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ABSTRACT

We extend our studies of sample-path stability to multiserver input-
output processes with conditional output rates that may depend on the
state of the system and other auxiliary processes. Our results include pro-
cesses with countable as well as uncountable state spaces. We establish
rate stability conditions for busy period durations as well as the input
during busy periods. In addition, stability conditions for multiserver que-
ues with possibly heterogeneous servers are given for the workload attain-
ed service, and queue length processes. The stability conditions can be
checked from parameters of primary processes, and thus can be verified a

priori. Under the rate stability conditions, we provide stable versions of
Little’s formula for single server as well as multiserver queues. Our ap-
proach leads to extensions of previously known results. Since our results
are valid pathwise, non-stationary as well as stationary processes are co-

vered.
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1. Introduction

In this paper, we continue our investigation of sample-path conditions for rate stability in

general input-output processes. A process is said to be rate stable if its evolution is o(t) as

1The research of this author was done in part when the author was visiting INRS-Telecommu-
nications, University of Quebec, Montreal, Canada (Summer, 1992), and completed while he was

visiting the Department of Operations Research, University of North Carolina at Chapel Hill

(Spring, 1994).
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(see E1-Taha and Stidham [3,4,5], Stidham and E1-Taha [17], Mazumdar et al. [10], Guillemi-
sand iazumdar [7], Altman, Foss, Riehl, and Stidham [1]). The model investigated here is an in-
put-output process in which the output process is composed of multiple, possibly non-homoge-
neous, streams. We establish conditions for rate stability that can be verified from information
on input (primary) processes in a deterministic framework that makes it possible to characterize
the sample-path behavior of non-stationary stochastic processes.

The issue of stability for non-stationary processes, using a sample-path framework, has been
recently considered by several authors. E1-Taha and Stidham [3, 4, 5] provide a sample-path cha-
racterization of (rate) stability and establish connections between rate stability and other
measures of interest, such as the finiteness of the limiting average number of customers in a queue-
ing system. Mazumdar, Guillemin, Badrinath, and Kannurpatti [10], study rate stability in the
context of the workload process in a G/G/1 queue using sample-path arguments. Stidham and
EI-Taha [17] consider an input-output process with a single output stream and establish rate stabi-
lity conditions using only sample-path information available from primary processes. Guillemin
and Mazumdar [7] provide a pathwise proof for rate stability of the workload process in a multi-
server queue with FCFS discipline. See also Mazumdar et al. [9], Guillemin et al. [6], and
Altman, Foss, Riehl, and Stidham [1].

This paper provides a generalization of stability results given by Stidham and E1-Taha [17].
In Section 2 we prove our basic stability result by establishing sufficient conditions that are easily
verifiable from conditions on primary processes. Processes with non-countable as well as integer
state spaces are considered and studied within one unifying framework. Multiple output processes
are allowed, where individual output streams can also be heterogeneous. In particular, in the con-
text of a multiserver queueing system, individual servers, when active, are permitted to process
work at different possibly state-dependent rates. Section 3 focuses on full-busy-period durations
and establishes their rate stability under the sufficient conditions given in Section 2. Section 4
contains applications to special cases of queueing systems and other input-output processes that
extend those given by [17], as well as new ones. In particular, we give a sample-path proof for
rate stability of the workloads queue length, and attained service processes in multiserver queues.
We provide a counterexample to confirm an assertion that the workload process exhibits a
stronger form of rate stability that the queue length process. Finally, in Section 5 we give
sample-path proofs of Little’s formula (L = W) for rate-stable queues, under more general
sample-path conditions than previously given.

2. Basic results

The setting is that of Section 5 of E1-Taha and Stidham [4] and Stidham and E1-Taha [17].
That is, we consider a non-negative real-valued deterministic process, Z {Z(t),t >_ 0} an

input-output process in which Z(t)>_ 0 represents quantity in a system, such as number of
customers or workload in a queue. We assume that {Z(t),t >_ 0} is right continuous with left-
hand limits, and that

Z(t) Z(O) + A(t)- D(t), t >_ O. (1)

Here A(t) is the cumulative input to the system in [0, t], and D(t)" = 1Di(t), where Di(t) is
the cumulative output in [0,t] from the th output stream, i- 1,...,c. We assume that
t>_ 0} and (Di(t),t >_ 0}, i-1,...,c, are non-decreasing, right-continuous processes. Thus Z(t)
has bounded variation on finite t-intervals. Note that D(t) <_ Z(O)/ A(t), since Z(t) >_ O.

We make no stochastic assumptions. In a stochastic setting, {Z(t), t >_ 0} is to be interpreted
as a fixed sample path (realization) of the stochastic process in question. The notion of rate
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stability investigated in this paper is formally given by E1-Taha and Stidham [4] (see also [3], [4],
[5], [17], [10], [7], [1]). We repeat this definition for convenience.

Definition. An input-output process {Z(t),t >_ 0} is said to be rate stable if t-ix(t)-,0, as
t--<.

An immediate consequence of (1) (see Lemma 2.1 of Stidham and E1-Taha [17]) is that in a

rate-stable input-output process, if either the long-run average input or output rate exists, then
both exist and they are equal.

