
Journal of Applied Mathematics and Stochastic Analysis
7, Number 4, 1994, 467-486

NON-COMPACT RANDOM GENERALIZED GAMES
AND RANDOM QUASI-VARIATIONAL INEQUALITIES

XIAN-ZHI YUAN
Department of Mathematics, Statistics, and Computing Science

Dalhousie University, Halifax, N.S., Canada B3H 3J5
and

Department of Mathematics
The University of Queensland, Brisbane, Australia 072

(Received October, 1993; revised June, 1994)

ABSTILCT

In this paper, existence theorems of random maxima] elements, random
equilibria for the random one-person game and random gencrMized game with a

countable number of players are given as applications of random fixed point
theorems. By employing existence theorems of random generalized games, we

deduce the existence of solutions for non-compact random quasi-variational in-
equMities. These in turn are used to establish several existence theorems of non-

compact generalized random quasi-variational inequalities which are either
stochastic versions of known deterministic inequalities or refinements of corres-

ponding results known in the literature.
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1. Introduction

Since Spacek [34] and Hans [14] established some existence results of random fixed point
theorems in the fifties, random fixed point theory has received much more attention in recent
years, e.g., see Bharucha-Reid [5], Bocsan [8], Engl [13], Itoh [16], Kucia and Nowak [21], Lin

[23], Liu and Chen [24], Nowak [26], Papageorgiou [27], Rybinski [28], Sarbadhikari and
Srivastava [31], Sehgal and Singh [32], Tan and Yuan [37-38] and Xu [45], etc. Recently, we

proved a very general random fixed point theorem in [37] (e.g., see Theorem A below). In this

paper, as applications of random fixed point theorem in [37], existence theorems of random
maximal elements, random equilibria for a random one-person game and random generalized
games with a countable number of players are given. By employing existence theorems of

random generalized games, we deduce the existence ofsolutions for non-compact random quasi-
variational inequalities which in turn are used to establish several existence theorems of non-

compact generalized random quasi-variational inequalities which are either stochastic versions or

Printed in the U.S.A. @1994 by North Atlantic Science Publishing Company 467



468 XIAN-ZHI YUAN

improvements of corresponding results in the literature, e.g., Aliprantis et al. [1], Arrow and
Debreu [2], aubin [3], aubin and Ekeland [4], Bharucha-Rei.d [5], Borglin and Keiding [6], Border
[7], Bocsan..[8], Hans [14], Kucia and Nowak [21], Liu and Chen [24], Mas-Colell and Zame [25],
Nowak [26], Papageorgiou [27], Rybinski [28], Shih and Tan [33], Spacek [34], Tan [35-36], Tan
and Yuan [39], Tarafdar and Mehta [41], Toussaint [42], Tulcea [43], Yannelis and Prabhakar
[46], Zhang (Chang)[47], and Zhou and Chen [48].

2. Preliminaries

The set of all real numbers is denoted by and the set of natural numbers is denoted by [.

If X is a set, we shall denote by 2X the family of all subsets of X. Let A be a subset of a

topological space X. The set A is said to be compactly open if A is relatively open in each non-

empty compact subset of X. We shall denote by intx(A the interior of A in X and by Clx(A
the closure of A in X. If A is a subset of a vector space, we shall denote by coA the convex hull
of A..If A is a non-empty subset of a topological vector space E and S, T: A2E are correspon-
dences, then coT, T3S: A--,2E are correspondences defined by (coT)(x)-coT(z)and
(TfqS)(x)- T(x)fqS(x) for each x E A. If X and Y are topological spaces and (f2, E)is a

measurable space (see definition below), and T: f2 X2Ie is a correspondence, the Graph of T,
denoted by GraphT, is the set {(w,x,y) Ef2XY" yGT(w,x)} and the correspondence
"f2X2Y is defined by (w,x)-{yG Y:(x,y) GclxxyGraphT(w -)}, and clT’f2X---,2Y

is defined by clT(w,x)-cly(T(w,x)) for each (w,x) Gf2X. It is easy to see that
clT(w, x) C T (,), x) for each (w, x) E f2 x X.

If X and Y are topological spaces, A C X Y, and F: X-2Y, then
(1) the domain of F, denoted by DomF, is the set {x X" F(z) # };
(2) the projection of A into X, denoted by PvojxA is the set {x G X: there exists

some y Y such that (x,y) A};
(3) F is said to be lower (respectively, upper)semicontinuous if for each closed

(respectively, open) subset C of Y, the set {z E X: F(x) C C} is closed (respectively,
open) in X;

(4) F is said to be compact if for each z G X, there exists a open neighborhood Vz of z
in X such that F(Vz)- t2 z .vzF(z) is relatively compact in Y; and

(5) x G X is a maximal element of F if F(x)- lb.
Note that DomF- ProjxGraphF.

