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ABSTRACT

In this paper, existence theorems of random maximal elements, random
equilibria for the random one-person game and random generalized game with a
countable number of players are given as applications of random fixed point
theorems. By employing existence theorems of random generalized games, we
deduce the existence of solutions for non-compact random quasi-variational in-
equalities. These in turn are used to establish several existence theorems of non-
compact generalized random quasi-variational inequalities which are either
stochastic versions of known deterministic inequalities or refinements of corres-
ponding results known in the literature.

Key words: Polish Space, Suslin Space, Measurable Space, Suslin Family,
(Random) Fixed Point, (Random) Maximal Element, (Random) Equilibria,
(Random) Qualitative Game, (Random) Generalized Game, (Random)
Variational Inequality, (Random) Quasi-Variational Inequality, Class L, L-
Majorized, Measurable Selection Theorem, Property (K), Random Operator.

AMS (MOS) subject classifications: Primary 47B80, 47H04, 47H10, 47H40,
47N10, 49J40, 49J45, 49355, 54C60, 60H25, 90A14, 90D13, 99D15, 93E05;
Secondary 28A05, 28A20.

1. Introduction

Since Spacek [34] and Hans [14] established some existence results of random fixed point
theorems in the fifties, random fixed point theory has received much more attention in recent
years, e.g., see Bharucha-Reid [5], Bocsan [8], Engl [13], Itoh [16], Kucia and Nowak [21], Lin
[23], Liu and Chen [24], Nowak [26], Papageorgiou [27], Rybinski [28], Sarbadhikari and
Srivastava [31], Sehgal and Singh [32], Tan and Yuan [37-38] and Xu [45], etc. Recently, we
proved a very general random fixed point theorem in [37] (e.g., see Theorem A below). In this
paper, as applications of random fixed point theorem in [37], existence theorems of random
maximal elements, random equilibria for a random one-person game and random generalized
games with a countable number of players are given. By employing existence theorems of
random generalized games, we deduce the existence of solutions for non-compact random quasi-
variational inequalities which in turn are used to establish several existence theorems of non-
compact generalized random quasi-variational inequalities which are either stochastic versions or
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improvements of corresponding results in the literature, e.g., Aliprantis et al. [1], Arrow and
Debreu [2], Aubin [3], Aubin and Ekeland [4], Bharucha-Reid [5], Borglin and Keiding [6], Border
[7], Bocsan [8], Hans [14], Kucia and Nowak [21], Liu and Chen [24], Mas-Colell and Zame [25],
Nowak [26], Papageorgiou [27], Rybinski [28], Shih and Tan [33], Spacek [34], Tan [35-36], Tan
and Yuan [39], Tarafdar and Mehta [41], Toussaint [42], Tulcea [43], Yannelis and Prabhakar
[46], Zhang (Chang) [47], and Zhou and Chen [48].

2. Preliminaries

The set of all real numbers is denoted by R and the set of natural numbers is denoted by N.
If X is a set, we shall denote by 2X the family of all subsets of X. Let A be a subset of a
topological space X. The set A is said to be compactly open if A is relatively open in each non-
empty compact subset of X. We shall denote by int y(A) the interior of A in X and by cly(A)
the closure of A in X. If A is a subset of a vector space, we shall denote by coA the convex hull
of A. If A is a non-empty subset of a topological vector space £ and S5, T: A—2F are correspon-
dences, then coT, TNS: A—2F are correspondences defined by (coT)(z)=coT(z) and
(T'NS)(z)= T(z)NS(z) for each z € A. If X and Y are topological spaces and (£,X) is a
measurable space (see definition below), and T:Q x Xx—2Y is a correspondence, the Graph of T,
denoted by GraphT, is the set {(w,z,y)€Qx XxY: y€ T(w,z)} and the correspondence
T:Qx X—2Y is defined by T(w,z)={y €Y:(z,y) Ecly, yGraphT(w, -)}, and clT:Qx X—2Y
is defined by clT(w,z)=cly(T(w,z)) for each (w,z)€NQxX. It is easy to see that
clT(w,z) C T'(w,z) for each (w,z) € A x X.

If X and Y are topological spaces, A C X xY, and F": X—>2Y, then

(1)  the domain of F, denoted by DomF, is the set {z € X: F(z) # 0};

(2)  the projection of A into X, denoted by ProjyA, is the set {x € X: there exists
some y € Y such that (z,y) € A};

(3) F is said to be lower (respectively, upper) semicontinuous if for each closed
(respectively, open) subset C of Y, the set {z € X: F(z) C C} is closed (respectively,
open) in X;

(4) F is said to be compact if for each z € X, there exists a open neighborhood V  of
in X such that F(V,)= U, VzF(z) is relatively compact in Y; and

(6) = € X is a maximal element of F if F(z) = 0.
Note that DomF = ProjyxGraphF.

Let X be a subset of a topological vector space E. The set X is said to have the property
(K) (see [43]) if for each compact subset S of X, the convex hull coB of B is relatively compact
in X.

Let X be a topological space, ¥ a non-empty subset of a vector space E, §: X—FE a (single-
valued) mapping and ¢: xX—2Y a mapping. Then
(1) ¢ is said to be of class Ly if for every x € X, co¢(z) CY and Q(z) ¢ cod(x) and for
eachy €Y, ¢~ (y): = {z € X: y € ¢(z)} is compactly open in X;
(2)  a correspondence ¢$:X—>2y is said to be an Lgmajorant of ¢ at = € X if there
exists an open neighborhood N _ of z in X such that
(a) for each z€ N, ¢(z) C ¢,(z) and 6(z) ¢ cod,(z),
(b) for each z € X, co¢_(z) CY and
(¢) foreachyeY, ¢ "(y)is compactly open in X;
(3) ¢ is Lymajorized if for each x € X with ¢(z) # 0, there exists an Lg-majorant of ¢
at r € X.
We shall only deal with either the case (I) X =Y and which is a non-empty convex subset of a
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topological vector space and 6 = I y, the identity mapping on X (in this case, the above notions
coincide with the corresponding notions introduced in [46]), or the case (IT) X =1I; . ;X; and
0= T X—»Xj is the projection of X onto X . and X.=1Y is a non-empty convex subset of
atopological vector space. In both cases (I) and (1I), we shall write L in place of L.

A measurable space (,X) is a pair where  is a set and ¥ is a o-algebra of subsets of Q. If
X is a set, AC X, and D is a non-empty family of subsets of X, we shall denote by PN A the
family {DN A:D € 9} and by o (D) the smallest o-algebra on X generated by 9. If X is a
topological space with topology 7y, we shall use B(X) to denote o x(7 ), the Borel o-algebra on
X. If (,%) and (®,T') are two measurable spaces, then £ ® I' denotes the smallest o-algebra on
2 x ® which contains all the sets Ax B, where A€ X, BeT,ie, 2@ =0q, (X xI'). We note
that the Borel o-algebra B(X, x X,) contains B(X,) ® B(X,) in general. A mapping f:Q—® is
said to be (X,T) measurable (or simply, measurable) if for each B€ T, f ~}(B) = {z € Q: f(z) €
B} € X. Let X be a topological space and F:(, E)—>2X be a mapping. Then F is said to be
measurable (respectively, weakly measurable)) if F ~1(B) = {w € Q:F(w)N B # 0} € ¥ for each
closed (respectively, open) subsets B of X. The map F is said to have a measurable graph if
GraphF: = {w,y) € Ax X:y € F(w)} € 2® B(X). A function f:Q—X is a measurable selection
of F if f is a measurable function such that f(w) € F(w) for all w € Q.

