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ABSTRACT

We combine the Donsker and Varadhan large deviation principle (1.d.p) for
the occupation measure of a Markov process with certain results of Deuschel and
Stroock, to obtain the 1.d.p. for unbounded functionals. Our approach relies on

the concept of exponential tightness and on the Puhalskii theorem. Three
illustrative examples are considered.
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1. Introduction and Main Result

Consider an ergodic Markov process (k)k > 0 having R as its state space, Ao(dx) as the
distribution of the initial point 0, ad A (dx-) as the invariant measure. The transition
probability r(x, dy) is assumed to satisfy the Feller condition.

From the application point of view, it is interesting to get the large deviations for functionals
n-1

1of the type n g(k), for n >_ 1, with a continuous unbounded function g- g(x). There exist
k=0

different ways of solving this problem (see Grtner [8], Dueschel and Stroock [3], Veretennikov
[14], Acosta [1], Ellis [6], Orey and Pelikan [11], Freidlin and Wentzell [7]).

Here we combine the results of Deuschel and Stroock [3] and Donsker and Varadhan [5], and
we use the representation

in g(k) g(x)n(dx -(Mg(rn)), (1.1)
k=l R

where rn(dx is the empirical distribution
n

()_ 1 i( e ).
k=l

n(A) has been named the occupation measure by Donsker and Varadhan [4].
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Assume the family {rn, n > 1} obeys the 1.d.p. in the metric space (S,p) (S is the set of
probability measures on R and p is the Levy-Prohorov metric) with a rate function J(#), for
#ES. If g--g(x)is a bounded continuous function, then M_(b, g(x)b,(dx). Here ES
defines a mapping continuous in the metric p; and the 1.d.p. in R,-)(-is the Euclidian metric)
is implied by Varadhan’s contraction principle [13] with a rate function

Ig(h) inf J(#), {# S: Ma(# y} and inf{O} cx. (1.2)

Deuschel and Stroock [3] have shown that under certain conditions this result remains valid for an

unbounded function g g(x).
n-1

In this paper we give sufficient conditions for the sequence {- g(k),n 1} to obey the
k=0

1.d.p. in terms of A0(dz), r(x, dy), and g(x). In view of (1.1) we need the 1.d.p. for the family
{rn, n 1}. In the noncompact case with a fixed initial point, 0 = x0, the 1.d.p. has been proved
by Donsker and Varadhan [5] under the following three assumptions.

(H*) There is a nonnegative measurable function v(z)such that sup v(x)< for all
N > O. Furthermore, the function xl N

w(x) =In
f

satisfies the following conditions: R

inf w(x)=w,> -andlim inf [w(z)-w,]=

(RM) There is a r-finite reference measure = l(dx) such that

7r(x, dy) p(y x)l(dx)
and

p(y x) > O, Vx R 1-a.s.

The rate function J J(#), for # S, is given by the formula

J(#) sup J ln
eU(X)

dy)#(dx (1.3)
e f

R

(N is a set of continuous finite-supported functions).
Since in our setting the initial point 0 has the distribution 0, we add one more assumption.

(H0) The function v(x) from (H*)is such that

> 0: [ ebv(x)o(dx < .Bb

R
We show that the Donsker and Varadhan 1.d.p. for {rn, n 1} remains valid under these

three assumptions with the same rate function (see Theorem 2 in the Appendix). The lower-
bound part of this theorem is a simple generalization of the Donsker and Varadhan 1.d.p.
obtained by averaging with respect to 0" The proof of the upper-bound part is somewhat
different. We show that (H*) and (H0) imply the exponential tightness of the family {rn, n 1}
and then use the Puhalskii theorem [12]. The same method is used in the proof of our main
result concerning the 1.d.p. for the family {Ma(rn),n 1}.
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Theorem 1" Suppose assumptions (H*), (RM), and (Ho) hold. If a continuous function g-
g(x) is such that

[g(x) < L(1 + [w(x)- w.]3), E (0, 1), L > 0,
where w(x) is the function from assumption (H*), then the family {Mg(rn),n >_ 1} obeys the
l.d.p, in (R,r), where the rate function is defined by (1.2) and (1.3).

Pmark: Assumption (RM) is used only in the lower bound part for the 1.d.p. of {rn, n _> 1}.
It has been weakened in Jain [10] and Wu [15]. Theorems 1 and 2 (see the Appendix) remain
true if (RM) is replaced by any of the assumptions from [10] and [15].

