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ABSTRACT

In this paper we discuss some recent developments in the theory of gene-
ralized functionals of Brownian motion. First we give a brief summary of the
Wiener-Ito multiple Integrals. We discuss some of their basic properties, and
related functional analysis on Wiener measure space, then we discuss the gene-
ralized functionals constructed by Hida. The generalized functionals of Hida are
based on L2-Sobolev spaces, thereby, admitting only Hs, s E R valued kernels in
the multiple stochastic integrals. These functionals are much more general than
the classical Wiener-Ito class. The more recent development, due to the author,
introduces a much more broad class of generalized functionals which are based on

Lp-Sobolev spaces admitting kernels from the spaces ’WP’S,s R. This allows
analysis of a very broad class of nonlinear functionals of Brownian motion, which
can not be handled by either the Wiener-Ito class or the Hida class. For s _< 0,
they represent generalized functionals on the Wiener measure space like Schwarz
distributions on finite dimensional spaces. In this paper we also introduce some
further generalizations, and construct a locally convex topological vector space of
generalized functionals. We also present some discussion on the applications of
these results.
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1. Introduction

It is known that Volterra series can be used to approximate any continuous functional on a

Banach space. Similarly it was Wiener who first proved that any L2 functional of Brownian

motion can be approximated in the limit in the mean by sums of multiple stochastic integrals.
We shall call these as regular functionals of Brownian motion. Later in the eighties Hida

introduced an interesting class of generalized functionals of the Wiener process by use of a notion

of Fourier transform on the dual of a Nuclear space which supports white noise measure. This

generalization is significant and applies to problems where the regular functionals are insufficient.

In fact white noise itself is a generalized functional of Brownian motion and does not belong to

the class L2 of regular functionals. We shall discuss this later in the paper. In the early eighties
[5] the author introduced a class of generalized fimctionals of white noise which cover those of
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Hida as special cases. Further the method of construction used in the author’s paper [5] is direct
and simple and does not use the Fourier transform as employed by Hida. In any case both the
models arc instructive and will be discussed in the paper. Let (12, , P) be a complete probability
space and I _= (0, T) an open bounded interval in R and {w(t), t E I} the standard Wiener process
on (,, P) starting from the origin with probability one.

2. Regular Functionals of Brownian Motion

Let Co(I denote the canonical sample space where Co(I {x C(I)" x(O) 0}, and let
denote the Borel r-algebra of subsets of the set and let tt denote the Wiener measure. The

class of regular homogeneous functionals of Brownian motion of degree n is defined by

Kn(’r1, r2,..., rn)dW(rl)dW(r2)...dw(rn),

for any Kn E L2(In) where In denotes the Cartesian product of n-copies of I. These are the
multiple Wiener integrals based on Brownian motion and are known as polynomial chaos of
degree n. For each gn e L2(In), the functional (2.:1)is well defined in the Ito-Wiener sense and
belongs to L2(,,#). For each n N+, let L2(In) denote the class of symmetric L2(In)
kernels. In order to emphasize the dependence of gn on the kernels Kn, we shall often write gn(w)
as gn(Kn, w). We state some basic properties of these functionals.

(P1) For each gn L2(In), w--*gn(gn, w is a p-measurable function on f and belongs
to L2(gt , #).

(P2) For each Kn e L2(In) and Lm L2(Im)

(gn(gn, ), gm(Lm, ")), J gngmdl 0, for m : n.

(P3) For each gn L2(In) and Ln L2(In)

(gn(Kn, ), gn(Ln, .)), / gn(Kn, w)gn(Ln, w)d#(w)

n!/Ks(v1, v2,..., vn)L(Vl, r2,..., vn)dvldV2...drn.
In

(P4) The map Kngn(Kn,. from L2(In) to L2(t %, #) is linear and further it is contin-
uous in the sense that whenever the sequence .n. in L2(I" as r,

gn(Krn, )S-Lgn(Kn,. in L2( , p).

The most important properties are (P2) and (P3) and they state that the functionals {gn}
are orthogonal in L2(,,#). Further, it was proved by Wiener that they are complete in the
class L2(,%,#) (see also [4]). Hence they form a basis for the nilbert space L2(f,%,p). Thus
these functionals play a similar role as the sine cosine functions in the Fourier analysis of L2
functions on finite dimensional spaces. Several years ago, the author proved some basic results on

the Fourier analysis on Wiener measure space [1] such as Bessel’s inequality, Parsevals equality,
and Riesz-Fischer theorem. We state these results here without proof. For proof, the reader is
referred to the original papers [1-4]. From now on, we shall suppress the w variable and write

gn(Kn) in place of gn(Kn, w).
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Lemma 2.1" For each f E L2(,%,#) and each s G N +, there exists a unique kernel

L G L2(I), with respect to the fundamental basis {g,}, such that

<f gs(Ks)), s! Ls(rl, 2"" "’ Ts)I s(7"l T2’’" "’ s)dldr" "drs,
is

(2.2)

for all Ks L2(IS).
This result states that, given the fundamental set {gn}, the Fourier-Wiener kernels for any

functional f G L2(, %, #) are uniquely determined by f alone.

Next we present Parseval’s inequality. For convenience of notation, we let L2(I) denote the
scalars.

Theorem 2.2: Let (gn(Kn)},Kn C L2(In) be the fundamental set as defined above.
each f L2( %, #),

Then for

(f f)p 11 f 11 >_ oS!= Ls(va, v2,. rs) 2d’ldr2. .dvs, n C N

Is
+, (2.3)

where L2 G L2(Is) are the Fourier-Wiener kernels uniquely determined by f through the relation
(2.2).