If (2,%) and (®,T') are measurable spaces, Y is a topological space, then a mapping F: x
®—2Y is called (jointly) measurable (respectively, weakly measurable) if for every closed
(respectively, open) subset B of Y, F~1(B) = {(w,2) € 2x®: F(w,z)NB#0} € X®I. In the
case ® = X, a topology space, then it is understood that I' is the Borel o-algebra B(X).

A topological space X is
(?) a Polish space if X is separable and metrizable by a complete metric;
(37)  a Suslin space if X is a Hausdorff topological space and the continuous image of a
Polish space.
A Suslin subset in a topological space is a subset which is a Suslin space. “Suslin” sets play very
important roles in measurable selection theory. We also note that if X, and X, are Suslin
spaces, then B(X; x X,) = B(X;) x B(X,) (e.g., see [29, p. 113]).

Denote by 3 and & the sets of infinite and finite sequences of positive integers respectively.
Let G be a family of sets and F:§l—%F be a map. For each ¢ = (0,)72 € 4 and n €N, we shall

denote (o4,...,0,) by o |n; then |J ﬁ F(o|n) is said to be obtained from § by the Suslin
=1

n
operation. Now, if every set obtaaiened from G in this way is also in §, then § is called a Suslin
family (e.g., see [22], [30], [44], etc.).

Let X and Y be topological spaces, (£2,¥£) a measurable space and F:Qx X—2Y be a map-
ping. Then

(a) F is a random operator if for each fixed z € X, the mapping F(-,z):0-2Y is a
measurable map;

(b) F is random lower semicontinuous (respectively, random upper semicontinuous,
random continuous) if F' is a random operator and for each fixed w € Q, F(w, - ):
X—2Y is lower semicontinuous (respectively, upper semicontinuous, continuous);
and

(¢)  a measurable (single-valued) mapping ¥:2—X is said to be a random maximal
element of the correspondence F if F(w,y(w)) =0 for all w € Q.

Let (Q,X) be a measurable space, X a topological space and F:{2x X—2% a mapping. The
(single-valued) mapping ¢:Q2—X is said to be
(i)  a deterministic fixed point of F if p(w) € F(w,p(w)) for all w € ©; and
(1)  a random fixed point of F' if ¢ is a measurable mapping and ¢(w) € F(w,¢(z)) for
all w e Q.
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It should be noted here that.-some authors define a random fixed point of F' to be a measurable
mapping ¢ such that ¢p(w) € F(w,p(w)) for almost every w €, e.g., see [27], [28] and the
references therein.

Let I be any set of players and (£2,X) be a measurable space. For each ¢ € I, let its strategy
set X; be a non-empty subset of a topological vector space. Let X =1II; . ;X;. For each i€ I, let

P;:Qx X—>2Xi be a correspondence. The collection I' = (2, X, P;), ¢ 1 Will be called a random
qualitative game. A measurable map 1:Q—X is said to be a random equilibrium of the random
qualitative game T if P,(w,%(w)) =0 for all i € I and all w € Q.

A random generalized game (abstract economy) is a collection I' = (X ; A4;,B;;P;); ¢ 1
where I is a (finite or infinite) set of players (agents) such that for each i € I, X, is a non-empty

subset of a topological vector space and Ai,Bi:QxX—>2X" are random constraint

correspondences where X =1II; . ; X, and Pt-:QxX—>2Xi is a preference correspondence (which
are interpreted as for each player (or agent) ¢ € I, the associated constraint and preferences A,
B; and P; have stochastic actions). A random equilibrium of I' is a (single-valued) measurable
mapping ¥:Q—X such that for each i€, m(¥(w))€ B,(w,¥(w)) and A, (w,p(w))N
P,(w,¥(w)) =0 for all w € Q. Here, 7, is the projection from X onto X;. If z € X, we shall also
write z, in place of 7 (z) if there is no ambiguity. We remark that if A,, B, and P, of the
random generalized game I' = (Q;Xi;Ai’Bz‘?Pi)ie ; are independent of the var_iable wE€Q, ie.,
Aj(w,-)=A,(+), Bj(w, )= B,(-) and P;(w, )= P;(-) for all weQ, when B,(Z) = cly B;(Z)
for each ¥ € X (which is the case when B, has a closed graph in X x X; in particular, when clB;
is upper semicontinuous with closed values), our definition of an equilibrium point coincides with
that of Ding et al. [12] in the deterministic case; and if in addition, A; = B; for each i € I, our
definition of an equilibrium point coincides with the standard definition of the deterministic case,
e.g., in Borglin and Keiding [7], Tulcea [43], and Yannelis and Prabhakar [46].

We shall now list some results which will be needed in this paper. The following very general
random fixed point theorem is Theorem 2.2 of Tan and Yuan in [37].

Theorem A. Let (2,X) be a measurable space, ¥ a Suslin family and X a Suslin space.
Suppose F:Qx X—2%X\{0} is such that GraphF € L@ B(X x X). Then F has a random fized
point if and only if F has a deterministic fized point in X, i.e., for each w € Q, F(w, -) has a
fized point in X.

For a non-self mapping generalization of the above result, we refer the reader to [38, Theorem
2.3]. The following measurable selection theorem is due to Leese [22, Corollary, p. 408-409].

Theorem B. Let (Q,X) be a measurable space, ¥ a Suslin family and X a Suslin space.
Suppose F:Q—2% has non-empty values such that GraphF € £ ® B(X). Then there exists a
sequence {g,}o =1 of measurable selections of F' such that for each w € Q, the set {g,(w):n € N}
is dense in F(w).

The following lemma is Theorem 3.3 of Tan and Yuan in [39].

Lemma 1. Let §=(X;;A;,B;;P,); ¢ be an abstract economy such that X =11, o 1 X; 1s
paracompact. Suppose the following conditions are satisfied:
(a)  for each 1 €I, X, 1s a non-empty convex subset of a locally convex Hausdorff
topological vector space E;

(b)  for each i €I, Ai:X——>2Xi is lower semicontinuous such that for each x € X, A,(x)
is non-empty and coA,(x) C B;(z);

¢) for each i€ I, A;N P, is Lo-majorized;

d)  for each i € I, the set E* = {z € X:(A;N P;)(z) # 0} is open in X;

e) there exist a non-empty compact convexr subset Xy of X and a non-empty compact

—~ N~
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subset K of X such that for each y € X\K there is an x € co(XyU {y}) with z; €
co(A,(y)NP(y)) forallieI.
Then § has an equilibrium point in K, i.c., there ezists a point ¥ = (Z;); c 1 € K such that for
each i€ I, T, € B,(Z) and A, (Z)NP,(Z) = 0.

The following result is Theorem 5.3 of Tan and Yuan in [40].

Lemma 2. Let I'=(X;,A;,B,,P;); ¢ be an abstract economy such that X =11, . [ X; is
paracompact. Suppose the following conditions are satisfied:

(a)  for each i€ I, X, is a non-empty closed convex subset of a locally convex Hausdorff
topological vector space E; and X, has the property (K);

(b) for each i €I, B, is compact and upper semicontinuous with non-empty compact
convex values and A,(z) C B,(z) for each z € X;

(¢)  for each i€ I, P, is lower semicontinuous and Ly-majorized;

(d) foreachiel, E'={x € X:(A;NP,)(x)# 0} is open in X;

(e) there erist a nonempty compact conver subset X, of X and a non-empty compact
subset K of X such that for each y € X\K there is an z € co(XyU {y}) with x; €
co(A,(y)NP,(y)) for allieI.