Associated with the th output stream is an auxiliary/right-continuous, (0, 1)-valued process,
{Bi(t), t _> 0}, = 1,...,c. If Bi(t 1 then we say the th output stream is active at time t. The
precise interpretation of an active output stream will depend on the problem context. The essen-
tial assumptions, expressed below in the hypotheses to Theorem 2.2, are that the long-run average
system output rate of each stream while active is well-defined, that the total of these rates is
greater than the input rate, and that Z(t)- o(t) along any sequence of time points t-o at
which not all streams are active. These assumptions may be taken in effect as a minimal
definition of what it means for an output stream to be active. In applications to a G/G/1 queue,
for example, Bi(t)- 1(0) if server is busy (idle) at time t (see Section 4). But in general we do
not assume that output cannot occur from stream while Bi(t) O, only that output occurs at a

given rate while Bi(t) 1.

We give a preliminary result that is of independent interest.

Lemma 2.1. Consider the input-outpu process (Z(t),t >_ 0} defined by (1). Let and
i-- 1,...,c, be non-negative constants. Suppose

(i) the input process satisfies

(ii)

limsupt-1A(t) _< c,

the output process satisfies

Z f Bi(s)dDi(s)
lira inI = o

i=1 0

>1, (3)

where O < a < 6: c 8i < ci=1

Then the event {B(t) < c- 1} occurs infinitely often as tcx. That is, for every to > O,
there exists a t > to such that B(t) < c- 1.

Proof: The proof is by contradiction. It follows from (2) and (3) that, for every e > 0, there
exists a T < cx such that

A(t) < (a + )t, t > T, (4)

(1-e)U(t) -< ’1 Bi(s)dDi(s)’
0

t >_ T,

where U(t): l f 6iBi(s)ds, t >_ O.
0

Now suppose 0 < < (5-a)/(5 + 1). Suppose that the event {B(t) <_ c- 1} does not occur

infinitely often as t--oc. Then there exists a to such that, for all t >_ to, B(t)-c, so that

Bi(t)-1 for all i, 1 _<i_< c, and U(t)-U(to)+ 5(t-to). Without loss of generality take
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to >_ T. Hence, using (4) and (5), we have for all t >_ to

Z(t) Z(to) + (A(t) A(to) -,E1
/ Bi(s)dDi(s)
o

to
= Z(to)- A(to) + Bi(s)dDi(s + A(t)- Bi(s)dni(s

i=10 0

o- Z(to) A(to) + E / Bi(s)dDi(s) + (a + c)t (1 c)U(t)
i=1 0

J

o

Z(to) A(to) + E Bi(s)dDi(s) (1 )(U(to) 5to)
l 0

+ (a 5 + (5 + 1))t.

Since (a-5-4-(5 + 1))< 0, by choosing t sufficiently large, we can make the quantity on the
right-hand side of the last equality negative, thus leading to a contradiction of Z(t)> O.
Therefore, for every to > T there exists at least one t > to such that B(t)< c-1. That is, the
event {B(t) < c- 1} occurs infinitely often as t--,cx3. E!

ttemark 2.1. The above result is of independent interest. It gives sufficient conditions for the
existence of construction points (points that start full busy periods) for the {Z(t),t > 0} process
(see Baccelli and BrSmaud [2], pp. 38-46). For example, let Z(t) represent the queue length at
time t in a G/G/1 queue. Take c-1 and let B(t)-l{Z(t)>O}. Then {B(t)-0}-
{B(t) < c- 1} represents the event that the server is idle. Let {Tn, n > 1} be a sequence of
arrival instants such that Z(Tn) > 0 for all n > 1. Then the sequence {bk, k > 1} of construction
points is defined byb0-0andbk: -min{Tn:Tn> bk_l,Z(Tn-)-O},fork-1,

The following result, an extension of Theorem 2.2 of Stidham and E1-Taha [17], gives
sufficient conditions for rate stability of the process {Z(t), t > 0}.

Theorem 2.2. Consider the input-output process {Z(t),t > 0} defined by (1).
i-1,...,c be non-negative constants. Suppose

Let c and 5i,

(i)

(ii)

the input process satisfies

limt-A(t)-a; (6)

the output process satisfies

c

E f Bi(s)dDi(s)
lim i=1o

c = 1; (7)

i=1 0

(iii) for every nonnegative real sequence {tn} tn--*cx3 as n--+cxz, such that B(tn)<_ c-1
for all n > 1,
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till-- 1Z(tn)---+0 as

where O < a < 6" c 6 < ooi--1

Then the process {Z(t),t > 0} defined by (1) is rate stable.

(8)

lmark 2.2. Roughly speaking, condition (iii) states that no output stream will be inactive
when the process {Z(t),t > 0} takes sufficiently large values. Although conditions (7) and (8)
involve secondary processes, they are easily verifiable a priori in many cases of interest. In
applications to G/G/c queues condition (8) is immediate when c 1, or when {Z(t), t >_ 0} is the
queue-length process representing the number of customers in the system. When {Z(t),t > 0} is
the workload process in a multiserver system, condition (8) can be verified provided that the long-
run average work presented to the system at transition epochs is finite. (See Section 4 below on

application).

Proof: The proof is by contradiction and is similar to that of Theorem 2.2 of Stidham and
E1-Taha [17]. Suppose that {Z(t),t > 0} is not rate stable. Then there exists a 7 > 0 and an

increasing sequence of time points {Vn, n >_ 1}, with rn-Cx as n--,cx, such that Z(vn)>_ Vn7 for
all n >_ 1. Note that B(vn) c for all rn _> T, for some T < cx; otherwise we contradict (8). If
a 0, then {Z(t), t > 0} is trivially rate stable. So suppose a > 0. Without loss of generality we
assume that Z(0)- 0 and that 7 < a.