The proof of Theorem 1 is given in Section 2. Elements of the proof of the theorem have
been used in proving the 1.d.p. for the family {rn, n > 1} (see the Appendix, Theorem 2). In
Section 3, we consider three examples of Markov processes defined by nonlinear recursions to show
how the assumptions of Theorem 1 can be checked.

2. Proof of Theorem 1

According to Deuschel and Stroock [3], Lemma 2.1.4, the following conditions are sufficient
n--1

for the sequence { g((i), n > } to obey the.l.d.p, in (R, r)"
i=0

(1) the sequence {rn, n > 1} obeys the 1.d.p. in (S,p);
(2) there exists a sequence {gk(x)}k > 1 of continuous functions such that, for each fixed

k, the function gk(x) is bounded,-and

lint sup I[ [g(x)- gk(x)]#(dx) 0, Va > 0, while (2.1)
k

Take

limk limnSUp logP( [(,)- (,)](d,) > )- -cx, V > 0. (2.2)

"qk(x)
k .sign g(x), g(’)l > , (2.3)

Due to Theorem 2 (see the Appendix) it remains to be shown that, under assumptions of
Theorem 1, each of the functions gk gk(x), for k >_ 1, satisfy conditions (2.1) and (2.2).

To this end we use the following.

Lemma 2.1: Let function w w(x) be from (H*). Then

(()- ,)(d) < J(),.
R

Proof: It goes without saying that J(#) can be defined as (compare with (1.3))

J(#) sup f In eu(x) #(dx),
u e a f ()(,d)

R

where % is a set of measurable bounded functions. For u E % denote

[ e=(x)(;(, ,) j #(dx).
f ()(, d)
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Let vn(z v(x) A n where v(z) is from (H*). Make the following calculations:

> / I(v(x) < n)(w(x)- W,)l.t(dx) -4- w, / I(v(x) < n)#(dx).
R R

Since J(p) _> G(vn, ), we have the following estimate:

f
J(#) >_ / I(v(x) < n)(w(x)- w,)#(dx) + w, / I(v(x) < n)#(dx).

R R

As sup v(x)< cx3, we have I(v(z)< n)]’l as ncx3; and by the Beppo-Levy Theorem the

desired result holds.

Now we shall establish (2.1). It follows from (2.3) that

g()- gk() < g() I(Ig() > ).

Keeping in mind that Ig(x) < L(1 + (w(x)- w,)/3) for < 1, we get for k > L that

(2.4)

(g(x)- gk(x))#(dx) <_ [ g(z) I(a(z) > k)tt(dx)
R

_<L i/(w(x> . _
(k/L-l>l/f)(1 + (w(x)-

R

l" -if
<_ Lk(k/L- 1)- 1/f

_
(/L- 1)1- l/f}]/(w(x)- w,)(dx).

R

Due to Lemma 2.1, the last inequality implies (2.1).
It remains to be shown that (2.2) holds. This time we make use of Lemma 2.2.

Lemma2.2: For any q-measurable sets, An .for n > l and Bn for n > l and > l, such that
lira limsupln logP(Bn, i) -cx, there holds the following equality:

linm sup log P(An)-,.limocsup linm sup log P(An, f\Bn, i).
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The proof follows from the fact that P(An) >_ P(An, \Bn, i) and P(An) <_ 2[P(An, \Bn, i)
VP(Bn, i)].

According to this lemma, (2.2) is valid if

lira limsup P(v(o) > in)- -oc,

where v(x) is from (H*), and

(2.15) follows from (/10) and the Chebychev inequality:

> i) _< - (")/()(d).P(v(o)
R

To prove (2.6), define the random variable
n- 1 v(k + 1)

Zn-
=0 E(’(+1) 1)

with v(x) from (H*). By the Markovian property E(ev(k + i)[k) E(eV(k 1)+
P- a.s. and so EZn 1. Hence, the following inequality is obvious:

IEI(/ ,g(x),l(,g(x), >)(dx)>, V(o)in)Z.
Also, it is easy to represent Zn in the form:

Zn exp v(k + 1)- k + 1) k) exp v(n)- V(o)+ w((k)
k=O k=O k=O

(2.7)

(.8)

p(v(5,) V(5o) + ,,w, + n / [w() w,],(dx))
For k > 1 define a function f f(k) as follows, f(k) inf(Ix I: ]g(x) > k). Evidently,
{Ig(x) >k}c_{Ixl _>f(k)}and f(k)Toc as

Let us now evaluate Zn from below on the set { f g()lI(Ig()l >
V(o) in}: R

Zn R ezp ( in + nw, + n f [w(z)_ w,]n(dz)

>_ exp

in + nw, + n
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where

(1- l/k) )in + nw, + n
(1 fl)

inf [w(x)-w,]

It then follows from (2.9) that

LtgP(/nI ,g(x),l(,g(x)[ >k)rn(dx)>, V(o)<in)_
e(1- l/k)

<i-w,- L72(1 ft)(f(k)

and, therefore, (2.6) holds due to (H*).