Proof: For proof see [1].
As a consequence of this result one can assert that for a given function f G L2(12 , #) to be

approximated in the limit in the mean by a suitable choice of L2(Is) kernels {Ks} for the
orthogonal system {gs} is that the Parseval’s equality

II f II s! IK (r1, V2,... 7s)]2dT-ldT-2...d’rs, (2.4)
s--0

Is
holds.

Now we present a result for the space L2(,%,#) which is similar in spirit to the celebrated
Riesz-Fischer theorem for ordinary L2(,) space with contained in a finite dimensional space
like Rn and , the Lebesgue measure.

Theorem 2.3: Given the orthogonal set {gs(Ks,.),sG N+} with {Kse L2(Is)}, a necessary
and sufficient condition that there exists an L2(,%,# function with {Ks} as it’s Fourier-Wiener
kernels is that the series

s! Ks(r1, v2,..., Vs) 12dvld’2...d"s

is

converges.

Prf: For detailed proof, see [1, Theorem 2].
Consider the vector space of all {K {Ks L2(I), s N

denote the completion of the vector subspace of % with respect to the scalar product

<, L> 8 ’s(T1, T2,. ts)L(T1, T2,. vs)dvldV2. .d7s.
s:o

is

+ })C I-I L2(ln) --%" Let G
n--0

Clearly G is a ttilbert space with the corresponding norm topology given by
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II K II (0!_ K(Wl, ’2,"" ws)I 2d1d2 "dws)1/2"
Is

In view of Theorem 2.3, we see that L2(,%,# is isometrically isomorphic to G.
specifically, define the map (I): GL2(gt %, #) by

(2.6)

Clearly,

More

(K) ,(K,. ).
s--0

(1) ((aK) a(I)(K) for all scalars a and K E G.
(2) (I)(K + L) (I)(K)+ (I)(L) for all K, L E a.
(3) II (g)II L2(,,. II K II G"

Thus (I) is an isometric isomorphism of G onto L2(,,# and we express this by writing
GC:L2(Ft, , #

Set (j L2(gt , #) and define

0.- {.(K.)-.’K. e :(")}. (2.8)
This is the space of Wiener’s homogeneous chaos. The celebrated Wiener-Ito decomposition

follows as a corollary from the above discussions.

Corollary 2.4: L2(Q , #) G and further, Z ."n--O

3. Functional Analysis on G

Here we consider some basic questions of analysis on the Hilbert space L2(,,# or

e..quivalently G. Since L2(fl,,# and G are Hilbert spaces, bounded subsets A C G and
A C L2(fl,,#) are conditionally weakly compact. If closed then they are also weakly compact.
The interesting question is what are the necessary and sufficient conditions for (strong)
compactness. These questions were settled in a paper of the author in 1973 [2]. We present some

of these results here.

Now for convenience, we shall replace I by R and extend the elements {Kn} of L2(In) by
setting Kn 0 outside the interval I. Let H, denote the projection of G to

Gn
=_ {K G:K (Ko, K1,...,Kn, O,O,O,...)}.

Let Ah, h R, denote the translation operator:

AhK (K0, KI( + h),K2(. + h,. + h)...Kn(. + h,. + + h),...).

Clearly Ah: G--G.
Theorem 3.1: A set A C G is conditionally compact if, and only if,

(1) A is bounded,
(2) Lira [I AhK- K II G 0 uniformly with respect to K G A,

h-O

(3) nLirn i] (1 IIn)K II G 0 uniformly with respect to K G A.

Further, A is compact if it is also closed.
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Proof: For detailed proof, see [2, Theorem 4].
Next we present a parallel result for the function space L2(f,%,#). Let {Tt,t E R} denote

the ergodic group of measure preserving transformations of % into itself; and Pn denote the
projection of L2(f %, #) to Hn as defined below:

Hn

n

{f E L2(f], %, #): f(w) E 9s(Ks w)’Ks C L2(IS), 0 <_ s <_ n}.
s=0

Theorem 3.2: A set F C L2(f, %, #) is conditionally compact if, and only if,

(1) F is bounded

Limfnlf(Ttw)to -f(w)12d#(w)- 0 uniformly with respect to f e F,

(3) Lira f I(1 Pn)f(w)12d#(w) 0 uniformly with respect to f F.

Proof: The proof follows from Theorem 2.4 and the isomorphism (see [2, Corollary 2]).
Before we conclude this section, we would like to present another interesting fact which is

particularly important in applications. So far we have considered standard Wiener process, that
is g(w(t)w(s)) t A s. This means that the corresponding white noise has power spectral density
1. For arbitrary power density we may consider ,(w(t)w(s))= (1/2,)tAs, for , > 0. The
smaller the ., the larger is the noise power. Note that this is also equivalent to time scaling of
the standard Brownian motion. Let #. denote the corresponding Wiener measure and accordingly
replace L2(f,%,#) by L2(f,%,#,x). In this case the orthogonal set {gn} has the following basic
properties:

(Q1)
(Q2)
(Q3)

Same as (P1) with # replaced by #..
Same as (P2) wj.th # replaced by..#..
For each Kn e L2(In) and Ln e L2(In)

<gn(Kn’ )’ gn(Ln’ )>",X / gn(Kn, W)gn(Ln, w)d#)(w)

Kn(7"l, 7"2," 7"n)L(7"1, 7"2’"" 7"n)dT"ldT"2" "dT"n"

(Q4) Same as (P4) with # replaced by

With this modification G is replaced by G. which is given the natural norm topology

II K I1 x ( (n!/(2A)) K(wa, 2,..., )[ ldad2’’ "d,)a/2.
n 0

In

All the results presented in this section remain valid for the spaces L2( 9, #,) and G,x which

are, of course, isometrically isomorphic. Note that for 1/2, we have G_/2 G.