Let X be a subset of a topological vector space E. The set X is said to have the property
(K) (see [43]) if for each compact subset S of X, the convex hull coB of B is relatively compact
in X.

Let X be a topological space, Y a non-empty subset of a vector space E, 0: X---E a (single-
valued) mapping and : X--.2Y a mapping. Then

(1) is said to be of class Lo if for every x X, co(x)C Y and Q(x) co(x) and for
each y Y, -(y): {x G X: y G (x)} is compactly open in X;

(2) a correspondence ez:X--+2Y is said to be an L0-majorant of at x G X if there
exists an open neighborhood Nz of x in X such that
(a) for each z Nx, (z)C ez(z) and O(z) coez(z ),
(b) for each z X, co(z) C Y and
(c) for each y G Y, -U(y)is compactly open in X;

(3) is L0-majorized if for each x G X with (x) 7(= , there exists an L0-majorant of
atxGX.

We shall only deal with either the case (I) X- Y and which is a non-empty convex subset of a



Non-Compact Random Generalized Games and Random Quasi-Variational Inequalities 469

topological vector space and 0 Ix, the identity mapping on X (in this case, the above notions
coincide with the corresponding notions introduced in [46]), or the case (II) X H E IXi and

--= 7rj:X----Xj is the projection of X onto Xj and Xj- Y is a non-empty convex subset of
atopological vector space. In both cases (I) and (II), we shall write L in place of Lo.

A measurable space (f, ) is a pair where f is a set and is a o.-algebra of subsets of f. If
X is a set, A C X, and is a non-empty family of subsets of X, we shall denote by M A the
family {DMA:D E } and by o.x() the smallest o.-algebra on X generated by . If X is a

topological space with topology rx, we shall use %(X) to denote o.x(rx), the norel o.-algebra on

X. If (f,) and (,F) are two measurable spaces, then P (R) F denotes the smallest o.-algebra on

f which contains all the sets A B, where A E , B G F, i.e., (R) I’ 0. x( F). We note
that the Borel o.-algebra %(Xi X2) contains %(Xl)(R) %(X2) in general. A mapping f:f is
said to be (, I’) measurable (or simply, measurable) if for each B G r, f- l(B)= {x G f: f(x)
B} E . Let X be a topological space and F:(f,)-2x be a mapping. Then F is said to be
measurable (respectively, weakly measurable)) if F l(B) {w e f: F(co) fl B = q} G Z for each
closed (respectively, open) subsets B of X. The map F is said to have a measurable graph if
GraphF: {w, y)G f X: y F(w)} E (R) %(X). A function f:f--,X is a measurable selection
of F if f is a measurable function such that f(co) G F(co) for all co G f.

If (f/,E;) and (,r) are measurable spaces, g is a topological space, then a mapping F: f/x
q--2Y is called (jointly) measurable (respectively, weakly measurable) if for every closed
(respectively, open) subset B of Y, F I(B) {(co, x) e a x : F(co, x) M B - } e N (R) I’. In the
case X, a topology space, then it is understood that r is the Borel o.-algebra %(X).

A topological space X is
(i) a Polish space if X is separable and metrizable by a complete metric;
(ii) a Suslin space if X is a Hausdorff topological space and the continuous image of a

Polish space.
A Suslin subset in a topological space is a subset which is a Suslin space. "Suslin" sets play very
important roles in measurable selection theory. We also note that if X1 and X2 are Suslin
spaces, then %(X x X2)-- %(X1)x %(X2)(e.g., see [9, p. 113]).

Denote by J and the sets of infinite and finite sequences of positive integers respectively.
Let be a family of sets and F:(jl--+ be a map. For each o.- (o’i) 1 E } and n C N, we shall

denote (0.1,...,0.) by o. In; then I,.J J"l F(o. In)is said to be obtained from by the Suslin
o’Er’, n=l

operation. Now, if every set obtained from in this way is also in (j, then is called a Suslin
family (e.g., see [22], [30], [44], etc.).

