1, the BVP (3.1)-(3.2) has at least one solution, completing the
proof of the theorem.

We shall now consider equation (3.1) when the linear part A(t,z,) is not a functional on C.
More precisely, we shall consider the functional differential equation of the form
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t
2(t) = AW+ [ kt,9)f(s2)ds, 1€[0,T), (38)
0

where A(t) is a continuous n x n matrix for t € [0,T'].

Let us assume that ®(t) is the fundamental matrix of solutions of the homogeneous system
x'(t) = A(t)z(t), 0<t<T (3.9)

with ®(0) = I, the identity matrix. ®(t) is extended to [ —r,0] by I. We denote by L, the n xn
matrix whose elements are the values of L on the corresponding columns of ®(t). Assume that L
is nonsingular with inverse L; 1. Then it is well known (Opial [6]) that:

(I) The BVP (3.8)-(3.2) has a solution for any h € R", if and only if, the corresponding
homogeneous BVP

z'(t) = A(t)z(t)
Lz =0

has only the trivial solution z(¢) = 0.

(II) The solution of the BVP (3.8)-(3.2) is unique and is given by the explicit formula

z(t) = ®(t)Lg (h— LFy(1)) + Fy(t),

where
0, -r<t<0
Fz(t) = t T
J &) [ @~ Y(s)k(t,s)f(s,z,)dsdr, 0<t<T.
0 0
Let

o =sup{|®(t)|: 0<t<T),

B =sup{|®"1(t)]:0<t< T}

Then we have:

Theorem 3.2: Assume that (Hf) and (Hk) hold. Assume also that the linear operator L is

such that the operator Ly has a bounded inverse LO‘I.

Then if

[e o]

T t
aBM(a|Lg Y| | L] +1)/ /m(s)ds< 5‘%, (3.10)
00 c

where ¢ = maz{a| Ly ' | | k|, || ¢}, the BVP (3.8)-(3.2) has at least one solution.

Proof: The proof is similar to that of the previous theorem and it is omitted.
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