Theorem 3.3: The system of Hilbert spaces {G),A > 0} forms a totally ordered Lattice with

G) C G for 0 < , </3, and by virtue of the isomorphism, L2(f,,#,) C L2(f,,#) and the

injection is continuous.

So far we have presented some results due to the author that appeared in the mid-sixties and

early seventies. These are regular functionals of white noise.
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4. Generalized Functionals of the First Kind

In this section we construct a class of mild generalized functionals, which we call generalized
functionals of the first kind, strongly related to regular functionals as discussed in Section 2. Let
H denote the vector space

H {K : II K II. (- II K II = )1/2 oc}. (4 1)
n =0

n L2(In <

We assume that H has been completed with respect to the scalar product

(It’, L) E (Kn’ Ln)L2(In)’
n--O

so that it becomes a real Hilbert space. It is easy to verify that for each L E G, we have

II L II H II L I] G"

In other words, G C H but the reverse inclusion is not true and the injection G--H is continuous.
Let L be any element of H and define the linear functional on G by setting gL(K)- (L,K)H.
Clearly

gL(K)] <- I] L II H II K II H II L II H II K II a,
Thus every L E H determines a continuous linear functional on G. In fact, the space of
continuous linear functionals on G is much larger. For L 2; and K G, we have

(L,K)- E (Ln’Kn)L2(In) E ((1/V/’)Ln’(’)Kn)L2(In)
n=0 n=0

/ /--< (En=0(1 In!)II Ln II L2(in))1 (En-o(n!)II K’n II L2(ln))
2 1/2 (4.2)-< (E (l/n!)II Ln II L2(ln)) II g II a"

n--O

It is clear from this inequality that for each K G, the expression on the right-hand side is finite
if, and only if, L % is such that

E (l/n!)II Ln II 2 (4.3)c(,) <
n--O

Identify H with its dual H*. Let G* denote the dual of G. The inequality (4.2) characterizes
the dual G*, that is, the continuous linear functionals on G are given by only those elements of 2;

which satisfy (4.3). Thus the pairing on the left of (4.2) can be interpreted as G*, G pairing
giving

[(L, K)G, G II L [[ G* II K II -Then G* is also a Hilbert space with the norm topology

II L II a, ( (l/n!)tl Ln II z ))1/2. (4.4)
n=0 (In

It is easy to show that G is dense in H and H is dense in G*. Thus we have proved the
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following result.

Lemma 4.1: Consider the triple G,H,G* as defined above.
the embeddings G---+H---G* are continuous and dense.

They are all Hilbert spaces and

Using this result and the isomorphism as defined in Section 2, we can construct a class of
generalized functionals as follows. Since G is dense in H which, in turn, is dense in G*, by the
principle of extension by continuity, we can extend all the way up to G* in such a way that it’s
restriction to G is itself. We shall denote the extension also by itself. We define

(I)(G), :E (I)(H), * (I)(G*). (4.5)

Hence we have the following result.

Theorem 4.2: The class is the space of regular L2 functionals of Brownian motion while the
two classes 3g and * are generalized functionals of Brownian motion with being their test
functionals and they satisfy the following diagram:

G H--,G*
(4.6)

The action of an element of *given by the duality pairing
on those of the regular Brownian functionals (j L2(fl N, #) is

{f*’f)e* E (1/n!)(gn(Ln)’gn(Kn))L2(ll,,tt
rt--O

={L,K)G*,G
and clearly

Note that for every f E there exists an f* E * such that

(4.7)

(f*, f) II f 111" (4.8)

For example, if f,-K, then f* given by f* O(L) for L =_ (Lo, L1, L3,..., Ln,...) with
Ln (n!/II K II G)Kn has the required property and, further, II f* II 1.

Remark 4.3: Even though the results in this section are stated for one dimensional Brownian

motion, they are also valid for multidimensional case. This requires only use of symmetric multi-
linear forms for the multiple Wiener integrals. Further, the results also apply to multipararnter
Brownian motion.

5. Generalized Functionals of White Noise II

It is known that the derivative of the Wiener process does not exist in the classical sense but

in the sense of distribution it has derivatives of all orders. Let denote the space of C
filnctions on I with compact support and * the space of Schwarz distributions on I. Then we

can consider the white noise or the derivative of the Wiener process @ as a random distribution in

the sense that its action on is given by

()-(-1) ./w(t)(t)dt for all 05 G . (5.1)

I
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Note that iv(C) is a well defined Gaussian random variable, parametrized by E , with
mean zero and covariance II [I 2_ f i(t) 12dt. In fact the nth derivative of w, denoted by

I
w(n) is also a random distribution and

w(n)() (- 1)n/w(t)(n)(t)dt for all e .
I

Clearly this is also a Gaussian random variable, parametrized by , with mean zero and
variance f l(’-l)(t)12dt. Thus the derivatives of the Wiener process are actually stochastic
distributio/ns in the sense of Schwarz and we may call them generalized random processes. It is
easy to see that for any fixed s (O,T), fs(w)=_ iv(s)is an unbounded linear functional of
Brownian motion and is not an element of L2(,,#), and hence it is not a regular functional.
Similarly, Fs(w =_ (iv(s))’ is a homogeneous functional of white noise of degree n but it is not an

element of L2(Ft %, #). This certainly justifies the need of generalized functionals and we shall see

later that the functionals mentioned above are well defined generalized functionals.

Note that the characteristic function of the white noise is given by

g{exp(i iv(C))} exp -(1/2) / (t) 12dt C().
I

It is clear that the function C is also well defined on the Hilbert space II L2(I), that is, it is
continuous, positive definite, and C(0) 1. However, there exists no countably additive measure

# on (H) that satisfies the relation

/ ei(x’)d#(x), II. (5.4)
H

A necessary and sufficient condition for countable additivity is provided by Minlos-Sazanov
theorem (generalizing Bochner’s theorem) which states that the measure is countably additive if,
and only if, the corresponding covariance operator in Nuclear.