Let X and Y be topological spaces, (f,) a measurable space and F’f/x X--+2Y be a map-
ping. Then

(a) F is a random operator if for each fixed e X, the mapping F(.,x)’a+2Y is a

measurable map;
(b) F is random lower semicontinuous (respectively, random upper semicontinuous,

random continuous) if F is a random operator and for each fixed co E f/, F(co,. ):
X---2Y is lower semicontinuous (respectively, upper semicontinuous, continuous);
and

(c) a measurable (single-valued) mapping :a--,X is said to be a random maximal
element of the correspondence F if F(co, (w)) t for all co e a.

Let (f,) be a measurable space, X a topological space and F:f x X+2x a mapping. The

(single-valued) mapping :f/+X is said to be
(i) a deterministic fixed point of F if (co)e F(w, (w)) for all co eft; and

(ii) a random fixed point of F if is a measurable mapping and (w)e F(w, (x)) for

all co f.
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It should be noted here that.some authors define a random fixed point of F to be a measurable
mapping such that (w)E F(w,(w)) for almost every w E Ft, e.g., see [27], [28] and the
references therein.

Let I be any set of players and (,E) be a measurable space. For each I, let its strategy
set X be a non-empty subset of a topological vector space. Let X H E IXi" For each I, let

x.
Pi:x X--2 be a correspondence. The collection r- (,Xi, Pi) I will be called a random
qualitative game. A measurable map :--X is said to be a random equilibrium of the random
qualitative game r if Pi(w, (w)) q} for all I and all w .

A random generalized game (abstract economy) is a collection r- (;Xi;Ai, Bi;Pi) I
where I is a (finite or infinite) set of players (agents) such that for each I, X is a non-empty

subset of a topological vector space and Ai, Bi’xX-2Xi are random constraint

correspondences where X- H iXi, and Pi’xX--2Xi is a preference correspondence (which
are interpreted as for each player (or agent) I, the associated constraint and preferences Ai,
B and Pi have stochastic actions). A random equilibrium of r is a (single-valued) measurable
mapping ’--,X such that for each iI, 7ri((w))Bi(w,(w)) and Ai(w,(w))f3
Pi(w, (w)) q} for all w . Here, r is the projection from X onto Xi. If x E X, we shall also
write x in place of 7ri(x if there is no ambiguity. We remark that if Ai, B and Pi of the
random generalized game r- (;Xi;Ai, Bi;Pi) I are independent of the variable w , i.e.,
Ai(w Ai(. ), Bi(w Bi(. and Pi(w, Pi(" for all w F/, when Bi( clx.Bi(
for each X (which is the case when B has a closed graph in X x Xi; in particular, whe{ clB
is upper semicontinuous with closed values), our definition of an equilibrium point coincides with
that of Ding et al. [12] in the deterministiccase; and if in addition, A B for each I, our
definition of an equilibrium point coincides with the standard definition of the deterministic case,
e.g., in Borglin and Keiding [7], Tulcea [43], and Yannelis and erabhakar [46].

We shall now list some results which will be needed in this paper. The following very general
random fixed point theorem is Theorem 2.2 of Tan and Yuan in [37].

Theorem A. Let (,E) be a measurable space, E a Suslin family and X a Suslin space.
Suppose F:x X--2x\(o} is such hat GraphF E(R) %(X x X). Then F has a random fixed
point if and only if F has a deterministic fixed point in X, i.e., for each w , F(w,.) has a

fixed point in X.

For a non-.self mapping generalization of the above result, we refer the reader to [38, Theorem
2.3]. The following measurable selection theorem is due to Lease [22, Corollary, p. 408-409].

,Theorem B. Le (t,,) be a measurable space, E a Suslin family and X a Suslin space.
Suppose F:Q---2X has non-empty values such that GraphF E(X). Then there exists a

of measurable selections of F such fhaf for each w e , the sc* {gn(w):n e N)sequence {gn}n
is dens in F().

The following lemma is Theorem 3.3 of Tan and Yuan in [39].
Lemma 1. Let -(Xi;Ai, Bi;Pi)i I be an abstract economy such that X-IIiE IXi is

paracompact.

(c)
(d)

Suppose the following conditions are satisfied:
for each I, X is a non-empty convex subset of a locally convex Hausdorff
topological vector space Ei;

for each I, Ai:X--,2Xi is lower semicontinuous such that for each x X, Ai(x
is non-empty and coAi(x C_ Bi(x);
for each G I, Ai Pi is. Lc-majorized;

I, {x X:(A # i. X;
there exist a non-empty compact convex subset Xo of X and a non-empty compact
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subset K of X such that for each y E X\K there is an x co(Xo U (y}) with x

co(Ai(y V1Pi(Y)) for all i I.
Then has an equilibrium point in K, i.e., there exists a point - (i)i e I K such that for, B() d A() P() .