Let V(t)’- i l f6iBi(s)ds, t> O, and observe that V(t)cx as tcx. Suppose not.
0

Then it follows from the right-continuity of Bi(. that Bi(t -O, i- 1,...,c, and hence B(t)- O,
for all sufficiently large t, which contradicts B(rn) c for all vn > T.

Now it follows from (6) and (7) that, for every > 0, there exists a T T(e) < c such that

(a-)t < A(t) < (a+e)t, t>T, (9)

i=1 0

Bi(s)dDi(s <_ (1 + )U(t), t>_T. (10)

Let an: sup{s:s < rn, B(s < c- 1}. Then it follows that B(s) c and hence Bi(s 1,
i-- 1,...,c, for all an<s<_vn. Hence

D(rn) D(an)+ i Bi(s)dDi(s)’ (11)
i=1

U(7"n) U(an) -b 6(’t"n an). (12)

Moreover, the above arguments and Lemma 2.1 show that an---*cx as n---cx.

< min{7/(2 + 3), (6-a)/(6 + 1)}. For n sufficiently large, we have an > T().
using (9), (10), (11), and (12)it follows that

Now choose
For such n,

Z(an Z(vn) + (A(an )- A(rn) -(D(an )- D(vn))
"l"n

Z(v,)-A(v.)/ A(a.-)/ i"B’(s)dD’(s)-S /
i:l 0

i:l 0

>_ 7vn (a + )vn + (a )au + (1 )U(vn) (1 + e)U(an)
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77-n

-(c + 6)rn + (a -)an + (1 -)[U(an) + 5(rn -an) -(1 + )U(au)

2can 2eU(an) + [5 c (5 + 1)e](rn an)

> 7rn- 2e.an 2e.U(an)

_> (7-- (2 + 2)e)an

[(25 4- 3)e (25 4- 2)e]an

an.

But by (8), Z(an <_ ean. Thus we have a contradiction and the proof is complete.

Theorem 2.2 remains valid for other variants of condition (7), as in Corollary 2.4 below. We
also point out that 5 may be interpreted as the long-run average amount of work that can be
processed per unit time by the th stream while active. Thus our formulation allows queueing
models with heterogeneous servers.

In general we allow for the possibility that some output can occur from the th stream while
it is inactive. In may applications (e.g., the G/G/c queue with heterogeneous servers) this is not
the case: either the th stream is active and producing output at rate 5i or it is inactive and
producing no output. In such cases, the following corollary of Theorem 2.2 provides additional
results. (It actually makes a slightly weaker assumption.)

Coronary 2.3. Suppose conditions (6), (7) and (8) of Theorem 2.2 are satisfied, and 0 <. Suppose also that

lira - _ (1 Bi(s))dDi(s) O. (la)
t--*o

1 0

Thn

lira t 1,15 (1 Bi(s))ds 5 .
0

In (1), divide by t and take limits as t--,oc, using Theorem 2.2 to obtain

(14)

limt-lu(t)-a, (15)

from which the desired result follows by subtracting both sides from

Remark 2.4. Suppose that the conditions of Corollary 2.3 hold and that the following limit is
well defined, for each i- 1,...,c:

Pi(O)" t-limt- 1 f (1 Bi(s))ds.
0

Then it follows from (14) that
c

E (6i/5)Pi(O) 1 p, (16)
i=1

where p" -/5. The left-hand side of this equation can be interpreted as the long-run weighted
fraction of time an output stream is inactive. Thus, (16) gives an extension to multiserver
systems of the well-known formula for the fraction of time the server is idle in a single-server
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facility

Remark 2.5. If the limit in (13) exists but does not equal zero, then one can obtain an exten-
sion of the above corollary. Specifically, suppose that

Thenfl<l and

(1 Bi(s)dDi(s
lim

o i= 1 ft. (17)
t--,

5i(1 Bi(s))ds
0i=l

(18)

This formula allows for output to occur when output streams are idle, i.e., when Bi(t O.

Another variant of Theorem 2.2 that is useful, particularly when considering state- and/or
time-dependent service rates, is given in the following corollary.

Corollary 2.4. Consider the multiserver input-output process {Z(t),t > O} as in Theorem 2.2.
Suppose that conditions (6) and (8) of Theorem 2.2 are satisfied, and condition (7) is replaced by

f B()dD()
lira o Si, i--l, .,c. (19)
t---,oo

f B()d
0

Then the process {Z(t), t >_ 0} defined by (1) is rate stable.

3. Busy period fluctuations

In this section we show that, under the conditions for rate stability of {Z(t),t > 0}, the
sequence of durations of full busy periods is also rate stable. A full busy period in a multiserver
input-output process begins when all servers become active and ends at the next time point when
at least one server becomes inactive.

Lemma 2.1 shows the existence of infinitely many full busy periods- more precisely, the
existence of an infinite sequence {tn} such that tnoc as noc and B(tn) < c- 1, for all n >_ 1.
Now let b0 -0 and, for n- 1,2,..., define

inf{t > bn 1" B(t-

_
c- 1, B(t) c},

en inf{t > bn:B(t-) c,B(t)

_
c- 1},

Bn % b,

A, A(e,)- A(bn).