Thus, if we consider the functional C on the Sobolev space H then the white noise has a

countably additive measure on the dual (H)* H- 1. In this case

c() f
H-1

We can justify this as follows. It is easy to verify that

((iv, ))2 ] (t A r)(t)(r)dtdr (Re, ).
IxI

IIere we have used (,) to denote the duality pairing between H-1 and H10 It is clear that
the kernel K(t,v)--tAv is symmetric and positive. Since fK(t,t)-T2/2 <x, the
corresponding linear operator Q given by Q(t)=_ f g(t,v)(r)dv is la nuclear operator in the

I
Hilbert space II n2(I ). Hence the covariance operator R, as defined by (5.6), is a nuclear
operator from H to H-1. Similarly one can verify that the mth distributional derivative w(m)

of the Wiener process w induces a countably additive Gaussian measure on H-rn which is the
dual of Hn. Here we are interested only in the white noise since the Wiener’s multiple integrals
are functionals of the white noise.
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Thus to catch the support of the white noise measure, we must choose a larger space, larger
than II, for example the dual S* of a nuclear space S C_ H so that

Let (S*, %(S*), #) denote the measure space with tt denoting the white noise measure on %(S*)
and let M(S*,%(S*),#)= M(S*,#) denote the class of p-measurable functions on S* and let
L2(S*,# denote the Hilbert space of p-measurable and square-integrable functions on S*. These
are measurable functionals on S*.

We shall use F(S*, #) to denote the universal space of generalized functionals of white noise.
That is, these functionals are not necessarily N(S*) measurable, nor are they defined pointwise.
They are generally distributions and are characterized by their actions on suitable test
functionals.

Thus the multiple Wiener-Ito integrals can also be written as

gn(r) / gn(rl’ r2,..., rn)r(r1)o’(r2). .r(rn)drldr2...drn,
_

S*.

In

In other words, these are the multiple white noise integrals considered as measurable functions on

S*. As stated in the introduction, Hida constructed his generalized functionals by introducing a

Fourier-like transform on the space L2(S* #)as follows

/ exp(i(x, ())f(x)d#(x), E S, (5.8)
S*

where the duality pairing in (5.8) is between S* and S.

For convenience we shall denote this by

f(5) (f)(5).

It is clear from this definition that for f L2(S*,#),f() is a bounded analytic function on S.
Indeed for f gn, it is not difficult to verify that

n() (i)n{exp --(1/2)[I I[ 2} / Kn(ri, r2,... rn)(ri)(r2)."
(5.9)

where II 11 is the L2(I norm of . The proof is easily obtained for simple functions Kn by
keeping in mind the fact that the increments of Brownian motion on disjoint intervals are

independent Gaussian random variables with mean zero and variance equal to the lengths of the
intervals. For general K, L2(I’), one then uses the density argument and the fact that simple
functions are dense in L2. Defining C() exp(- 1/2)II II 2, it follows from (5.9) thai;

q’n()- (;gn)()- gn(i()C()" (5.10)

Thus for (x)- E gn(X), we have
n--O

"() C()E gn(ig)" (5.11)
n--O

It is known that the standard Fourier transform is an isometric isomorphism of L2 spaces over

finite dimensional spaces. Since S* is diffcrent from S and also they arc infinite dimensional, the
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Fourier-Hida transform is not an isometry. However, it follows from the above relations that it is
an isomorphism. Indeed if ffn() 0 for all E S then gn(i) 0 for all E S and hence Kn O.

Thus, for any G 52(S*, #), () 0 for all G S implies that 0 or equivalently K( G G) 0.

Now we are prepared to introduce the generalized functionals constructed by Hida [6-8]. In
this section we take In Rn. Define

n- {gn(Kn)- gn(Kn, ),Kn L2(In)} (5.12)
where gn L2(S*,#) is a homogeneous functional of white noise of degree n as defined by the
expression (5.7). Then define

This is a linear vector space isomorphic to n" For any real number rn _> 0, let

Hm { C L2(Rn): Da C L2(Rn), c < m}

denote the Sobolev space of real valued symmetric functions on Rn with the usual norm topology

E II Oa( [I 2(Rn) )1/2.

Now for m- m(n)----((n / 1)/2), it is known from the Sobolev embedding theorem that the
injection Hm(n)--*C(Rn) is continuous. This is the correct number for construction of generalized
functionals as seen below. Since the dual of Hre(n) is H- re(n) it is clear that

H,n(n)2(Rn)_H re(n) (5.14)

where the injections are continuous and dense. Define

,(n)_ {gn(Kn, )C L2(S*, #): Kn C Hm(n)},

(5.15)

and

where , is given by (5.12). Identifying
that

with its topological dual ff, it follows from (5.14)

ffnm(n)_nff- re(n). (5.16)

Theorem 5.1 (Hida)" Under the above assumptions, the following diagram holds:

(5.17)
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Proof: The Fourier-Hida transform is an isomorphism. Its inverse is well defined on both
3n and 3in" Since the embeddings in (5.14) are dense, again by the principle of extension by
continuity, the inverse of the Fourier-Hida transform can be extended to 3r-re(n). Thus by
application of the inverse transform, one obtains the last column of (.17) giving the result as
indicated by the diagram. []

Recall that
elements of - m(nn is the space of regular functionals of degree n of the white noise (S*, #). The

are generalized functionals of white noise.

or example, consider the functional

(.) / Ks(tgl,V92,... tgs)((t91))nl((vq2))n2...((Os))nsdl)ldO2 .dOs; (5.18)
R

where ni- n. Clearly is a homogeneous functional of degree n on S but it is not an
i=1

element of n" It is however, an element of 3-re(n). Hence by the Fourier-ttida inverse
transform - 3-l((i)nC)E m(n), where C is the characteristic function of white noise as

introduced earlier. Hence the functionals in the class %-m(n) have the same integral form as

(15.18) with S replaced by S* defining the generalieed functional of white noise.

