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ABSTRACT

A basic identity is proven and applied to obtain new simulation estimators
concerning (a) system reliability, (b) a multi-valued system. We show that the
variance of this new estimator is often of the order a2 when the usual raw
estimator has variance of the order ct and a is small. We also indicate how this
estimator can be combined with standard variance reduction techniques of
antithetic variables, stratified sampling and importance sampling.
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1. Introduction

Consider the problem of using simulation to estimate c, the probability that an m component
binary system is failed. Making use of a basic identity concerning sums of non-independent
Bernoulli random variables (presented in Section 1) we present a new estimator of this
probability. It is shown that this new estimator is always bounded by the Boole inequality upper
bound on c. It is also shown how our approach can be combined with the standard variance
reduction techniques of antithetic variables, stratified sampling, and importance sampling. The
final section applies the estimator to a multi-valued system.

2. A Basic Identity

Let X1. Xn be Bernoulli random variables such that

P{X i)= ,X 1-P{X 0}, i= 1, n.

Let W- aiX where the a are positive constants. Set ai, -E[W]. Also let R
i=1

and I be random variables defined on the same probability space as/the Xi. Suppose that I is

independent of tlc random vector X, R and is such that
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P{I- i}- ai/ai, i- 1, ..., n.

The following identity will be basic to our work.

The Basic Identity:

(a) P{I i] XI 1} Aiai/A
(b) E[WR] E[R XI 1]
(c) P{W > 0} AE[-IXI 1].

Proof: The proof of (a) is immediate. Part (b) is shown as follows:

E[WR] E aiE[XiR]

Y]aiE[XiRIX 1]Ai

Z;a[R x- 1]

Also,

E[R XI 1] EE[RIXI 1, I i]aiAi/A

E E[I Xi 1]aiAi/A.

Combining these two equalities yields part (b).
Part (c) follows directly from part (b) by letting

R- ] 0 if W-O

1/W if W>O.

Remark: Part (b) of the basic identity is a generalization of an identity due to Charles Stein
[7], who used it in his work on establishing bounds for Poisson approximations. Stein presented
the identity when the a equal 1 and R is a function of W. We will need the added generality in
certain of our applications. The proof presented above differs from the one given by Stein.

3. Some Apphcations in Simulation

3. 1. System Reliability

Consider an m component system in which each component is either working or failed. Let

Yi equal 1 if component is failed and let it equal 0 if is working, i- 1, m. Assume that
the Yi are independent and P{Yi- 1} Pi, i- 1, m. Also suppose that the system is itself
either working or failed and its state is determined as a monotone function of the vector Y.

Let Ca, Cn denote the minimal cut sets of this system. That is, if all of the components
in C are failed then so is the system and such a statement is not true for any proper subset of

Ci, i- 1, ..., n (see narlow and Proschan [1]). Let

Xi- I-I Yj, i- 1, n.

JEC
That is, X is equal to 1 if C is down (that is, if all components in C are down). Set
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w-

Ai- E[Xi] I-I pj, and let A Ai. Also let denote the number of minimal cut sets that are
jEC

down. The probability that the system is failed is

c P{system is failed} P{W > 0}.
In cases of highly reliable systems a will be quite small. However, it is important to be able

to obtain a precise estimate of it since whereas a probability of system failure of 10- 6 might be
acceptable one of 10- 3 might not be.

Suppose we are planning to approximate c by continually simulating the vector Y. Whereas
the raw simulation estimator from a simulation run yielding the vector Y is 1 if the system is
failed under Y and 0 otherwise, we will use the basic identity (with a equal 1) to present a new
estimator.

To use the basic identity, simulate the value of J, a random variable that is equal to with
probability Ai/A i- 1, ..., n. (It follows from (a) of the Basic Identity that the random variable
J has the same distribution as the conditional distribution of I given that XI 1). Now, set Yi
equal to 1 for E Cj, and simulate all of the other Yi, Cj. Let W* denote the number of
minimal cut sets that are down; (note that W* _> 1). From the basic identity it follows that the
estimator A/W* will be an unbiased estimator of c. Since W* _> 1, it follows that

and we can conclude from the above in conjunction with the fact that E[A/W*] a, that

Since the variance of the raw estimator is c(A- c) the above implies that the new estimator has
a smaller variance when A < 1, as will usually be the case when c is small. Indeed, in many
applications we would expect that A and (t should be roughly of the same magnitude and so the
above would yield that the variance of the new estimator is no greater than the order of c2.

Remark: From a computational point of view the new estimator seems comparable to the old
one. Whereas we must now count the number of minimal cut sets that are down and also
simulate J we have the savings of not having to simulate the values of the components in Cj.

We now show how to use the new estimator in conjunction with the standard variance
reduction techniques of antithetic variables, stratified sampling and importance sampling.