We interpret bn and en, respectively, as the beginning and end of the nth full busy period. We
interpret Bn as the length of the nth full busy period and An as the input during the nth busy

period. By Lemma 2.1, both bn and en--(:x:) as
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Theorem 3.1. Consider the input-output process defined by (1). Suppose that the conditions

of Corollary 2.3 are satisfied. Then

(i) Bn/bn-O, n-c,
(ii) An/bn--O

Bn/bn

(i) Rewrite Bulbn as

c bn

BnE Si f (1- Bi(s))ds
i=1 0

bnE 5i f (1 Bi(s))ds
--1 0

c bn
Bn(bn E i f Bi(s)d8)

=1 0

c en
bnE 5i f (1 Bi(s))ds

i--1 0

c bn c bn c bn

Bnbn BnE i f Bi(s)d8 bnE 6i f Bi(s)d8 + bnE i f Bi(s)ds
i=1 0 i=1 0 i=1 0

C Cn

5 f(1 B(s))ds
i=1 0

c cn
bnE 5i f (1 Bi(s))ds
i=1 0

en bn
5i f Bi(s)ds 5i f Bi(s)ds

i=1 0 ,=1 0

en bn

By Corollary 2.3 the first term on the right-hand side of the last equality converges to (5- a)- 1

and the second and third terms both converge to a, as n-oc. Thus
(ii) We have

An A(en)’en A(bn)
bn en.bn bn

A(en) bn + Bn A(bn)
en bn bn

The result follows by taking limits as n--<x) and appealing to part (i) and (6).
lmark 3.1. Theorem 3.1 remains valid if we replace the hypothesis that the conditions of

Corollary 2.3 are satisfied by the condition that lim t-1 E C/=lSif (1- Bi(s))ds is well defined
and

t--, o

0 < tlimt-,5i. (1 Bi(s))ds _< . (20)
0

This is important because it may be possible to verify the above condition by means other than
checking the conditions of Corollary 2..
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The single-server case

Although full busy periods in multiserver queues are rate stable under the conditions of
Corollary 2.3, the same need not be true of busy cycles, that is, successive visits to empty and idle
state. For example, a multiserver system can be rate stable and still have one or more servers
remaining active at all time. Our next result shows that in single-server queues busy cycles are
rate stable.

Consider a single-server system in which Z(t)=0 implies that B(t)= B(t)=0. Then
Lemma 2.1 shows the existence of infinitely many cycles; in other words it shows that the
existence of an infinite sequence (tn) such that tnCX) as n-x and Z(tn) O.

Now, for n 1,2,...; bn, en and Bn simplify to

bn inf{t > b 1" z(t o, z(t) > 0},

en inf(t > bn: Z(t- > O, Z(t) 0),

Bn en bn.

Now, define

In bn + 1 en,

Cn Bn + In,

An A(bn + 1)- A(bn)"

As before, bn and en are the beginning and the end, respectively, of the nth busy period. We also
interpret Bn, In, Cn, and An, respectively, as the length of the nth busy period, idle period, and
busy cycle, and the input during the nth busy cycle. Under the conditions of Lemma 2.1, bnoc
as n---,oc.

Theorem 3.2. Consider the input-output process {Z(t), t >_ 0} defined by (1), with c 1.
pose that

lira t- / I{Z(s) O}dD(s) O.
oo

0

(21)

Suppose also that the input process satisfies

and the output process satisfies

where O <_ < 5. Then,

lim t- 1A(t)-

f l{Z(s) > O)dD(s)
lira o

f l{Z(s) > OIds
0

t---O0

(22)

(23)

(i)
(ii)

Cn/bn--O as

An/bn--O as

Proof: First note that the conditions of Corollary 2.3 are satisfied with c-1 and



446 MUHAMMAD EL-TAHA and SHALER STIDHAM, JR.

B(t)- Bl(t l{Z(t) > 0). To prove part (i), we first show that In/en-*O as n--x. Now,

In/en

n
In f l{Z(s) > O}ds

0
bn+l
enf l{Z(s) > O}ds

0

n
In(en f l{Z(s) O)ds)

o
bn+l
en f l{Z(s) > O}ds

0

Inen Inf I{Z(s) O)ds-enf l{Z(s) O}ds + enf l{Z(s) O)ds
0 0 0

bn+l
e.f l{Z(s) > O}ds

0

bn+ 1

bn+l n+l
f l{Z(s)>O}ds
0

l{Z(s) O)ds
n
f l{Z(s) O)ds
0

By Corollary 2.3, the first term on the right-hand-side of the last equality converges to
(p)- 1 /a, and the second and third terms both converge to 1-p as n--,cx3. Thus In/en-O as
n--+x3. Similarly one can show (as in Theorem 3.1) that

nBn/bn en

f l{Z(s) O}ds
0

en bn
f l{Z(s) > O}ds f l{Z(s) > O)ds
0 0

en bn

Thus Bn/bn-*O as n--,cx. Then (i) follows by noting that

Cn/bn Bn/bn + In/bn

Bulbn + In/en
1- Bn/en’

which converges to 0 as n--+cx. The proof of part (ii)is similar to that of Theorem 3.1 (ii). [3

Remark 3.2. Theorem 3.2 remains valid if we replace the hypothesis that the conditions of
Corollary 2.3 are satisfied by the condition that the limit

p(O)" t--,lim t- 1 / l{Z(s) O)ds
0
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is well defined and 0 < p(0)< 1.
3.1.

This is a specialization of the condition (20) given in Remark

4. Applications to multiserver queues

In this section we give several applications to show that the sufficient conditions for stability
given in Theorem 2.2 can be verified from conditions on primary quantities, that is, the arrival
processes, number of servers, and server requirements in the system model. Several special cases
are given, in which we establish a priori sufficient conditions for stability and other fundamental
relationships for multiserver queues. In all applications we assume that servers are kept busy
whenever possible. We also assume a work-conserving queue discipline.