Then there exists T (Z;); ¢ € K such that for each i € 1, T; € By(T) and AT )N P;(T)=0.

We also need the following result (e.g., see Theorem 1 of Ding and Tan [11]).

Lemma 3. Let X be a non-empty paracompact convexr subset of a Hausdorff topological
vector space and P: X—2% be L-majorized (i.e., LIX—marjorz'zed). Suppose that there exist a

non-empty compact conver subset X, of X and a non-empty compact subset K of X such that for
each y € 2\K, there exists x € co(XyU{y}) with x € coP(y). Then there ezxists an T € K such
that P(7) = 0.

3. Random Equilibria of Random Games

As an application of our random fixed point theorem, namely, Theorem A above, we shall
first prove the following existence theorem of random maximal elements:

Theorem 1. Let (2,%) be a measurable space, ¥ Suslin family, X a non-empty paracompact

conver and Suslin subset of a Hausdorff topological vector space E and Q:QxX—»?X such that
for each given w € Q, Qw, -) is LIX-majorized and Dom@Q € ¥ ® B(X). Suppose that for each

fized w € Q, there exists a non-emply compact conver subset Xy(w) of X and a non-empty
compact subset K(w) of X such that for each y € X\K(w) there is an x € co(Xy(w)U {y}) with
z € coQ(w,y). Then Q has a random mazimal element, i.e., there exists a measurable mapping
V:Q—X such that Q(w,¥(w)) =0 for all w € Q.

Proof. By Lemma 3, for each w € Q, there exists z, € X such that Q(w,z,)=0. Define

F:Qx X—2% by F(w,z) ={y € X:Q(w,y) = 0} for each (w,z) € Q2xX. Then for each fixed
w€Q, z, is a fixed point of F(w, -). In order to prove that GraphF € ¥ ® B(X x X), we define
a mapping C:Qx X x X—Qx X x X by

C(w, x’ y) = (w’ y, w)
for each (w,z,y) € 2x X x X. Then C is measurable. By hypothesis, Dom@ € ¥ ® B(X). Since

GraphF = {(w,z,y) € Ax X x X: Q(w,y) = 0}
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=C(Q2x X\DomQ) ® X] € £ ® B(X x X),

then, by Theorem A, F has a random fixed point 1, i.e., there exists 1): 2— X is measurable such
that Y(w) € F(w,¥(w)) for all w € Q which imp! s that Q(w,¥(w)) = @ for each w € Q. O

As an application of Theorem A again, we¢ have the following existence theorem of random
equilibria for random one-person games:

Theorem 2. Let (,X) be a measurable space, ¥ a Suslin family and X a non-empty
precompact conver and Suslin subset of a Hausdorff topological vector space. Let A,B,P:
Qx X—2% be such that

() for each w e Q, A(w, - )N P(w, -) is L-majorized;
(1)  A(w,z) is non-empty and coA(w,z) C B(w,z) for each (w,z) € Ax X;
(335)  (A(w, -)) " Ny) = {z € X:y € A(w,z)} is open in X for each (w,y) € Ax X;
(iv)  Dom(ANP) and Projq, x[(GraphB)N (2 xA)] € L@ B(X) where A = {(z,z):
r€e X}
(v)  for each fized w € Q, there exist a non-empty compact conver subset Xy(w) of X
and a non-empty compact subset K(w) of X such that for each y € X\K(w) there is
an & € co(Xy(w)N{y}) with x € co(P(w,y) N A(w,y)).
Then the random one-person game (; X; A, B; P) has a random equilibrium, i.e, there exists a
measurable mapping ¥: Q—X such that Y(w) € B(w,P(w)) and A(w,(w)) N P(w,y(w)) =0 for all
w € Q.

Proof. Define ¥:Q x X—2% by
Y(w,z) = {y € X: A(w,y) N P(w,y) =0 and y € B(w,y)}

for each (w,z) € 2 x X. Then by Theorem 2 of Ding and Tan [11], for each w € Q, there exists
r, € X such that z , € ¥(w,z) for all € X. It follows that W:Q x X—2%\{0} and z, € ¥(w,z,)
for all w € 2 so that ¥ has a deterministic fixed point in X. Now define a mapping C:Q x X x

X— QxXxX, by C(w,z,y) = (w,y,z) for each (w,z,y) € 2x X x X. Then C is measurable.
Note that

Graph¥ = C ~Y([Qx X)\Dom(A N P)]x X)
NC ~YProjqy x[GraphB N (2 x A)]x X)
€T ®B(X x X),

so that Graph¥ € ¥ ® B(X x X). By Theorem A, ¥ has a random fixed point %, i.e., ¥: Q2 x X is
measurable such that A(w,y¥(w)) N P(w,¥(w)) =0 and ¢(w) € B(w,p(w)) for all w € Q. 0

As another application of Theorem A, we have the following:

Theorem 3. Let (Q,X) be a measurable space with ¥ a Suslin family and T = (; X ;5 A;, B;;
P.); ¢ 1 a random generalized game such that I is countable and X =1II; . ; X; is paracompact.
For each i € I, suppose that the following condit.ons are satisfied:

(I) X, is a non-empty convexr and Susiin subset of a locally convex Hausdorff topological
vector space;

(II) Dom(A;NP;), Projgy x|GraphB,N(2xA,)] € L@ B(X) where A; = {(z,7,(z)):
z € X}.

(I11) for each w € Q, E(w) = {r € X: A;(w,2) N P;(w, ) # 0} is open in X;

(IV) for each fized w € 2, either

(1) (a) Ayw, -):X——>2Xi is lower semiconlinuous such that for each z € X,
A;(w,x) is non-empty and coA (w,z) C B;(w,), and
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(0) Aj(w, )N P w, ) is L-majorized;
or
(%) (a) B;(w,-) is upper semicontinuous with non-empty compact and conver
values such that for each x € X, A(w,z) C B;(w,z), and
(b) P;(w, ) is lower semicontinuous and L-majorized, and X is closed and has
the property (K);
(V)  for each fized w € Q, there exist a non-empty compact conver subset X,(w) of X
and a non-empty compact subset K(w) of X such that for each y € X\ K(w) there is
an ¢ € co(Xy(w) U {y}) with x; € co(A;(w,y) N P;(w,y)) for all i€ I.
Then I' as a random equilibrium.

Proof. First we note that as each X, 1s a Suslin space and I is countable, X is also a Suslin
space. For each i € I, define ¥ :Q x X——>2 by

Y (w,2) = {y € X: A(w,y) N P;(w,y) = 0 and 7,(y) € B;(w,y)}

for each (w,z) € @ x X. Define ¥:Qx X—2% by ¥(w,z) = N; ¢ ¥i(w,x) for each (w,z) € 2 x X.
Then by Lemma 1 or Lemma 2, for each w € €2, there exists z , € X such that z € ¥ (w,z) for
all z € X and for all i €I so that z_ € ¥(w,z) for all z € X. It follows that W: QxX—»?X\{(D}
and z, € ¥(w,z,) for all weQ so that ¥ has a deterministic fixed point in X. Now define a
mapping C:Ox X x X—0x X x X by

Clw,z,y) = (v, y, )
for each (w,z,y) € 2x X x X. Then C is measurable. Note that
Graph¥,; = C~Y([Qx X\Dom(A;NP,)]x X)
NC~YProjg x[GraphB,; N (2x A;)] x X)
EX®B(X xX),

and I is countable, we have Graph¥ = [, ¢ ;Graph¥; € ¥ ® B(X x X). By Theorem A, there
exists a measurable mapping ¥:Q—X such that (w)€ ¥(w,;y(w)) for all we; ie,
Aj(w,(w) N Py(w,p(w)) = 0 and 7,(1;(w)) € B,(w,1(w)) for all w € Q and for all i € I. ]

As a consequence of Theorem 3, we have the following existence theorem of random
qualitative games:

Theorem 4. Let (Q,X) be a measurable space with ¥ a Suslin family and T' = (; X5 P;); ¢ 1
a random qualitative game such that I is countable and X =1I; . ; X; is paracompact. For each
1 € I, suppose that the following conditions are satisfied:
(?) X, is a non-empty convez and Suslin subset of a locally convex Hausdorff topological
vector space;
(i)  DomP,; € £.® B(X);
(7ii)  for each w € Q, DomP(w, - ) is open in X;
(iv)  for each fired w € Q, P,(w, -) is L-majorized;
(v)  for each fized w € Q, there exist a non-empty compact conver subset Xy(w) of X
and a non-empty compact subset K(w) of X such that for each y € X\K(w) there is
an z € co(Xy(w)U {y}) with z,; € co(P;(w,y)) for alli € I.
Then I has a random equilibrium.