Now we wish to extend the above result-to infinitely many variables. Recall that the
embedding IIm(n)--,L2(Rn) is continuous and the embedding constant is _< 1. We introduce a

() follows: For H + we writenorm topology on HI + Y]. 3n as
n--O

2ll ll / n!llgnll Hmm(n)"-"0

Similarly for H- no3gn_ we have already the norm topology induced by

2II II n! II Kn II L2( n)"
n--O

Letting - denote the dual of H + we have the following result.

Theorem 5.2: Under the assumptions of Theorem 5.1, and the norm topologies as introduced
above for the spaces H +, H, and H- and identifying H with its own dual, we have the following
embeddings

H + -->IHI--->I}-I] (5.19)

which are continuous and dense.

Define

3+ n =O3(n)’ 3-- Zn O
@ 3n’ 3- Zn O3:

rn(n)

Then it follows from Fourier-Hida transform and Theorem 5.2 that the following result holds.

Corollary 5.3:



258 N.U. AHMED

In the following two sections we present a much more wider class of generalized functionals of
white noise as introduced by the author [5]. These functionals cover the Hida class and much
more and applies to problems where other classes fail. First we shall introduce the class of
generalized functionals based on Lp spaces and then those based on Sobolev spaces adP’ m.

6. Lp-Based Generalized Ftmctionals of White Noise III

For each p C [1,oc], and each positive integer n, let Lp(In) denote the equivalence classes of
symmetric functions from the class Lv(I’ where the Lebesgue measure t(I) of I is finite. Define

Gp’n {h"n Cr_. p(In) with the norm II K, II GP, n (Yt!)I/p I! gn II Lp(In) < o0}.

Clearly, Gp’ n is a Banach space. or each Ln Gp’ n, define the functional

n(Ln) / Ln(7"l, 7"2,... Tn)0(7"1))(7"2)...(7"n)dT’ld’r2...dT"n, (6.1)
In

where fi S* with the white noise measure /z. We consider this functional as a # measurable
function on S*. We shall use M(S*, ) to denote all # measurable functions on S*. Clearly, for
each p > 2 and Kn Gp’n, z- Cn(Kn) defines a regular homogeneous chaos of degree n of
Wiener-Ito class and belongs to M(S*, #). Define

op, n {Z M(S*,/*): z Cn(Kn),Kn e Gp’n}.

This is a linear vector space. For z P’ n, corresponding to the kernel Kn Gp’ n, define

II z II II Kn II n. (6.3)

Lemma 6.1: For 2 <_ p < oc, p,n is a Banach space with respect to the norm topology given
by (6.3) and it is isometrically isomorphic to Gp’n.

Proof: See [5, Lemma 3.1].
The functionals belonging to the class p,n, p > 2 are regular functionals defined in the

Wiener-Ito sense. For 1 < q < 2 and Ln Gq’n, the random element z’- Cn(Ln) is not defined in
the classical Wiener-Ito sense. However, we can define them in a weak sense as generalized
random elements as given in [5].

Recall that F(S*, I.t) denotes the (universal) space of generalized functionals of the white noise
(S*, #), generally not defined pointwise.

Lemma 6.2: For each Ln Gq’n, 1 <_ q < 2, the functional z* Cn(Ln) is a well defined
random element on (S*,#) in the sense that it is an element of F(S*,#) and that it is a
continuous linear functional on p,n.

Proof: For detailed proof see [5, Lemma 3.2, pp. 143]. Due to its fundamental importance,
we will present an outline of the proof. Since L2(In) is dense in Lq(In), 1 < q < 2, there exists a

sequence {Ln s,S--1,2,3,...} C L2(I such that Ln s-*Ln (strongly)in L.(I ). Then the
p,nsequence {zs

=_ Cn(Ln, s),S 1,2,...} is a sequence of regular functionals. Hence, for any z (j
1 1with p- + q- 1, which, by the previous lemma, has the representation z Cn(Kn) for some

Kn Gp’n, we have
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(z:,z) n!(Ln, s, Kn)L2(in),L2(in
n!(Ln, s, Kn)Lq(in),Lp(in
-(Ln Kn)st Gq n Gp n.

(6.4)

Since Ln, s-Ln in Lq(In), it also converges weakly to the same element. Thus the limit of
the right-hand expression exists for all Kn E Gp’n. Hence the limit of the expression on the left-

* in the above sense, thehand side is well defined for every z p,n We call the limit of Zs,

generalized random variable z* given by z*-Cn(Ln). Hence z* is well defined as a continuous
linear functional on p,n, and, therefore, it belongs to F(S*,

On the basis of the above result we can introduce a duality pairing between the spaces q,n
andp’nwith l<q<2<p<cxzandp-l+q-l-1 as follows:

(Z*, Z)oq, n, p, n (z*, z) (Ln, Kn)Gq n, Gp n.

where z* Cn(Ln), Ln Gq’n and z Cn(gn), Kn Gp’n.

We introduce a norm topology on oq’ n by setting

(6.5)

Now we can present the following fundamental result.

Theorem ft.3: For each nonnegative integer n, and 1 < q < 2 < p < cxz with p being conjugate
of q we have

(i)
(ii)

Op n.__>02, n__>oq, n (Op, n),
GP, n G2, n---+ Gq, n

# #
Op,, __,

(6.6)

where all the injections are continuous and dense.