The G/G/c queue with heterogeneous servers is defined by the sequence {(An, Sn),n >_ 1},
where An is the time between the n- 1st and nth arrivals and Sn is the service requirement of the
nth arrival. (Customers need not be served in order of arrival but a server is never idle when
customers are waiting.) It is also assumed that server works at nonnegative rate (speed)
with 6 ,c.= 15i, 0 < 6 < cxz. Let N(t) max{n: 1Ak <_ t} denote the number of custom-
ers that arrive in [0, t].

4.1 The workload in a G/G/e]oo queue with heterogeneous servers

N(t)In this special case we have {Z(t),t >_ 0}- (W(t),t >_ 0}, and A(t)- k=lSk Here

{W(t), t > O} is the workload process. The th output process is given by Di(t f 6iBi(s)ds for
all t > O. Thus we have 0

N(t)
W(t)

k=
Sk- fO i=16iBi(s)ds" (24)

Note that under these conditions the limit in (7) exists and is equal to 1.

Theorem 4.1. Consider the workload process {W(t), t >_ 0} in the multiserver queues described
by (24). Suppose

(i) lira -1N(t) , where 0 < )t

(ii) lim n- 1 1k
oq where 0 < < oo,

where c" AS < 6: ci_.16i. Then the workload process {W(t), t >_ O} is rate slable.

Proof: Note that conditions (6) and (7) of Theorem 2.2 are satisfied. To verify condition

(8), consider a sequence {tn, n > 1} such that B(tn)< c-1, for all n > 1. As in the proof of
Theorem 2.2, we an assume Z(0) 0 and c > 0 without loss of generality. Then

Z(tn)/tn < (c- 1)t-1 max Sic. (25)
1 <_ k

_
N(tn)

It follows from assumption (ii) that n-Sn--O and hence n-1max Sk--O as n--c (cf. Lemma
l<k<n

2.1 of Guillemin and Mazumdar [7], Lemma 15 of Serfozo [11]). Therefore, taking limits in (25)
as ncx and appealing to (i) establishes the condition (8). Theorem 2.2 then implies that

{W(t), t > O} is rate stable. E!

Remark 4.1. Note that batch arrivals and/or bulk service are allowed, provided the batch
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and/or bulk size is bounded. Theorem 4.1 extends results in [17], [6], [7], and [10]. Guillemin
and Mazumdar [7] provide an alternate pathwise proof of Theorem 4.1 in the special case when
the servers are homogeneous and the discipline is FCFS.

Corollary 4.2. Suppose that the hypotheses of Theorem 4.1 hold.

0

(26)

Proof: The proof follows immediately from Corollary 2.3 and Theorem 4.1.

Remark 4.2. Corollary 4.2 gives a set of conditions under which

o < }2 -< e.
t--,cx)

il 0
Consequently, it follows from Remark 3.1 following Theorem 3.1 that the busy period durations
and the inputs during busy periods are rate stable for this queueing system.

The limit in (26) can be interpreted as the long-run weighted average number of idle servers.

In the case where i = 1, = 1,2,...,c (i.e., all servers work at unit rate on the average), this
interpretation is more familiar. In the single-server queue, when AS < 1, (26) reduces to
p(0) = 1- p, where p: = $8.

It is worth noting that in relation (26), service rates can be time as well as state dependent.
Only the long-run average rates are required to be constant. This is important in applications
since, quite often, servers (human servers in particular) work at varying services rates.

We have provided a pure sample-path proof of (26) making assumptions only on "primary"
quantities, thus generalizing the result for a G/G/1 queue in Stidham and E1-Taha [17],
Guillemin et al. [6], and Mazumdar et al. [10].

4.2 Number of customers in a G/G/c/oo queue with heterogeneous servers

In this special case {Z(t), t >_ 0} {L(t), t _> 0} is the queue-length process. That is, L(t) is
the number of customers in the system (including customers in service). Customers need not be
served in order of arrival, but a server is never idle when customers are waiting. Let A(t) =_ N(t)
denote the number of customers that arrive and D(t)- =if Bi(s)dDi(s) the number that

0
depart in [0, t]. Then Z(t)= L(t) defined by (1) is the number of customers in the system at
time t.

Theorem 4.3. Consider the multiserver G/G/c queue described in this subsection. Suppose

lim n- 1 E Ak A- 1 0 < A < CX),
k--1

lim n-lE sk S, O < S < cx),
k-1

and that AS < 6. Then the queue-length process {L(t), t >_ 0} is rate stable.

First note that by Corollary 4.2, the hypotheses of the theorem imply that

0 < lim t -1 Et--,x
1 0

(1- Bi(s))ds <_ 1.



Sample-Path Stability Conditions for Multiserver Input-Output Processes 449

(Recall that we used the analysis of the workload process to establish this.) Therefore bn--,c as
n--,oc. Moreover, by choosing N(t)- A(t)in Theorem 3.1 and appealing to Remark 3.1, we
obtain,

(N(en)- N(bn))/bn-*O as n-.c,

that is, the number of arrivals in successive full busy periods is rate stable. Now let

bt E bnl {bn <- t < b, + 1}’
n--1

E enl(bn _t < bn+l},
n--1

so that b and e are the beginning and end, respectively, of the full busy period containing t if t
falls in a full busy period. If t does not fall in a full busy period, then b and e are the beginning
and end of the full busy period preceding t. Now

t-lL(t)
_

(N(et) N(bt) + c 1)It

< (N(et)- N(bt))/b + (c- 1)It,

which 40 as tx. El

Batch arrivals and/or bulk service are permitted in this model by setting the appropriate An
and Sn equal to zero. Note that the proof of Theorem 4.3 did not require the existence of the
limit in (7). The existence of this limit can be shown to follow as a consequence of the theorem.