3.1.1 Use of Antithetic Variables

The variance of the estimator can be fllrther reduced by using the method of antithetic
variables. Once the value of J has been generated and the resulting Yi, Cj, generated then
we should compute the value of W* first using these Y and secondly using the values

Y 1 Yi" The estimator of E[1/WIXI 1] from that run should be the average of these two
values of l/W*.
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3.1.2 Use of Stratified Sampling

The estimator presented above can be improved, in the sense of having its variance reduced,
by using a stratified sampling approach. That is, rather than starting by simulating d we can

arbitrarily set d equal to in the fixed fraction Ai/A of simulation runs, 1, n. This will
result in an estimator having the same mean as A/W* but a smaller variance (see Section 8.4 of
[6]). Of course, this is only feasible when n is of moderate size.

3.1.3 Importance Sampling and the New Estimator

Importance sampling often produces an estimator of a whose variance is significantly smaller
than that of the raw estimator (see Jun-Ross [3]). Rather than simulating the vector Y according
to the independent probabilities Pi, i- 1, ..., n it simulates them according to a different set of
independent probabilities qi, 1, ..., n and then uses the estimator

Imp I{w > o}P(Y)/q(Y)
where Itwo,. is the indicator variable equal to 1 when the system is failed, and p(Y) and q(Y)
are the lroablltles of the simulated vector Y under the Pi and qi respectively. That is,

P(Y) I-[ Pi 1- pi) i, q(y) 1-I qi 1- qi)

and

Eq[I(w > o}P(Y)/q(Y)] o,

where Eq is used to signify that the distribution of Y is given by the probabilities qi, 1, n.

Let Ai(q) denote the probability, under the q’s, that C is down, and let ,q- EAi(q). We

now show how to obtain a new estimator by using the basic identity in conjunction with the
above.

By letting

R-{ 0 if W-0

I{w > o}P(r)/[Wq(r)] if W > 0

we obtain, from the basic identity, that

Eq[I{w > o}p(Y)/q(Y)] AqEq[I(w > o}p(Y)/[Wq(Y)] XI 1]- /, [P(Y)
q-’qtWq(Y) XI 1].

Therefore, wc can obtain a new unbiased estimator of a by following these steps:
(a) Simulate the value of J, which is equal to with probability Ai(q)/Aq, i- 1, n.

(b) Set Yi equal to 1 for E Cj.
(c) Simulate all of the other Yi, C according to the qi"

(d) Let W* denote the resulting number of minimal cut sets that are down.

Tile estimator of c is then Aq wP,q(y) where Y is the vector obtained in parts (a) through (d).
Call this estitnator Est.

Let us now compare Vat(Imp) and Vat (Est). Since these estimators have the same mean,



A New Simulation Estimator of System Reliability 335

we need consider their second moments. Now

E[Imp2] Eq[I{w > o}P2(Y)/q2(Y)]

where Oq Pq{W > 0}.
Now let

Now

Eq2(y) W > 0]Cq

p (Y)
R- W2q2(y)’

if W > 0

0, if W-0.

V-y) XI- 1]

A2qEq[RIXI 1]

qEq[RW] by the basic identity

qEq[WRIW > O]cq
p (Y) w > 01.

A comparison of the formulae for E[Imp2] and E[Est2] shows, since W > 0 is equivalent to
W _> 1, that a sufficient condition for the former to be the larger is that

That is, if the expected number of minimal cut sets that are down, when simulating with the qi,
is less than 1 then the estimator Est has a smaller variance than does the importance sampling
estimator. Also, this is not a necessary condition since E[Est2]/E[Imp2] < lq, and indeed might
be quite a bit less since W*, which has the conditional distribution of W given W _> 1, might tend
to be quite a bit larger than 1.

3.2 A Multi-Valued System

Suppose we have a set of m independent components, with component functioning with
probability Pi" There is a set of n experiments we want to perform. However, in order to
perform experiment all of the components in the set C must fimction. Suppose the return from
experiment is the positive amount ai. If we let X be 1 if all the conponents in C are

functioning and let it be 0 otherwise then the total return from the n experiments is

n
aiXi"w-i_

Since W is a monotone function of the vector Y, we can regard the above as a multi-valued
system whose value is W.

Suppose we want to use simulation to estimate
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/3= P{W > x}.
The raw simulation estimator is to simulate Y and then determine the value of W. However, we
can use the basic identity to obtain a different estimator. First, note that it follows from the
basic identity, by letting

0 if W<x

1/W if W > z,

that

P{W > x} AE[R Xz 1]

>  }/WIX 1],

where A aii, i E[Xi]" Hence, we can estimate fl by simulating the value of J, a random

variable equal to with probability ai,i/. We then set Yi equal to 1 if E Cj and we simulate
its value in Cj. Finally, we let W* denote the resulting value of aiXi. The estimator is

0 if W* < x
Estimator

A/W* if W* > x.
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