Proof: For detailed proof, see [5, Theorem 3.1].
We note that, for 1 <_ q < 2, oq, n is a system_ of generalized functionals of the white noise

(S*, It). This system is more general than O2,n.
Remark 6.4: The fact that z* oq, n does not in any sense, imply that g[z*[q < x, that is,

z*

Now we consider nonhomogeneous generalized functionals of degree N G N +. Define, for
r >_ 1, N < x, the Banach space

Gr, N {L (Lo, L1,L2,...,LN)’Ln G Gr’n,O <_ n <_ N} (6.7)

with the norm topology

(
N )l/r (6.8)II L I[ Gr, x E ! II Ln II
rtO

Since i(I) < c, it is easy to verify that, for 1 _< q _< 2 _< p < oc, Gp, N---Gq, N and that there

exists a positive constant Cp, N such that for each L Gp, N we have
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< Cp, N II L II N’ (6.9)

for every finite positive integer N. The injection is continuous and dense. The upper bound of
the embedding constant can be shown to be

N

(E
Now, we introduce the map (I)N as

n =Oin
(6.10)

defined for any K E Gr, N, r >_ 1.
(S*, #) given by

For any r >_ 1 this defines a larger class of functionals on

r,N {z F(S*, #)’z (bN(K), for some K Gr, N}. (6.11)

As before, we can introduce a norm topology on r,N by defining

IIzll  N IIKll  , N’ for z CN(K),K Gr N" (6 12)

This makes (I)N an isometric isomorphism of Gr, N onto r,N" This is stated more precisely in
the following theorem.

Theorem 6.5: Given the topologies as defined above, for 1 < q < 2 <_ p < oc, the following
diagram holds

Gp, N --* G2,N---. Gq, N

(6.13)

with continuous and dense embeddings.

Proof: The proof is similar to that of Theorem 6.3. For details, see [5].
Again the elements of q,N’ 1 < q < 2, are generalized functionals of white noise, that is,

q,N C F(S*,#). The next question is, can the above result be extended to N- cxz. The
estimate on the embedding constant Cp, N as given above is not suitable for this. In fact, it
diverges to infinity and hence the above result may not extend to N- oc. However one can

prove a partial result.

Theorem6.6: For l < q <_ 2 <_ p < oc

(i)

(ii)

p Lira .. N, q Lira

_
N,N oo 1’ N oo ’t,

Gp, Gq, p, q are reflexive Banach spaces,

(iii) pC:Gp, qCeGq and Gp Gq, p q
It is interesting to note that we do not have any inclusion relation between the Banach spaces

Gp, Gq and hence no inclusion relation exists between the corresponding Banach spaces of white
noise functionals p,q. It is easy to verify that Gp separates points of Gq and hence, by the
isomorphism, p separates points of q. For details see [5].
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Remark 6.7: For p q 2 we obtain the classical Wiener-Ito functionals.

In the spirit of Theorem 4.2, we can construct new generalized functionals from those of
Theorem 6.6 by introducing suitable weighting functions other than just the functions of
With this end in view, we introduce the following definition.

Definition 6.8: Let N+ denote the set of nonnegative integers, and R+ the set of non-

negative real numbers. A function a:N + x R--,R+ U{ +c} is said to be an admissible
weighting function if it is a monotone increasing function of both the variables and it satisfies the
following properties:

(i) a(n,s)a(n, s)- 1, (ii) a(O,s)- a(n, O)- 1, (iii)

(iv) sLirna(n, s) oc, n > 1, (v) nLi_yna(n, s) oc, s > O.

Lirn a(n, s) 1
r S---O

(6.14)

Clearly, it follows from (i) and (iv) that Lirna(n s) 0

For p E [1, oc], define

:p {(K0, K1,/2,. Kn ...):Kn e Lp(In),n N+ } Lp(In).
n0

Clearly this is only a linear vector space (with the product topology but) without any norm

topology. Corresponding to p, we can introduce the vector space of white noise functionals

_--Ep {(dPo(Ko),dPl(K1),c2(K:),...,dpn(Kn),...),K (7_

where {qn} are the elementary homogeneous functionals of white noise as defined in Lemma 6.1
and Lemma 6.2. Being the Cartesian product of infinitely many Banach spaces, these spaces have
only the linear structure with the product topology. Thus the map

{Kn, n N + }{bn(Kn),n N + }

from Ep to p, denoted here by , is merely an algebraic isomorphism.

Now we shall introduce various norm topologies and construct normed spaces so that this
becomes an isometry" For p G [1, oc), s _> 0, define

oo )lipGp, s {K e F.p:( n(a(n,s))p I] Ku (in) < }. (6.15)
n=0 P

Furnished with the norm topology as indicated by the definition, Gp is a Banach space and for
a fixed p, Gp, s C Gp, r, for s > r. For 1 < q 2 p < , (Gp, s} Gq,_ s" Then we can

introduce the generalized functionals of white noise through the isomorphism"

(Jp, s- (Gp, s), Oq,- s- @(Cq,_ s)" (6.16)

Theorem 6.9: For 1 < q <_ 2 <_ p < c, and s G R + the following results hold"

(i) Gp, s, Gq, s, Op, s’ and Oq, s arc reflexive Banach spaces,

(ii) Op, szGp, s, q, sCei’Gq, s and G’p, ,s Gq s, and O*p, s Oq, s’

(iii) Oq, -.s Q F(S*, #), are generalized functionals of white noise for s >_ O.

Remark 6.1.0: For s-0, we obtain the results of Theorem 6.6; and, in particular,

q,-0- Oq" The family of spaces {(jq, _s,s E R+ } is an expanding family of generalized
functionals of white noise more general than those of Theorem 6.6, and they are the duals of the



262 N.U. AHMED

Banach spaces {v,s,S E R + }.
The ultimate generalization of this section is given in the following theorem.