Corollary 4.4. Under the conditions o.f Theorem 4.3, the limit in (7) exists, that is
c

f
lira 1 o

c =1.

i=1 0

rewrite (1) as

Without loss of generality let 5’- 1. With Z(t)- L(t) and

U(t)- E=I f SiBi(s)ds,
0

t- 1L(t) t- 1N(t)- t- 1U(t)[U(t)- 1D(t)]

then take limits as t-cx.
t--c.

By (15) and Lemma 4.3, U(t)/t$ as Thus U(t)- 1D(t)--*l as

4.3 Attained service process

Let {C(t),t >_ 0} be a process such that C(t) represents the cumulative service received by
customers present at time t, that is

c(t)- (27)
0 k: Dk <_

This process is obviously rate stable for a FCFS discipline. In the following corollary we show
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that under the conditions of Theorem 4.3 and the condition that once a customer begins service
its service cannot be interrupted, the process {C(t),t >_ 0} is rate stable (i.e., C(t)- o(t) as

t--<x). We also show that the long-run average service time of departures coincides with that of
arrivals under the conditions of Theorem 4.3.

Corollary 4.5. Under the conditions of Theorem .3, assuming that each server serves one

customer at a time with no preemption,

(i)
(ii)

the process {C(t), t >_ 0} is rate stable; and
D(t) 1

k: Ok <_ tSk--*S as

Since C(t) <_ c max Sk and S < oc, it is clear that
1 _< k _<

C(t)/t <_ c(N(t)/t) max Sk/N(t).
<_ <_ N()

Part (i) follows by taking limits as tec, and noting that max
1 <_ k <_ N(t)

ose S- 1. Let U(t)- E= if 5iBi(s)d8, and rewrite (27) as
0

Sk/N(t)--,O as tcxz. Supp-

D(t)- 1 E Sk D(t)- 1U(t)- It- 1C(t)]/[t- 1D(t)].
k:Dk <t

Part (ii) follows by taking limits as t-cx, and appealing to part (i) and Corollary 4.4. If S 1,
let 6 iS, 1,..., c, and repeat the above argument.

Part (ii) of Corollary 4.5 says that the symptotic mean service time of departing customers is
equal to the asymptotic mean service time of arriving customers, for all stable queues with non-

preemptive service discipline.

Remark 4.3. In Corollary 4.5 the assumption that each server serves one customer at a time
with no preemption may be replaced by bounded service requirements. Moreover, this
assumption can be removed in single-server queues because now C(t) is bounded above by the
duration of the busy cycle containing t.

Remark 4.4. The examples given in Stidham and E1-Taha [17] for single-server queues can be
easily extended to the multiserver case, using our results in this paper. Applications with output
rates that are time dependent or state dependent or with rates that depends on other auxiliary
processes can be established by appealing to Corollary 2.4.

4.4 Counterexample

The assertion AS < 1 has been established as a sufficient condition for stability of the
workload and queue-length processes in G/G/1 queues. It is worth noting that the workload
process exhibits a stronger form of stability than the queue-length process in the sense that it
holds under weaker conditions. We provide a counterexample to confirm this assertion. Let

N(t) N(t)

Pt" t-l E Sk --(N(t)/t)g(t)-1 E Sk.
k=l k=l

Suppose that lira sup p < 1. If either lira N(t)/t or lira n-1 1Sk does not exist, the
t--, t--- n--,

queue-length process is not necessarily rate stable, as can be seen from the following example.
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Consider a G/G/1-LCFS-PR queue, where the service requirement of the customer arriving
at time t (denoted by St) is given by

S
1 + 1 /(22k 1) t 22k 1,..., 22k 1; k 1, 2, ...;

1 t 22k -I- 2i; 1,..., 22k 1 1; k 1, 2,

Arrivals occur at those time instances where S > O.

In this example it is clear that S- 1, and

2/3 liminf p < limsupp 5/6 < 1.

Simple manipulations show that the workload process {W(t),t _>0} is rate stable, (i.e.,
t-1W(t)--0 as t--,c), even though the limit of Pt does not exist. However, the queue-length
process {i(t), t >_ 0} is not rate stable:

0 --liminft-lL(t) < limsupt-lL(t)- 1/2.

It is interesting to note that the attained-service process, {C(t), t >_ 0}, also is not rate stable:

0 liminf t- 1C(t) < limsupt- 1C(t) 1/2.

5. Little’s Formula for Stable Queues

In this section we review and extend previous research on sample-path proofs of Little’s For-
mula (L AW), focusing in particular on establishing L AW in stable queueing systems with
minimal a prior assumptions about existence and/or finiteness of the averages involved. The
material in this section is based in part on Stidham [15].