(2.10)

3. Examples of Nonlinear Recursion

Consider a Markov process ( (k)- < k < generated by a nonlinear recursion"

k A" 1 f(’k) + h(k)ek + 1’ (3.1)

where f(x) and h(x) are continuous functions such that

f(-2x-) _<a<l and 0< h(x) <_ o, (3.2)

while ((k)- < k < is a sequence of i.i.d, random variables. Under (3.2), the random value

o- E f l)
h(j_l)j (3.3)

j= -x) l=j

0
is well-defined since i01 -< a-Jc ejl. Thus the process defined in (3.1) has an

invariant measure , which is a distribution of the random variable (0"
Now, we consider a process defined in (3.1) when k >_ 0.

1. Suppose that the distribution density w.r.t, the Lebesgue measure of eI is Laplacian:
pe(y)-1/2exp(-lYl) and A0-A. Then is a stationary process with r(x, dy)-

,-
h(z) [)dy and so the assumption RM is met. (H*)is met with v(x)-c Ix , for

a 1.<c<.

R
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(H0) is met since, for 0 < b < , we have Ee
b

o 1- baaj
<

By Theorem 1, the family {Mg(rrn),n >_ 1} obeys the 1.d.p. for any continuous function g(x)
with

g()I _L(1+

2. Suppose that the distribution density w.r.t, the Lebesgue measure of eI is Gaussian"
y2& 1pe(y)- exp(--y-) and "0- "" Then ( is a stationary process with r(x, dg)-

V/2h2(x

exp(-(Y-l(x))2dyandso RMismet. (H*)istnet with v(x)-cx2 for0<c< 1- a2"
h2() 2c2

cx Rexp(y2 (Y-f(x))2)dy
cx2 cf2(x) +lnl-2ch2(x)1-2ch2(x)

> cx
2[(1 a2) 2ca2]

1 2cc2

1(Ho) is satisfied since, for 0 < b < 2aa’

E exp(bg) <_ H E exp(baaj +l ejl Itl) _< 4EH exp(baaJ + lejel)
j,l =o j,l =o

_<4H 1 1

j 01 ba2
11 ba(j + ) < "

By Theorem 1, the family (Mg(rn),n >_ 1} obeys the 1.d.p. for any continuous function g(x)
with

I( )1 L(1 + Ix 2) for L > 0 and 0 </ < 1.

k > 1, is i.i.d, with the Cauchy distribution and where 0- x0 is a constant.
satisfy (3.2) and if, for some 7 < 1/2,

This time, consider a nonstationary process given by (3.1) where every k, for
If f(x) and h(x)

lira f(x) O,

then conditions (H*) and (RM) are satisfied. ((Ho)is obviously satisfied).

dy

Indeed,

and so (RM) is met.
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Take v(x)= aln(1 + z2) with 7 < a < 1/2. Then

w(x) aln(1 + x2) -In / (1 + y2)a dy

+[y- f(x)2 r(l+y2)l-a
R1 )

> aln(1 + x2) ln(5f2(x) + 4h2(x) + 1) C,

dywhere C In
( +)- ,

R
< c. Therefore, (H*) is satisfied because

aln(1 + x2) -ln(5f2(x)+ 4h2(z)+ 1) > In. (1 + z2)a
1 + 9112"Te as

By Theorem 1, the family {Mg(Tr,),n > 1} obeys the 1.d.p. for any continuous function g(x)
with

g(x) < L(1 + [ln(1 + Ix ])]) for L > 0 and 0 < < 1.

Appendix

Theorem 2: Let assumptions (H*), (RM), and (Ho) be satisfied. Then the family
{rn, n > 1} obeys the l.d.p, in (S,p) with the rate function d J(#), for # E S, defined in (1.3).

The proof of theorem 2 consists of several steps given below.

Lower bound in the l.d.p.

Lemma A.I: Let RM be satisfied. Then for any open set G C S,

lirinfP(rn G) >_ -inf J(#). (A.1)
6_.G

Proof: Denote Ja = inf J(#). Only the case JG < c needs to be checked. By Donsker and
tGG

Varadhan [5], we have for any open set G that

lira inf log P(rn e G lo x) > JG
with x R.