Proof. For each i€ I, define Ai,Bi:QxX—QXi by A;(w,z)= B,(w,z) =X for each
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(w,z) € 2x X. Then it is easily seen that all hypotheses of Theorem 3 are satisfied. By Theorem
3, the conclusion follows. O

4. Random Quasi-Variational Inequalities

In this section, by our existence theorems of random equilibria for random generalized games,
namely, Theorem 3, some existence theorems of random quasi-variational inequalities and genera-
lized random quasi-variational inequalities are given. Our results not only generalize the results
of Tan [36] and Zhang [47], but also they are the stochastic versions of corresponding results in
the literatures, e.g., see Aubin [3], Aubin and Ekeland [4], Hildenbrand and Sonnenschein [15],
Shih and Tan [33], Tan [35, 36], Zhang [47], Zhou and Chen [48] and the references therein.

Here we emphasize that our arguments for the existence of solutions for non-compact random
quasi-variational inequalities are different from the approaches used in the literatures by Tan [36]
and Zhang [47].

Theorem 5. Let (2,X) be a measurable space with ¥ a Suslin family and I be countable. For
each i € I, suppose that the following conditions are satisfied:

(a) X, is a non-empty conver and closed Suslin subset of a locally conver Hausdorff
topological vector space such that X, has the property (K) and X =11, . /X, is
paracompact; x.

(b)  for each fired w€Q, Afw, ):X =1, [ X;—2"" is upper semicontinuous with

non-empty compact and convex values;
) Y x X x X, -RU{—o00, + o0} is such that:
¢)y: =y (w,x,y) is lower semicontinuous on X for each fized (w,y) € Ax X,;
)o: x; ¢ coly € X9 (w,z,y) > 0} for each fized (w,z) € QA x X;

)3: for each fized w € Q, the set {r € X:a;(w,x) >0} is open in X, where a;:Qx
X—-RU{—~o00, + 00} s defined by a(w,z)= SUp, ¢ A.(w’x)z,bi(w,x,yi) for each
(w,z) € QX X; v

(d) {(w,z)xX:a,(w,z) >0}, and {(w,z) € Ax X:m,(z) € A;(w,z)} € @ B(X);

(e) for each given w €, there exist a non-emply compact conver subset Xy(w) of X
and a non-empty compact subset K(w) of X such that for each y € X\K(w) there
exists x € co(Xy(w) U {y}) with z; € co(A;(w,y)N{z € X ;:9,(w,y,2) > 0}).

Then there exists a measurable mapping ¢:Q—X such that for i € I, 7,(p(w)) € A;(w,p(w)) and

sup Yi(w,d(w),y) <0
v € A, 8(w)

for all w € Q.

Proof. For each i € I, define P;:Qx x—2%i by P,(w,z) ={y € X;:¢,(w,z,y) > 0} for each
(w,z) € Ax X. We shall show that G = (;X;; A;; P;), ¢ 1 satisfies all hypotheses of Theorem 3
with A; = B, for all i € I.

Suppose i €1 and weQ. By (c);, for each fixed ye X,, (P;(w,))” Yy)={z € X:
Y(w,z,y) > 0} is open in X and by (c),, z; ¢ coP,(w,z) for each z € X. This shows that
P;(w, - ) is lower semicontinuous and is of class L and hence is L-majorized. By the definition of
a;,, we note that {zr€ X:A,(w,z)NPw,z)#0}={re X:a,(w,z)>0}, so that {z€ X:
A;(w,z)N Py(w,z) # 0} is open in X by (c)3. By (d), we know that Dom(A;N P;) € ¥ ® B(X)
and

Thus G = (Q,X,,A;,P,); ¢ 1 satisfies all hypothesis of Theorem 3 with A, = B, for each i € I. By
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Theorem 3, there exists a measurable mapping ¢: 2— X such that for each ¢ € I,
7 ($(w)) € Ay, () and Ay(w, () N Pi(w, 6(w)) = 0
for all w € Q, i.e.,
Ti(#(w)) € Aj(w, ¢(w)) and sup ¢i(w,¢(w),y) <0
y € Aj(w, p(w))
for all w € Q. O

Letting I = {1} in Theorem 5, we have the following existence results on random quasi-varia-
tional inequalities:

Theorem 6. Let (2,X) be a measurable space with ¥ a Suslin family. Suppose that the
following conditions are satisfied:
(a) X s a non-empty closed paracompact conver and Suslin subset of a locally convex
Hausdorff topological vector space, and X has the property (K);
(b)  for each fized weQ, A(w, -):X——>2X 1s upper semicontinuous with non-empty
compact and convez values;
() ¥:OAxXxX->RU{—o00, +00} is such that:
(¢);y a—Y(w,z,y) is lower semicontinuous on X for each fized (w,y) € Ax X;
(), z¢cofye€ X:y(w,z,y) >0} for each fized (w,z) € Ax X;
(¢)3  for each fized w €, the set {z € X:a(w,z) >0} is open in X, where a:Q2x Xr—
RU{— o0, + 00} is defined by a(w,z) = SUp,, ¢ A(w‘x)w(w,x,y) for each (w,z) € A x
X;
(d)  A{(w,z) € Qx X:a(w,z) >0}, and {(w,z) € Ax X:z € A(w,2)} € T ® B(X);
(e) for each given w € Q, there exist a non-empty compact convexr subset Xy(w) of X
and a non-empty compact subset K(w) of X such that for each y € X\K(w) there
exist € co(Xy(w) U {y}) with z € co(A(w,y) N {z € X:¢p(w,y,2) > 0}).
Then there exists a measurable mapping ¢: Q— X such that ¢(w) € A(w,d(w)) and

sup Y(w,$(w),y) <0
Yy € A(w, d(w))

for all w € Q.

4. Generalized Random Quasi-Variational Inequalities

Let (©,X) be a measurable space, X a non-empty compact convex subset of a locally convex
Hausdorff topological vector E and E* the dual space of E. Suppose the correspondences

F:Qx X—2%, T:Qx X—2EF" and the function [iOx X x X>RU{—o00, + 00} are given. We
want to find a measurable mapping ¥:Q—X which satisfies the following generalized random
quasi-variational inequalities:

Y(w) € F(w,9(w))

(*)
SUP, ¢ F(w,¢(w))[5uPu € T(Md)(w))Re(U, 1/)(‘-0) - y) + f(“’v w(w,y)] <0

for each w € Q. We also want to find two measurable maps ¥:Q2—X and ¢:Q—E™ such that

$(w) € F(w,$(w)) and ¢(w) € T(w,P(w))

(%)
Re<¢(w)v P(w) — y) + f(w, 1/)(0.)), y) <0
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for all y € F(w,¥(w)) and for all w € Q.