In the spirit of Little [8] and Stidham [12], [13], we consider a general input-output system,
fed by a discrete input process of customers, each of which spends a certain amount of time in the
system, and then departs. We follow Whitt [18] in the problem setup and notation. The basic
data are {(Tk, Dk),k >_ 1}, where 0 _< Tk <_ Tk + 1 < oo, Tk <_ Dk < oc, k >_ 1, and Tk and Dk are

interpreted as the arrival time and the departure time, respectively, of customer k. We assume
that Tkoc as k--,oc, so that there are only a finite number of arrivals in any finite time
interval. Let N(t)" #{k" Tk <_ t}, D(t)" #{k: Dk <_ t}, t >_ O, so that N(t) and D(t) count the
number of arrivals and departures, respectively, in the interval [0, t]. Note that, since Tk < oc for
all k_> 1, N(t)oc as toc. Note also that N(t)-max{k:Tk <_ t}, since {Tk, k >_ 1} is a

nondecreasing sequence. But in general we cannot write D(t)-max{k:Dk <_ t}, because

{Dk, k >_ 1} is not necessarily nondecreasing. (It is nondecreasing if the discipline is first-in, first-
out (FIFO), that is, if departures occur in the same order as arrivals.) Define

L(t)" #{k’Tk <_ < Dk} N(t)- D(t), t >_ O, (28)

Wk: Dk- Tk, k_>l, (29)

so that L(t) is the number of customers in the system at time t and Wk is the waiting time in the
system of customer k.

If we let Ik(t denote the indicator of Tk _< < Dk, then it follows from (28) and (29) that
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L(t)- E Ik(t)
k=l

f z (t)at
0

from which we obtain the basic inequality

t_>0.
k:Tk <_ 0 k:Dk <

(30)

Our proofs of L- SW use the basic inequality (30) and the following elementary lemmas (cf.
Stidham [13], Stidham and E1-Taha [16], nl-Taha and Stidham [5]). Let {Tk, k >_ 1} be a point
process, with 0 <_ Tk <_ Tk + 1 < oc, k >_ 1, Tk-Cx as k--,x, and N(t) max{k: Tk < t}, t >_ O.

Lemma 5.1. Let 0 < A < c,3. Then t-lN(t)--,A as t--,cx if and only if k-lTk---,A -1 as

Let {Xk, k > 1} be a sequence of nonnegative numbers and define Y(t): k:Tk < tXk, t >_

Lemma 5.2. Suppose t-1N(t),k as t--,cx3, where 0 < < cx. Then

(i) if n-1 E= 1Xk’’x as n--,o, where 0 < X < o, then t-1y(t)--,Y $X as
to, provided that $X is well defined;

(ii) if t-1y(t)---,Y as t---cx3, where 0 < Y < o, then n- E= 1Xk--*X - 1y as

n--,o, provided that - 1y is well defined.
We shall also need the following lemma (cf. Lemma 2.1 of Stidham [14]).
Lemma 5.3. Suppose Wn/Tn--O as n--cx3. Let 0 < L < cx3. Then the following are equi-

valent:

lim t-1E Wk L (31)
t--oo

k:Tk <_t

lim t- 1 I L(s)ds L
J
0

(32)

lim -1E Wk L. (33)
oo

k:Dk <_t

Proof: Let > 0 be given. Since Wn/Tn--*O as n-c, there exists an integer N such that
k >_ N implies Wk <_ Tk. Therefore, for all t _> 0,

E W/ = E W/
k:Dk <_ k:Tk 4- Wk <_

>_
k >_ N:Tk(1 + e) <
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>- E Wk- E Wk’
k. Tk(l +e)_t k_N-1

which, together with the basic inequality (30), implies

k:Tk <-t 0

(34)

>_
k:Dk <_t

>_
k. Tk(l+)<_t k<_N-1

First we use these inequalities to prove that (31)implies (32) and (33). Suppose (31) hold. Then

tim -1 E Wk (1 / c)- lt/m[t(1 / c)- 1]-1 E Wk
k: Tk(1 + e)

_
k: Tk <_ t(1 + e)- 1

--(1 +)-llim t -1 E Wk
k:Tk _t

(1 -1- )- 1L.

But > 0 was arbitrary. Hence the desired result follows from this equation and the inequalities
(34) (35) and (36) using the fact that lira t- 1 ,

k < N- 1Wk O.
t-oo

Now we show that (32) implies (31). (The proof that (33) implies (31) is similar.) Suppose
(32) holds. Then (34), (35), and (36)imply that

lira inf t- 1 E Wk > L
t--,(x)

k:Tk <_t

> limsup 1 - Wkt---cx3
k: Tk(1 + e) <

(1 +e)-llimsup[t(1 -t- c)- 11-1
k: Tk <_ t(1 + e) 1

(1 +e)-llirnsupt-1E Wkoo
k:Tk <_t

Wk

where we have used the fact the lira t-1 k < N-1Wk- 0 in the derivation of the second
t---

inequality. Since e > 0 was arbitrary, we conclude that these inequalities hold in the limit as

eO, so that (31) holds.

This completes the proof of Lemma 5.3. [:]

The following theorem is an immediate consequence of Lemmas 5.2 and 5.3.
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Theorem 5.4. Suppose t-lN(t)--A as t-cx, where 0 <_ A <_ oc, and Wn/Tn--O as n.
Then

(i) if n-1 : 1WkW as n, where 0 W ,
t, and L- W, provided W is well defined;

(it) if 1 f L(s)dsL as t, where 0 L , lhen n 1 1Wk W as n,
o

and L- W, provided -1L is well defined.
Theorem .4 has the following immediate corollary.

Coroy 5.5. Suppose t-1N(t) as t, where 0 < , and n

n---oc, where 0 <_ W <_ oc.
t--oc and L- AW.

then t- 1 L(s)ds -L as
0

Suppose also that n 1Wn--+O as n

-1Er._ 1Wk_..)W a8

Then t- 1 f L(s)ds-,L as
0

Proof: It follows from Lemma 5.1 that n/Tn--A < cx), and hence Wn/Tn---*O as n---cx. The
desired result then follows from Theorem 5.4.