Theorem ft. 11:
(1) For 0 < v < s, the identity map Oq, rq, s is continuous,
(2) q L > 0

q’ --r iS the inductive limit of the spaces q,-r which has the finest locally

convex topology for which the embedding q, _r--+q iS continuous. This is the
inductive limit topology.

(3) q is the topological dual of p-9op,r; with p having the projective limit
topology, r

The space q C F(S*,#) is the space of generalized functionals of Brownian motion and the
space p is the space of test functionals.

Note that the generalized functionals presented in this section cover those of Nualart and
Zakai, [9], and all those presented in the preceding sections.

7. wP’m-Based Generalized Functionals of White Noise IV

In this section we introduce the most general class of generalized functionals that cover all
those presented above including the generalized functionals of Hida, Nualart, Zakai, Ustunel and
others. Let p,m,n denote the Sobolev space of functions defined on In whose distributional
derivatives up to order m belong to Lp(In) with the usual norm topology. The space W’m’n is
the completion in the above topology of C(In) functions having compact supports. The
Sobolev space with negative norm denoted by q/irq’ -re, n, where (l/p)+ (i/q)= 1, is the dual of
W, m, n, and it is a class of distributions on In.

Throughout this section, we shall use the hat symbol to distinguish the generalized
functionals constructed using Sobolev spaces from those constructed using Lp spaces.

Let 1 < q < 2 < p < oc satisfying p- 1 + q-1 1. For each positive numbe.r
n

n, let m(n) be a
real number such that re(n)> (n/p) and consider the Sobolev space g,m( ),n and its dual
qQq, re(n), n. Recall that 4 m, n is the completion in the topology of Wp’ m, n of C functions
on In with compact supports. Note, by the Sobolev embedding theorem Vg’m(n)’n--+C(In).
We shall need the following vector spaces. Define

p,m(n),n {L p(In) L /V’rn(n)’n}
q,- m(n), n (p,m(n),n), dual of p,m(n),,.

(7.1)

Furnished with the norm topology

II II
the space p,m(n),n is a Banach space.
natural topology given by

(rt!)1/p II II
Its dual is q’

urn,
-m(n), which is furnished with its

WIlere

II II altlty q m n n (7.3)

(7.4)
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Let Cn denote, as in (6.1), the homogeneous fllnctionals of degree n.

space
Define the linear vector

p,m(n),n {z E M(S*, #): z Cn(Ln),Ln Gp’m(n)’n}

which, furnished with the norm topology

II z [[ "p,m(n),n II Ln II p,m(n),n’ (7.5)

is a Banach space isometrically isomorphic to p,m(n),n. Since p,m(n),n C p(In) C/2(In) for
p _> 2, these are the regular functionals (Wiener-Ito) of white noise. The generalized functionals
are the images under Cn of the Banach space q’- m(n),n. Indeed the following result holds.

Lemma 7.1" For each Kn G q’ -m(n)’n,(1 < q <_ 2), the functional z* Cn(Kn) is a well
defined generalized random element of F(S*,#).

Proof: The proof is based on Lemma 6.2 and the fact that the completion of Lq(In) in the
topology of ?q’ -m(n),n is Irq’- m(n),n itself. For details, see [5, Lemma 5.1].

q,The class of such functionals denoted by m(n),n is Kiven by qSn(q’- m(n),n). We can
,--mn,ntopologize this vector space by a norm. For each z* q 0 we define its norm by

II z* 11 .q, m(n),n uP{ Z*(Z) II Z II p,(), _< 1, z G p,m(n),,}. (7.6)

In this case the natural duality pairing between z* of q’- m(n),n and z of "p,m(n),n is given by

z*(z) <z*,z>.q, _m(n),n,p,m(n),n= <Ln, Kn>q -m(n),n,p,m(n),n’ (7.7)

where z* (Ln). With this introduction, we can now present the following fundamental result.

Theorem 7.2: [’or each positive integer n, and 1 < q <_ 2 <_ p < cx with p- + q-1 1, and
re(n) > (n/p), the following results hold:

(i)

(ii) Gp, re(n), n -- 2,0, n q, --m(n), n

(7.8)

p,m(n), n
--+ 2, O,n -- "q,- m(n),n

with continuous and dense embeddings.

Proof: For details, see [5].
Remark 7.3A: Note that for p-q--2 and re(n)- (n+ 1)/2, wc obtain the generalized

functionals due to I[ida as given by equation (5.17) of Theorem 5.1.

mark 7.3B- Since re(n)> n/p, wg’m()’C(I") and hence one cH easily verify that

for any r G I, z*-((r))’" G q’-m(n),n, and, for zn G p,m(n),n with kernel Ii n we have

{z*,zn) n.Kn(r, r,..., r). Since, by the embedding theorem, Kn is continuous, it is clear

< Th, s z* is wel dCnn d bounded linear functional, while

it is not an element of L2(S* ).

Similar to that in the preceding section, for nonhomogeneous functionals, we introduce the

following Sobolev spaces"

Now we consi(lcr nohomogeneous generalized functionals of degree N G N+. Define the
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vector spaces
N

n:O

N

N- H q’ -,(n),n, 1 q 2;
n:0

where re(n) > (n/p) for each integer n. These vector spaces, furnished with the norm topologies:

)l/qII g IIN II gn II 8q, -(-),-

(7.9)

(7.10)

are Banach spaces (reflexive if q > 1) and further ,N --(p+,N)*"
Using (I)N as in the expression (6.10), we introduce

p+,N {z E F(S*,#):z (N(L),L p+,N}, (7.11)

for 2 _< p < c. In this ease the dual N of N is a very large class of generalieed functionals
of white noise covering those given by Theorem 15.1 and Theorem 6.4. The following theorem is
their generalization [, Theorem 15.2].