In this section, by applying results in Section 3, we shall consider the generalized random
variational inequality problems (%) and (**) above.

Now we recall some definitions (e.g., see [48]). Let X be a non-empty convex subset of
topological vector space E. A function ¥(w,y): X x X—>R U { — 0o, + oo} is said to be

(1) y-diagonally quasi-convex (respectively, vy-diagonally quasi-concave) in y, in short
v —DQCX (respectively, v-DQCYV) in y, if for each A € F(X) and each y € co(A),
y < maz, ¢ 4¥(y,x) (respectively, v > inf, ¢ 49(y,));

(2)  y-diagonally convex (respectively, vy-diagonally concave) in y, in short y-DCX
(respectively, y-DCV) in y, if for each A € F(X) and each y € co(4) with
y=%X"" 1 Ny; (A, 20, and Z7_ X, = 1), we have v <XT_ ;A\9(y,y;) (respectively,
Y > S Ay, ,))-

Let X and Y be two non-empty convex subsets of E, we also recall that a function
P: X xY->RU{—o00, + o0} is quasi-convex (respectively, quasi-concave) in y, if for each fixed
z € X, for each A € ¥(Y) and each y € co(A), ¥(z,y) < maz, o 49(z,2) (respectively, P(z,y) >
min, ¢ 4¥(z,2)). Moreover, it is easy to verify that

(?) if ¥(z,y) is y-DCX (respectively, v-DCV) in y, then ¥(z,y) is v-DQCX (respective-
ly) 7'DQCV) in Y,

(17) if ¥;: X xY—-R is y-DCX (respectively, 7-DCV) in y for each i =1,2,...,m, then
Y(x,y) = X" ja,(x);(x,y) is also y-DCX (respectively, 7-DCV) in y, where
a;: X—R with a,(z) > 0 and X7"_ ;a,(z) = 1 for each z € X, and

(7it)  the function ¥(z,y): X x X—>RU{—o00, + oo} is 0-DQCV in y if and only if = ¢
co({y € X:¢(z,y) > 0}) for each z € X.

In what follows, we first consider the existence of solutions of problem (*) for which
monotonicity is needed.

Theorem 7. Let (Q2,X) be a measurable space with ¥ a Suslin family and X a non-empty
closed paracompact convexr and Suslin subset of a locally conver Hausdorff topological vector
space E such that X has the property (K). Suppose that the following conditions are satisfied:

(%) F:Qx X—2%X is such that for each fized w € Q, F(w, ) is upper semicontinuous
with non-empty compact and conver values;

(i7) T:Qx X—2F" s such that for each fized weQ, T(w,-) is monotone (i.e.,
Re(u—v,y—z) >0 for all u € T(w,y) and v € T(w,z) for all z,y € X) with non-
empty values and for each one-dimensional flat LCE, T(w, )| x 15 lower
semicontinuous from the relative topology of X into the weak™-topology o(E*,E) of
E*;

(3i7)  f:Q2x X x X—>RU{ —o00, + 0} is such that z— f(w,z,y) is lower semicontinuous on
X for each fized (w,y) € Ax X and for each fized (w,z) € Ax X, y—f(w,z,y) is
concave and f(w,z,2) =0 for each (w,z) € Ax X;

(iv)  for each fized' wE Q’, the set {z € X:supyE F(w,a:)[supue T(
f(w,z,y)] > 0} is open in X;

(v)  A(w,z) € 2x X:sup, F(wx)[supu c T(wyy)Re(u,:c —y)+ f(w,z,y)] >0} €
L B(X);

(vi) {(wz)exX:z€ F(w,z)} € ZQB(X),

(vit) for each given w € Q, there exist a non-empty compact conver subset Xy(w) of X
and a non-empty compact subset K(w) of X such that for each z € X\K(w) there
exists y € co(Xg(w)U{z}) with y € co(F(w,z)N{z € X:sup )Re(u, T —2)+
flw,z,2) > 0}).

Then there exists a measurable mapping ¢: Q—X such that ¢(w) € F(w,d(w)) and

w, y)Re(u, z—y)+

u€T(w,z
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sup [Re<u’ ¢(w) - y) + f(w’ ¢("‘))’ y)] S 0
u € T(w,p(w))

for ally € F(w,¢(w)) and w € Q.
Proof. Define a function $: Q2 x X x X—-R U { — oo, + 0o} by

¢(wa Ly y) = sup RB(U, r— y) + f(w’ €T, y)
u€T(wy)

for each (w,z,y) €QxXxX. By (iit), z—¢(w,z,y) is lower semicontinuous on X for each
(w,y) € Q2x X. For each weQ, since T(w, -) is monotone, by (iii), it is easy to verify that
Y(w,z,y) is 0-DCV in y by Proposition 3.2 of Zhou and Chen [48]. The conditions (z)-(vi) imply
that all hypotheses of Theorem 6 are satisfied. By Theorem 6, there exists a measurable mapping
®:Q— X such that ¢(w) € F(w, ¢(w)) and

sup sup  [Re(u,¢(w) —y) + (w,(w),y)] <0 1)
y € F(w,¢(w)) u€T(wy)

for all w € Q. We shall now prove that

sup sup  [Re(u, ¢(w) —y) + f(w ¢(w),y)] <0
y € F(w,d(w)) ueT(w,¢(w))

for each w € Q.

Fix an we€ Q. Let z € F(w,4(w)) be arbitrarily given and let z,(w) =tz + (1 —t)p(w) =
#(w) —t(¢p(w) — ) for t € [0,1]. As F(w,p(w)) is convex, we have z,(w) € F(w, ¢(w)) for t € [0,1].
Therefore, by (1) we have

sup [Re(u, p(w) — z,(w)) + f(w, $(w), z,(w))] < 0
u € T(w,zt(w))

for all ¢ €[0,1].
Since for each z € X, y— f(w,z,y) is concave and f(w,z,z) =0, it follows that for ¢ € (0,1],

t-{ sup  [Re(u,¢(w) - )]+ f(w, $(w), z)}

u € T(w, zt(w))

< sup t-[Re{u,¢(w) —z)] + f(w,d(w), tz + (1 — t)d(w))
u € T(w,zt(w))

= sup [Re(u, ¢(w) — z(w))] + f(w, p(w), 2,(w)) < 0
u€ T (w, zt(w))

which implies that for ¢ € (0,1],

sup [Re(u, p(w) — )] + f(w, ¢(w),z)] <0. (2)

u€ T(w,2,(w)

Let z;, € T'(w,¢(w)) be arbitrarily fixed. For each ¢ > 0, let
Uz0 ={z € E*: | Re(zy — z,¢(w) — z) | <¢}.

Then U, is a o(E*, E)-neighborhood of z,. Since T'(w, )| x is lower semicontinuous where
L: = {zt(ow):t €[0,1]}, and U, NT(w,d(w)) # 0, there exists a neighborhood N(¢(w)) of ¢(w) in
L such that if z € N(¢(w)), thn T(w,p(w)) ﬂUzO # 0. But then there exists 6 € (0,1] such that

z,(w) € N(¢(w)) for all t€(0,6). Fixing any te€ (0,6) and uGT(w,zt(w))ﬂUzO, we have
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| Re{zg — u,¢(w) — z) | <e. This implies that
Re(zp, ¢(w) — ) < Re(u,d(w) — z) + €.