This corollary may be useful in cases where W- oc, but n-1Wn-,O as is the case, for
example, in a stable GI/GI/1 queue in which the second moment of service time is infinite. It
also leads immediately to the next corollary,.which is the original sample-path version of L-
contained in Stidham [12], [13].

Corollary 5.6. Suppose t 1N(t)---,A as t--oo, where 0 <_ A < oc, and n 1 1Wk-*W as

n---,oc, where 0

_
W < oc. Then t-1 f L(s)ds--L, as t--c and L

0
Proof: Since by hypothesis W < oc, it follows that n- 1Wn--0. The result then follows from

Corollary 5.5. [:]

The condition that Wn/Tn--*O as n---,oc cannot be verified directly from input data such as
interarrival and service times. In the following subsections, however, we show that the rate
stability conditions established in Section 3 for single and multiserver queues are sufficient to
verify that the above condition for Little’s formula holds.

5.1 The single-server case

The input data for the G/G/1 queue consists of the sequence {(Tn, Sn) n >_ 1}, where Tn is
the arrival instant and Sn the work requirement of customer n, n > 1. In the special case where

N(t){Z(t),t >_ 0} is the workload process in the G/G/1 queue, we have A(t)-,k=lSk and

D(t)- f 51{Z(s)> O}ds, for all t>_ 0. Here {g(t),t >_ 0} is the point process which counts the
0

number of customer arrivals: g(t) max{n: Tn <_ t}, t >_ O.

Our goal is to prove that L- AW under minimal stability conditions on the input process,
{A(t),t>_O}.

Theorem 5.7. Suppose t-Ig(t)--A as t--,c, and n-l=lSk--S as n--oc, where
0 < : AS < 5. Then Wn/Tn-O as n--oc and hence (i) and (it) of Theorem 5. hold.

Proof: Let b(n): Ec= lbkl{bk <_ Tn < ek} and B(n)" E= l(ek bk)l{bk <-
Tn < ek}. That is, b(n) and B(n) are the beginning and the duration, respectively, of the busy

thperiod that corresponds to the n arrival. It follows from Theorem 3.2 that

T 1Wn

_
T 1B(n)

_
b(n)- 1B(n)---,O as

The desired result then follows by appealing to Theorem 5.4.
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5.2 The multiserver case

In the special case where {Z(t),t > 0} is the workload process in a G/G/c queue, we have

N(t)A(t) k 1Sk and D(t) = 1 f 6iBi(s)ds, for all t >_ 0. Here again {N(t), t >_ 0} is the
0

point process which counts the number of customer arrivals and {Sk, k >_ 1} is the sequence of
work requirements of the arriving customers.

Unlike the single-server case, in multiserver queues we need the additional assumption that
the queue discipline is work conserving and nonpreemptive. Let D be the time instant the kth

arrival departs the queue (i.e., joins service). If we let Ik(t denote the indicator of
{Tk _< t < D}, then it follows from (28) and (29) that

Lq(t)- Ik(t
k=l

Wq(k) / Ik(t)dt
0

where Lq(t).. is the number of customers in the queue at time t and Wq(k).. is the delay (time in
the queue) of the kth arrival.

Theorem 5.8. Assume the queue discipline is work conserving and nonpreemptive. Suppose

t-1N(t)--,A as t--oc, and n-1 1Sk___S as n-cx, where 0 < a: AS < . Then

(i) if n- 1 1Wq(k)__+Wq as n--.cx, where 0 <_ Wq
_

00, then t-1 f Lq(s)ds--,Lq
0

as t---cx, and Lq- Wq, provided Wq is well defined;

(ii) if --1 f Lq(8)ds--*q 7---o, we.re. 0 iq oo, el - 1 E r 1 Wq()---*Wq gs

o
n--,cx, and Lq-/Wq, provided A-1Lq is well defined.

Proof: Let Z(t)- E V(=t)lSk- E=a f iBi(s)ds be the workload in the system at time t,
0

t >_ 0. Let b(n)" c= lbkl{bk <_ Tn < ek} and B(n): = (k- bk)l{bk <-- Tn < ek}"
That is, b(n) and B(n) are the beginning and the duration, respectively, of the full busy period
that corresponds to the nth arrival. The conditions of Corollary 2.3 are satisfied. Therefore, by
Theorem . 1,

T-1Wq(rt) <: T-1B(n) _< b(n)- 1B(n)--0 as n--cx.

Thus the result follows by using Theorem 5.4. El

Corollary 5.9. Suppose he conditions of Theorem 5.8 hold. Then

(i) if It- 1 1Wk__+W as n--,oc, where 0 <_ W <_ , then t- 1 f L(s)ds -L as

t--,cx, and L- AW, provided AW is well defined; o

(ii) if t-- f L(s)dsL as tcx, where 0 <_ L < c, then n- 1

o

and L- W, provided -1L is well defined.
Proof: Note that Wk < Wq(k)+ Sk/mini6i, so that W/Tk--,O as k---,cx, since mini6 > 0

and Sk/k--O as k--<x:. VI

The above theorem is valid under rather weak conditions, for example, servers can be hetero-
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geneous as well as homogeneous. Furthermore, although a customer cannot be preempted once in
service, it may be switched form a fast to a slow server or vice versa.

We note also that in the stable versions fo L = W we did not require the assumption that
the sequence of departure times be finite.
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