Theorem 7.4: Given the topologies as defined above, for 1 < q < 2 < p < oc, the following
results hold:

(i) ,N and -,N are the (topological) duals of p+,N and p+,N respectively.

(ii) p+,n 2, n --- n
r n

where the injections are continuous and dense.

Prf: See [, Theorem .].
The followin heorem enerMizes Theorem . nd i is he limiin version of Theorem 7.4.

Them7.: For l ( p (

(7.12)

N---oo v, Noo ’
(ii) , ,, ; are reflexive Banach spaces,

(iii) , -: and ( )* :, ( )* . There is no inclusion

relation as in (7.12).
Prf: See [5, Theorem 5.3].
or p e [,], and q e [1,2],(1/p + 1/q- 1), introduce the linear vector spaces N and q as

defined by

n0
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E {(Lo, L,,L2,...,Ln,...)" Ln

Note that Eq is the algebraic dual of Ep for 1 <_ p < oc. We shall use, as in Section 6, the same

symbol q for the algebraic isomorphism between these linear spaces and the universal space
F(S*, p) of the white noise functionals. Thus we have

,p I/(p) aIld Zq II/(q). (7 15)

Now we shall introduce various norm topologies and construct normed spaces so that this
becomes an isometry: For p E [2, oc), s _> 0, define

oo )lipGp, s {It" e EP’( nE=0n!(a(n’s))P II II < oc}. (7.16)

Similarly for, q (1,2], s _> 0, define
oo )l/qGq, s {L e q’( E n!(a(n, 8))q II Ln II q

n o Wg’ m(n),n < }. (7.17)

Furnished with the norm topology as indicated by the definition, Gp, s is a Banach space and

for a fixed p, de, sCdp,, for s>r. For l<q_<2_<p<, (p,s)*-Gq,_. Then we can

introduce the generalized funetionals of white noise through the isomorphism:

Op, s- qt(Gp, s), q, s-- qf(Gq, s)" (7.18)

Theorem 7.6: For 1 < q <_ 2 <_ p < oc and s R + the following results hold:

(i) Gp, s, Gq, s’ p,s and q, s are reflexive Banach spaces,

(ii) O’p, sC:p ^q sC:q, and * q, ands) s p, 8 s p, s --8"

Remark 7.7: For s^-0, we obtain the results of Theorem 7.5; and, in particular, Oq,-0- q"
The family of spaces {Oq, s, s R + } is an expanding family of generalized functionals of white
noise more general than those of Theorem 7.5, and they are the duals of the Banach spaces

e n+}.
The ultimate generalization of this section is given in the following theorem.

Theorem 7.8:

(1) For 0 <_ r <_ s, the identity map Oq, r--+Oq, s is continuous.

convex topology for’ which the ernbcdding Oq,_ rq is continuous.

(3) q is the topological dual Of p
r

p,r"

The space O’q is the space of generalized functionals of Brownian motion and the space p is

the space of test functionals.

Remark 7.9" In view of the preceding results, it is clear that the kernels of homogeneous
Brownian functionals (:an be taken from the space of Schwarz distributions *(I) giving
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generalized functionals with the corresponding test functionals having kernels from the Schwarz
space (In). This way, one can construct many different classes of locally convex spaces of
generalized functionals of Brownian motion. We shall consider this in the future.

8. Applications

For lack of space we shall only refer to some applications. The functionals of Brownian
motion have many applications in physical and biological sciences. The functionals presented in
this paper have found applications in stochastic differential and functional differential equations
and systems theory (see [2, 3, 4, 5, 13]), in Malliavin calculus (see [10]), and in stochastic partial
differential equations (see Nualart, Zakai [9], ahmed [5]), in quantum mechanics (see rIida [8]).
The problem of synthesis of input-output maps based on optimization in the Hilbert space
L2(fl %,#) or equivalently G.\ for stochastic functional differential equations was studied in [2].
Other natural areas of applications are nonlinear filter and control theory. We present here
briefly, an example; for details see [5]. Consider the heat equation with the Neumann boundary
condition

Ou/Ot Ou/Ox, 0 _< x < , t >_ 0

u(O, z) O, 0 < z < o0, (8.1)

Ou(t, 0)/0 t > 0;

where g(t)-13(u(t)-u(t,O)) for convective heat transfer and g(t)-7(u4(t)-u4(t,O))for
radiative heat transfer. Here /3,7 are the corresponding heat transfer coefficients and u is the
temperature of the flame in which the rod is immersed. Due to chaotic nature of the flame,
u(t) m(t)/ n(t), where n tb is the white noise and m is the mean flame temperature. The
temperature of the immersed end of the rod is given by the integral equation

u(t,O) J (1/vf(t- r))g(r)dv, t > 0. (8.2)
0

In the case of convective heat transfer we obtain a linear stochastic integral equation for u(t,O)
which contains a term of the form

S(t) j (1/V/-(t- -))@(-)d-. (8.3)
0

In the case of radiative heat transfer, the corresponding term is given by

S(t) (1/V/-(t- 7"1))((7"1 7"2)((T1 T3)((7"1 7"4)H JO(7i)d7i’ (8.4)

I
where It4-[0, t]4. In the linear case, the kernel Kl(t,v)- (1//(t-w))E La(O,t only for
1 <_ q < 2 and in the nonlinear case, the kernel K4 E q’-m,4 for rn > (4(q-1)/q). Clearly in
both the cases, S(t) is a generalized functional of white noise and belongs to the class considered
in Sections 6 and 7 but not in the Hida class (see Section 5).
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