Thus

Re(zg, p(w) — ) + f(w, p(w), &) < Re(u, p(w) — z) + f(w, p(w),2) + € < €

by (2). Since € >0 is arbitrary, Re(zy, ¢(w)—z)+ f(w,d(w),2) <0. As zj€ T(w,¢(w)), is
arbitrary, we have the following

sup  [Re(z,6(w) - ) + f(w, (), 2)] <0
z € T(w, ¢(w))

for all z € F(w, ¢(w)). O

Corollary 8. Let (2,X) be a measurable space with ¥ a Suslin family, X a non-empty
compact convezx Suslin subset of a locally convex Hausdorff topological vector space E and F:Q X
X—2% be such that {(w,z) € Ax X:z € F(w,z)} € L@ B(X). If for each fized w € Q, F(w, -) s
upper semicontinuous with non-empty compact convex values, then F has a random fized point.

We shall now observe that in Theorem 7, the interaction between the correspondences T' and
F (namely, the condition (iv)) can be achieved by imposing additional continuity conditions on T
and F.

Theorem 9. Let (,X) be a measurable space with ¥ a Suslin family and X a non-empty
closed paracompact conver and Suslin bounded subset of a locally convex Hausdorff topological

vector space E such that X has the property (K). If F:Q x X—2% is such that for each w € Q,

*
F(w, -) is continuous with non-empty compact and convezr values, and T:Q x X—2F" is such that
for each weQ, F(w,-) is continuous with non-empty compact and conver wvalues, and

T:Q x X—>2E* is such that for each given w € Q, T(w, -) is monotone with non-empty values and
is lower semicontinuous from the relative topology of X to the strong topology of E*. Suppose
that

(?) [ Ox X x X>RU{— o0, + 00} is such that for each given w € Q, (z,y)—f(w,z,y)
is lower semicontinuous and for each fized (w,z) € Ax X, y—f(w,z,y) is concave
and f(w,z,z) =0 for each (w,z) € Ax X;

(1) the set {(w,z) € Qx X:sup, . F(w,) %Py ¢ T(w,y)[ReW’x —y)+ f(w,z,y)] > 0} €
L B(X),

(117) {(w,z) € Ux X:z € F(w,z)} € E® B(X);

(iv)  for each given w € Q, there exist a non-empty compact convexr subset X (w) of X
and a non-empty compact subset K(w) of X such that for each z € X\K(w) there
exists y € co(Xy(w)U {x}) with y € co(F(w,z)N{z € X:sup )Re(u,z —z)+
f(w,z,z) > 0}).

Then there exists a measurable mapping ¢:Q—X such that ¢(w) € F(w,d(w)) and

sup [ sup  Re(ud(w)—y)+ f(w,é(w),y)] <0
y€F(w ¢(w)) ueT(w ¢w))

u€ T (w,z

for all w € Q.

Proof. By Theorem 7, we need only show that for each given w € Q, the set

Y(w)e: ={z€X: sup [ sup Relu,z—y)+ f(w,z,y)] >0}
y€ F(w,z) u€T(w,vy)

is open in X.
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Since X is bounded and f(w, -, ) is lower semicontinuous, the function (u,z,y)—Re(u,z —
Y)+ f(w,z,y) is lower semicontinuous from E”x X x X to R for each fixed w € Q. Therefore
(z,y)—sup,, ¢ T(w,y)[Re<u’£ —y)+ f(w,z,y)] is also lower semicontinuous by lower semicontin-
uity of T'(w, -) and Proposition III-19 of Aubin and Ekeland [4, p.118]. Since F(w, -) is lower
semicontinuous, z—sup, . Fw,0)%Pue T wyy)[Re(u,x —y)+ f(w,z,y)] is lower semicontinuous
by Proposition III-19  of [4, p. 1185 again for each fixed we€ Q. Thus the set
B(w): = {= € X:5up, ¢ p(w, ) "Pu ¢ T(w,z) Re(t, T = y) + f(w, ,y)] > 0} is open in X. a

Now we will consider the existence of solutions for the problems (%) and (%) without
assuming the monotonicity as in Theorem 9.

Theorem 10. Let (Q2,X) be a measurable space with ¥ a Suslin family and X a non-empty
conver and Polish subset of a locally convex Hausdorff topological vector space E. Suppose that:
(3) F:Qx X—2% is such that for each weQ, F(w, ) is upper semicontinuous with
non-empty compact and conver values;

(i) Tiwx X—2E" is such that xr—»infue T(wyx)Re(u,:c— y) is lower semicontinuous for
each (w,y) € Ax X;

(7it) f:Qx X x X—R is such that z—f(w,z,y) is lower semicontinuous on X for each
fized (w,y) € Xx X; and for each fized (w,z) € Ax X, y—f(w,z,y) is 0-diagonal
concave;

(iv)  for each given w € Q, the set

{zeX: sup [ inf  Re(u,z—y)+ f(w,z,y)] >0}
y€F(w,z) u€T(w,zx)

s open in X;

(v) A{(w,z)eQxX: SUp, ¢ F(w,z)infu e T(w'z)[Re(u,x —y)+ f(w,z,y)] >0} €
Y® B(X);

(vi) {(w,z)€EQUxX:iz € F(w,z)} € LQB(X);

(vit)  for each w € Q, there exist a non-empty compact conver subset X (w) of X and a
non-empty compact subset K(w) of X such that for each x € X\K(w) there exists
y € co(Xy(w)N{z}) with y€Eco(F(z)n{z € X:supueT(w,z)Re(u,x—z)+
f(w,z,2) > 0}).

Then there exists a measurable mapping ¢: Q2 x X such that $(w) € F(w,d(w)) and

inf [Re<ua ¢(w) - y)] + f(wv ¢(w)7 y) S 0
u € T(w, $(w))

for all y € F(w,¢(w)) and w € Q.

Suppose that in addition,
(1) for each fized (w,z) € Ax X, y—f(w,z,y) is lower semicontinuous and concave and
f is measurable;
(2)  there exists a non-empty Polish subset Ef of E* such that T(Q,X)CEg, T is
measurable with non-empty strongly compact convez values; and
(3)  F ts measurable.
Then there ezist a measurable function p:Q—E* such that p(w) € T'(w,p(w)) and

sup [Re(p(w), ¢(w) = y) + f(w, d(w),y)] < 0
y € F(w,8(w))

for all w € Q.
Proof. Define 1: Q2 x X x X—RU { — 00, + oo} by

1/’(% Z'»y) = an [RC(U, T — y) + f(wa r, y)]7
u € T(w, )
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for each (w,z,y) € 2x X x X. Then by (i7), (ii7) and (iv) we have:
(a)  for each fixed (w,y) € x X, z—t(w,z,y) is lower semicontinuous on X and z ¢
co({y € X:¢p(w,z,y) > 0}) for each (w,z) € Ax X;
(b)  for each w € Q, the set {z € X:sup, ¢ F(w,z)tl)(w,x,y) >0} is open in X.
Therefore, F' and % satisfy all conditions of Theorem 6. By Theorem 6 there exists a
measurable mapping ¢:Q2— X such that ¢(w) € F(w,¢(w)) and

sup inf [Re(u,p(w) —y) + f(w,d(w),y)] <0
y € F(w,¢(w)) u€T(w,d(w))

for all w € Q.