By the Jensen inequality (for c > 0),
f

log(P(rn e G) + e- nc) > /log(P(rrn e G I(o x) + e- nc),o(dx).
R

Hence, by the Fatou lemma, we get that

linm inf 1 log(P(rr e G)+ e- rc)

>_
f

/linm inf 1 log(P(rn e G Io x)+ e- nc))o(dx
R
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linm inf lg log P(rn e G o x);o(dx > JG"

Takec-2JG. Then

-JG < linm inf lg log(P(rn E G)+ enc)

2nJG< linm inf lg log 2max[(P(rn e G), e

linm inf max[lg log (Prn G),- 2JG].
The desired result follows from this inequality in an obvious way.

Exponential tightness

The family {rn, n > 1} is said to be exponentially tight in (S,p) if there exists a sequence
{KI, > 1} of compacts such that K C_ K + 1 and

lira sup linm sup lg log P(rn e S\gl) -oe. (A.2)

Take a positive decreasing function 7- 7(Y) for y > 0, with u//_+m7(y)- 0; and for any j > 1

and # S, define L(j, #) min{l > j" f #(dx) > 7(/)} while min{O} . To check (A.2) in
an easy way, we use Lemma A.2. xl >

Lemma A.2: The family {rn, n >_ 1} is exponentially tight if

lira lira sup lg log P(L(j, rn) < xz)- -oe.
3..oo n (A.3)

Proof: Let Kj- {# S: f #(dx) <_ 7(/)}. By the Prohov theorem [2], Kj is a rela-

tively compact set and, since {z: Ix > l} is open, the limit of any converging (in metric p) se-
quence from K belongs to K, i.e. K is compact in (S,p) and evidently K C K + . The desir
ed result follows from (A.3) since SKj U { Z S: f p(dx) > 7(/)} {P S:L(j,p) < }.

The remainder of the proof of the exponential tightness is given in Lemma A.3.

Lemma A.3: Let assumptions (H*) and (Ho) be satisfied. Then the family {r,,n 1} is

exponentially tight in (S, p).

 onsid  (A.3) with 7(Y) defined in (2.10). Let us use Lemma 2.2. Introduce sets
logA- {L(j r)< } and B i- {v(0) > in}. From prior concepts discussed lira lira sup n

i n

P(B,i)--. Then i remains o be shown h lira lim sup lira sup lo P(A
i3 n

Introduce Zn as in (2.8). Then

1 >_ EI(An Cl f\Bn, i)Zn. (A.4)

Taking into account L(j, 7rn) > j and so 7(L(j, rn) < 7(J), evaluate In Zn from below on the set

{L(j, 7rn) < cxz, v() < in}. Since v(x) > 0 and 7(J) is given by (2.10), we get
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In Z, > V(o) + nw, + n inf [w(x)- w,]
xl >L(j, Pn)

x > n(j, Trn)

> in + nw, +
73

> in + nw, - 7(J)
It is easy to find from the last inequality and (A.4) that

(A.5)

in log P(An fqf\Bn, i) (l/n) log P(L(j, 7rn) < c, V(o) _< in)

<_i-w,-1/7(j),

and so the desired result holds.

Upper bound in the 1.d.p.

We first establish one auxiliary result.

Lemma A.4: Let #’, #"E S and V
function hc , depending on and V, such that

V(l[’(d) "(d)]
R

Then for any > O, there exists a nonnegative

< e + p(#’, #") / he(x)dx
R

+ / h,(.)[F(. + p(,’.,"))- r(. p(,’. ,"0)]d..
R

x x
,h F() ,ot, it F’(.)- f ,’(d) o F"(.)- f ,"(d/).

Prf: If V() is continuously differentiable, then integrating

d F’(x)- (x) ldx.

Prohorov metric, it follows that a > 0,

by parts we get

From the definition of the Levy-

F’(x) F"(x) <_ a -- F"(x + a) F’(x) and F’(x) F"(x) >_ a -- F"(x a) F’(x).

The desired result holds with a p(#’ #") and he(x -ld()
In general, we approximate g() by a continuously differentiable function ge from N such

that sup g()-ge()l and we use an estimate fg()[’(d)-,"(dz)]l e+
xR R

dYe(x)[f Ve()[’(dz) "(d)] This gives the desired result with h, a
The upper bound in the 1.d.p. will be derived from the exponential tightness and the

following.