If, in addition, the conditions (1), (2) and (3) hold, we shall find another measurable (single-
valued) mapping p: Q—E™ such that p(w) € T'(w, ¢(w)) and

sup [Re(p(w), d(w) = y) + f(w,$(w),y)] < 0
y € F(w, ¢(w))

for each w € Q.
Fix any w € Q. Define f,: F(w, ¢(w)) x T'(w, ¢(w))—R by
f](y7 u) = Re(,u’ ¢(w) - y) + f((.d, ¢(w’y)
for each (y,u) € F(w,¢(w)) x T(w,p(w)). Then for each y € F(w,d(w)), w—f,(y,u) is lower semi-

continuous and convex and for each fixed u € T'(w,¢(w)), y—f;(y,u) is concave. By Kneser’s
Minimax Theorem [20],

inf sup [Re(u, d(w) — y) + f(w, (w), y)] =
u€T(w,¢(w)) y€F(w, d(w))

sup inf [Re(u, ¢(w) —y) + f(w, ¢(w)’ y)] <0.
Y€ F(w,¢(w)) u€T(w,¢(w))

Since T'(w, ¢(w)) is compact, there exists u, € T'(w, ¢(w)) such that

sup [Re(ug, $(w) — y) + f(w, d(w),y)] < 0.
y € F(wv qS(w))

Now we define <I>,T1:Q——~>2X by

O(w) ={ueT(w¢(w): sup  [Re(u,¢(w)—y)+ f(w,é(w) y)] <0}
y € F(w,¢(w))

and

Ty(w) = T(w ¢(w))

for each we€ Q. Note that ®(w)# 0 for all we Q. Since T and ¢ are measurable, T is also
measurable by Lemma 3 in [28, p. 55]. Define g;:Qx X x X x E§—R by

gl(w,x,y,u) = Re(u,x - y> + f(wa$vy)

for each (w,z,y,u) € Ax X x X x Ejj. Then g, is measurable. Also we define g,:Q2x X x Ej—R
by

92(“"»3/’ u) = Re(“? ¢(w) - y) + f(w» ¢("‘))’ y)
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for each (w,y,u) € Qx X x E5. Now define F:Q x 2X by
Fi(w) = F(w,¢(w))

for each w € Q. Since ¢ is measurable and F is also measurable, g, and F'; are measurable by
Lemma 3 in [28, p. 55] again. Let g3:Q x Ej—R by

gs(wyu) = sup  gylwyu)=  sup  [Re(u,(w)—y) + f(w, $(w),y)]
y € F(w, $(w)) y € F(w,p(w))

for each (w,u) € 2x Ej. We shall show that g; is measurable. Since F, is measurable by
Theorem B, there exists a countable family of measurable mappings p,.:Q2—X such that F,(w) =
c{p,(w): n=1,2,...} for each w € Q. Since ¢ is measurable, for each fixed (u,y) € E* x X, the
mapping w—Re(u,#(w) —y) is measurable. Note that the mapping (u,y)—Re(u,¢(w)—1y) is
continuous, so that the mapping (w,u,y)—Re(u,d(w)—y) is measurable by Theorem III.14 of
Castaing and Valadier [9, p. 70]. For each n € N, the function ¢/:Q x E*—R, defined by

In(w,u) = Re(u, ¢(w) — p,(w)) + f(w, d(w), pp(w))

for each (w,u)€ Qx E™ is measurable. Therefore, for each n €N, the mapping (w,u)—
Re(u,¢p(w) — p,(w)) + f(w,d(w), p,(w)) is also measurable.  Since for each (w,z)€QxX,
y—f(w,z,y) is lower semicontinuous, it follows that for each r € R,

[e.o]
{(w,u) € Qx E*:g(w,u) <1} = [ {(w,u) € Qx E*: gy (w,u) < v} € T ® B(E™).
n=1
Therefore the function g4 is measurable so that the set My = {(w,u) € Qx Ej: g3(w,u) <0} €X®
B(E™). Hence Graph® = (GraphT,)N My € ¥ Q B(Ej). By Theorem B, there exists a measur-
able mapping p:Q2—E( such that p(w) € ®(w) for each w € Q. By the definition of ®, the measur-
able mapping p satisfies the following:

$(w) € F(w,¢(w)) and p(w) € T'(w, $p(w))
SUPy ¢ P(w, p(w)) [ FE(P(w), (W) —y) + f(w, $(w), y] < 0. 0

Note that if 7:Qx X—25" is such that for each w € Q, T'(w, -) is upper semicontinuous with
non-empty strongly compact values, then by Lemma 2 of Kim and Tan in [19, p. 140] or Theor-
em 1 of Aubin in [3, p. 67], the condition (7¢) of Theorem 10 is satisfied. Thus Theorem 10 is a
stochastic version of Theorem 3 of Shih and Tan in [33, p. 340]. Recall that for a topological
vector space E, the strong topology on its dual space E* is the topology on E™ generated by the
family {U(B;¢): B is a non-empty bounded subset of E and € > 0} as a base for the neighborhood
system at zero, where U(B;¢): = {f € E*:sup, ¢ g| Re(f,z)| <e}.

Now if we impose the upper semicontinuity condition to correspondence T, then we have the
following:

Theorem 11. Let (Q,X) be a measurable space with ¥ a Suslin family and X a non-empty
conver and Polish bounded subset of a locally convex Hausdorff topological vector space E.
Suppose
(7) F:Qx X—>2)f*is random continuous with non-empty compact and convez values;

(37) T:Qx X—2EF" is such that for each given w € Q, T(w, -) is upper semicontinuous
with non-empty strongly compact and convex values;

(i17)  f:Qx X x X—R s such that
(a) for each fized (w,y) € Qx X,z—f(w,z,y) is lower semicontinuous on X;
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(b) for each fized (w,z) € @ x X,y f(w,z,y) is 0-diagonally concave;

() {(w,z) € Qx X:sup, ¢ F(%x)infu c T(W,J)Re(u,x -+ f(w,z,y) >0} € £ ® B(X);

(v)  for each w€Q, there exist a non-empty compact convezr subset X (w) of X and a
non-empty compact subset K(w) of X such that for each z € X\K(w) there exists
y € co(Xy(w)U{z}) with y €co(F(z)N{z € X:sup, ¢ T(wyz)Re(u, T —z)+
f(w,z,2) >0}).

Then,

(a)  for each fized weEQ, the set {z € X: SUp,, ¢ F(w'x)[infu c T(w,z)Rdu,:c —-y)+
f(w,z,y)] > 0} is open in X;

b)) {(wr)eQxX:z€ F(w,z)} €X®B(X);

(¢)  there exists a measurable mapping ¢:Q—X such that ¢(w) € F(w,d(w)) and

1 ¢ T, o)) L RE(H: B() = 1) + F(,6(), )] < 0

for all y € F(w,¢(w)) and w € Q.

Proof. (a) Fix we . Since X is a bounded subset of the locally convex Hausdorff
topological vector space E, and E™ is equipped with the strong topology, the function t;: E* x
X x X—RU{ — o0, + 00}, defined by

1[)1(11, -’Lf,y) = Re(“vr - y)

for each (u,z,y) € E*x X x X, is continuous. Since T'(w, ~):X——>2E* is upper semicontinuous
with non-empty strongly compact values, by Theorem 1 of Aubin [3, p. 67], the function ,: X x
X—-RU { — o0, + oo} defined by

Yo(z,y) = inf Re(u,z —y)
u € T(w,x)

for each (z,y) € X x X, :1s also lower s‘emiC(.)ntinuous. T}.I.I}S the mapping (x,y)»—»i)r(zfqu(w,x)
Re(u,z —y) + f(w,z,y) is lower semicontinuous by (iit). As F(w,-):X—2" 1is lower
semicontinuous with non-empty values, by Proposition I1I-19 in [4, p. 118], the mapping z—
SUPy ¢ F(w x)infué T(w x)[Re(u,:c —y)+ f(w,z,y)] is lower semicontinuous from X to

R U { — 00, + 0o} for each fixed w € €, so that the set

Y(w)={z € X: sup inf  [Re(u,z —y) + (w,z,y)] > 0}
y€ F(w,z) u€T(w,zx)

is open in X.

(b) Since F is random continuous with closed values, by Theorem 3.5 in [17, p. 57] and
Lemma 2.5 of Tan and Yuan [37], the set {(w,2) € 2x X:z € F(w,z)} € ZQ B(X).

Thus all hypotheses of Theorem 10 are satisfied, the conclusion follows. a

If both correspondences T' and F' are measurable, we have the following:

Theorem 12. Let (Q2,%) be a measurable space with ¥ a Suslin family and X a non-empty
conver and Polish bounded subset of a locally convex Hausdorff topological vector space E.
Suppose that

(1) F:Qx X—2% is measurable such that for each w € Q, F(w, ) is continuous with
non-empty compact and convez values;

*
(it) T:Qx X—2F" is measurable such that for each we Q, T(w, +) is upper semiconti-
nuous with non-empty strongly compact and conver values;
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(317)  f:Q2x X x X—R is measurable such that
(a) for each fized (w,y) € Ax X, z— f(w,z,y) is lower semicontinuous on X;
(b) for each fized (w,z)€QxX, flw,z,2)=0 and y—f(w,z,y) is lower
semicontinuous and concave;
(iv)  for each w € Q, there exist a non-empty compact convex subset X (w) of X and a
non-empty compact subset K(w) of X such that for each © € X\K(w) there exists
y € co(Xo(w) U {z}) with y € co(F(w)N{z € X:sup,, ¢ T(W’Z)Re(u,x —z)+ f(w,z,2)
> 0}).
Then there ezist measurable maps ¢:Q—X and p:Q—E* such that ¢(w) € F(w,d(w)), p(w) €
T(w,¢(w)) and

sup  [Re(p(w), $(w) —y) + f(w, ¢(w),y)] <0
y € F(w,¢(w))

for all w € Q.

Proof. By Theorem 10 and Theorem 11, it remains to prove that {(w,z)€ QxX:
SUp, ¢ F(ww)infu 6 T(w’x)Re(u,a: —y)+ f(w,z,y) >0} € £ Q B(X).

Since T' and F' are measurable, by Theorem 4.2 (e) of Wagner [44], there exist two countable
families of measurable maps p,:Q2x X—X and ¢,:Qx X—E”* such that F(w,z) = cl{p,(w,z):
n=12,...} and T(w,z) = cl{q, (w,z):n=1,2,...} for each (w,z) € AxX. We define gy: E* x
XX X—-RU{-o00, + 00} by

go(u’zay) = Re(uv’c - y)

for each (u,z,y) € E*x X x X. Then g, is continuous and is measurable. Therefore the function
9o X E* x X x X—R U { — 00, + o0} defined by

gb(w’ u,x,y) = Re(u,m - y) + f(w’ x,y)

for each (w,u,z,y) €QAx E*x X x X, is also measurable since f is measurable. Now fix any
z € N, note that p,:Qx X—X is measurable and f is measurable. For each j € N, the function
g?:Qx X—RU{ — o0, + 00} defined by

g?(w,x) = Re(qj(w,z),:c —pp(w,z)) + f(w,z,p,(w,))

for each (w,z) € Qx X, is measurable by Lemma 3 in [28, p. 55]. Therefore the mapping
9,:2x X>RU{ — 00, + 0o} defined by

gp(w,z) =1inf g?(w,:l:) =inf [Re(qj(w,x),w = pp(w,z)) + f(w, z, p,(w, T))]
jeN ieN
for each (w,z) € 2 x X, is measurable. Note that g:2x X—>R U { — 0o, + 0o} defined by

g(w,z) =sup g,(w,z)
n e N

for each (w,z)€ Qx X, is also measurable. Since for each (w,r)€ Qx X, the mapping
y—f(w,z,y) is lower semicontinuous, the set

{(w,z) €EQx X:  sup inf  [Re(u,z —y) + f(w, z,u)] > 0}
y € F(w,z) u€T(wz)
={(w,z) € Qx X:sup inf [Re(g;(w,z), — pp(w, ) + f(w, 2, pp(w,2))] > 0}
neN jeN
= {(w,2):g(wr7) > 0} € S & B(X).
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Therefore, we have

{(wyz) eQXx X: sup inf  Re(u,z—y)+ f(w,z,y) >0} € Z® B(X). ]
y€F(w,z) u€T(w,z)

Corollary 13. Let (2,X) be a measurable space with ¥ a Suslin family and X a non-empty
compact convez subset of a Banach space E whose dual space E* is separable. Suppose that
(%) F:Qx X—2% is measurable such that for each w € Q, F(w, -) is continuous with
non-empty compact and convez values;

(F1) T:Qx X—2E" is measurable such that for each w € Q, T(w, -) is upper semicontin-
uous with non-empty strongly compact and conver values;
(i17)  f:Qx X x X—R is measurable such that
(a) for each fized (w,y) € Ax X, z— f(w,z,y) 1s lower semicontinuous on X;
(b) for each fized (w,z) € Ax X, f(w,z,2) =0 and y— f(w,z,y) is lower semicontin-
uous and concave.
Then there exist measurable maps ¢:Q—X and p:Q—E* such that ¢(w) € F(w,¢p(w)), p(w) €
T(w,¢(w)) and
sup [Re(p(w), (w) —y) + f(w, d(w),y)] <0
Yy € F(w, ¢(w))
for all w € .

By allowing f to be zero in Corollary 13, we have the following:

Corollary 14. Let (2,X) be a measurable space with ¥ a Suslin family and X a non-empty
compact convex subset of a Banach space E whose dual space E* is separable. Suppose that
(%) F:Qx X—2X is measurable such that for each w € Q, F(w, - ) is continuous with
non-empty compact and convex values;

(1) T:Qx X—2E" is measurable such that for each w € Q, T(w, - ) is upper semicontin-
uous with non-empty strongly compact and convez values.
Then there exist measurable map ¢:Q—X and p:Q—E* such that ¢(w) € F(w,d(w)),
p(w) € T(w,¢(w)) and
sup Re(p(w),d(w) —y) <0

y € F(w,é(w))
for all w € Q.

Theorem 11 is also a stochastic version of Theorem 4 of Shih and Tan in [33, p. 341] (and its
improvements due to Kim [18] and due to Shih and Tan [33, Theorem 2, p. 69-70] (with M = 0)).

Theorem 11 generalizes a theorem of Tan [36, p. 326] in the following ways:

(1) the correspondence T is upper semicontinuous instead of being continuous, and

(2)  the function f need not be random continuous.
In the case where F(z) = X and T'(x) =0 for each z € X, Theorem 11 also improves Theorem
9.2.3 of Zhang [47, p. 304] with weaker continuity and measurability conditions. We also remark
that our arguments used in proving the existence of solutions for generalized random quasi-
variational inequalities in this section are different from those used by Tan [36] and Zhang [47],
etc.

Quasi-variational inequalities and generalized quasi-variational inequalities have many
applications in mathematical economics, game theory and optimization and other applied science
(e.g., see [3-4], [7], [15] and [25]). Random quasi-variational inequalities and generalized random
quasi-variational inequalities will also have many applications in random mathematical
economics, random game theory and related fields.
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