Lemma A.: e assumpions (H*) and (Ho) be satisfied. Then

limsup linm sup log P(p(rn, #) < ) < -J(#) for p e S,

where J(#) is defined in (1.3).
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Proof: Denote An- {p(Trn,#) _< 5} and Bn, i- { f 7rn(dx >/}.
1 P(Bn,i) oo, and soLemma A.3, lirn sup lira sup

n

lira lirnisup lira sup lirn sup
DO 640

It follows from Lemma 2.1 that the inequality,

By the Corollary to

lira lirn,sup lira sup linm sup log P(An CI Q\Bn i) < -J(#) for # C S
0 60

implies the desired result.
n-1 n-1 (tkTo prove (A.6), let Zn exp( E u(k + 1)- E lit g(e

u + 1

k=0 k=0
EZn 1. An obvious inequality,

where uEN and

1 > EI(A, fq 12\Bn, i)Z,, (A.7)

arises for our use. Denote

U(x) In e()
f e"(U)p(ylx)A(dy)

and express Zn in the form convenient for evaluation from below. We get

(A.8)

z p () (o) + v() p ()- (o) + v()(d)
k=0 R

n / V(.)[(d.)- ,(d.)]
R

(A.9)

where u* sup I(x) l. Estimate fV(x)[Tr,(dx)- #(dx)] from above in terms of p(Trn,#).
xER R

Take an even function gi(x) such that

1, O<_x<_i-1

gi(x) i-x, i- 1 < x <_

O, x > i,

and put Vi(x V(x)gi(x ). Denote V* sup V(x) < ), Then
xER

f V(x)[.(d)- ,(d)]
R Ixl>i Ixl>i

/ v()[(d) ,(d)]
R
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The Feller property of 7r(x, dy) implies that V E . Therefore, by Lemma A.4, for any c > 0
there exists a positive, continuous, finite-supported function he(x), depending on Vi(x and c, such
that

R

R R

where F()- f .(d). ttence, on the set {A, Cl a\B,,i},

and consequently

Zn >_exp{-2u*+n/V(x)t(dx)-V*-nV*/ #(dx)

/-0

< [
R

is implied by (A.7) and the arbitrariness of . Then by the arbitrariness of u E hc (see (A.8) for
the definition of V(x)), the desired upper bound holds.

Now, we can establish the upper bound for any closed F S.

Lemma A.6: Let assumptions (H*) and (Ho) be satisfied. Then for any closed F S,

linm sup log P(Trn e F)<_ -inf J(#),
t F

where J(#) is defined in (1.3).
Proof: Since (S,p) is a Polish space (see [9] for the proof and since by Lemma A.3 the

family {Trn, n > 1} is exponentially tight, then by the Puhalskii theorem [12], any subsequence of
the sequence {Trn, n > 1} contains further a subsequence {Trn,} satisfying the 1.d.p. with a good
rate function J’- J’(#). Thus

limsup 1 log P(p(Trn, #) < 5)
---}0 n n

liminf lira, inf 1 log P(p(Trn, #) < ) J(p) for p S.
0 n n’

Taking into account Lemma A.5, we get

(A.IO)

-J(p) > limsup linm sup 1 log P(p(rrn, #)< 6)
5--*0
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i.e.

(A.11)

Let F E S be a closed set. Assume the subsequence {rn,} was chosen such that parallel with

the 1.d.p. for {rn,}, lira supn log P(rn e F)- lima, -1 log P(rn, e F). Then,

limnsup log P(rn F) <_ -inf g’(#) <_ -inf J(#), (A.12)
.F F

where the last inequality follows from (A.11). VI

Now that we have the lower and upper bounds for the family {rn, n >_ 1} (see (A.1) and
(A.12)), to complete the proof of Theorem 2 we need to show that J J(#) is a good rate
function. To this end we use the arguments similar to those in the proof of Lemma A.6.

By the Puhalskii theorem [12], any subsequence of the sequence {Trn, n > 1} contains further a
subsequence {r,,} satisfying the 1.d.p. with a good rate function J’= J’(#). Thus (A.10) holds.
Taking into account Lemma A.1, we get

i.e.

-J(#) < lira inf lium inf 1 log P(P(’n, #) < )
--0

< l_imsup lira sup 1 log P(p(rn, tt) < ) -g’(p)
50 n n

> J’(,), v, c s.

The last inequality together with (A.11)implies that J(#)- J’(#), i.e. J(#)is a good rate
function.

Theorem 2 is proved.
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