The following result is Theorem 5.3 of Tan and Yuan in [40].
Lemma 2. Let F (Xi, Ai, Bi, Pi)ie I be an abstract economy such that X Hie iXi is

paracompact. Suppose the following conditions are satisfied:
(a) for each I, X is a non-empty closed convex subset of a locally convex Hausdorff

topological vector space E and X has the property (K);
(b) for each I, B is compact and upper semicontinuous with non-empty compact

onv va a A() C B() fo ac X;
(c) for each I, Pi is lower semicontinuous and Lc-majorized;
(d) for each I, E’ {x X:(A N Pi)(x) # } is open in X;
(e) there exist a nonempty compact convex subset X0 of X and a non-empty compact

subset Ix" of X such that for each y G X\K there is an x G co(Xo {y}) with x G
c(Ai(Y) Pi(Y)) for all iG I.

Then there exists -2 (i)i e I K such that for each I, -2i Bi(-2 and ai(-2 Pi(-2 "We also need the following result (e.g., see Theorem 1 of Ding and Tan [11]).
Lemma 3. Let X be a non-empty paracompact convex subset of a Hausdorff topological

vector space and P:X--,2X be L-majorized (i.e LI -marjorized). Suppose that there exist a
X

non-empty compact convex subset Xo of X and a non-empty compact subset K of X such that for
each y G z\K, there exists x G co(XoU {y}) with x G coP(y). Then there exists an G IX" such
that P() O.

3. Random Equihbria of Random Games

As an application of our random fixed point theorem, namely, Theorem A above, we shall
first prove the following existence theorem of random maximal elements:

Theorem 1. Let (,E) be a measurable space, E Suslin family, X a non-empty paracompact

convex and Suslin subset of a Hausdorff topological vector space E and Q: X---2X such that

for each given w G Q(w,.) is L1 -majorized and DomQ G (R) (X). Suppose that for each
x

fixed G , there exists a non-empty compact convex subset Xo(w of X and a non-empty
compact subset K(w) of X such that for each y X\K(w) there is an x co(Xo(w) U{y}) with
x G coQ(w,y). Then Q has a random maximal element, i.e., there exists a measurable mapping

:x .ch that Q(, ()) fo aa .
Proof. By Lemma 3, for each w G gt, there exists x G X such that Q(w, xw)= 0. Define

F:X-2X by F(w,x)-{yGX:Q(w,y)-q)} for each (w,x) GX. Then for each fixed
w E f], xw is a fixed point of F(w, ). In order to prove that GraphF E (R) %(X X), we define
a mapping C: X X X X by

c(, x, ) (, , )
for each (a, x, y) f x X x X. Then C is measurable. By hypothesis, DomQ E (R) %(X). Since

GraphF.,= {(co, x,y) G fx X x X:Q(w,y) O}
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C- 1[( X X\DomQ) (R) X] e (R) %(X X),

then, by Theorem A, F has a random fixed poivt , i.e., there exists :X is measurable such
that (w) F(w, (w)) for all w E which imp s that Q(w, (w)) 0 for each w E . El

As an application of Theorem A again, w( have the following existence theorem of random
equilibria for random one-person games:

Theorem 2. Let (,E) be a measurable space, E a Suslin family and X a non-empty
precompact convex and Suslin subset of a Hausdorff topological vector space. Let A,B,P"
x X--2X be such that

(i), for each w e , a(w, )9)P(w,. is L-majorized;
(it) A(w, x) is non-empty and coA(w, x) C B(w, x) for each (w, x) X;
(iii) (A(w,.))-l(y)_ {x G X’y A(w,x)} is open in X for each (w,y)G X;
(iv) Dom(a 9) P) and Proj x x[(GraphB) CI ( x A)] G E (R) %(X) where A {(x, x)"

xex};
(v) for each fixed w , there exist a non-empty compact convex subset No(w of X

and a non-empty compact subset K(w) of X such that for each y X\K(w) there is
an x co(Xo(w R {y}) with x e co(P(w, y)9) A(w, y)).

Then the random one-person game (;X;A,B;P) has a random equilibrium, i.e, there exists a

measurable mapping :--,X such that (w)G B(w,(w)) and A(w,(w))9)P(w,(w))-q) for all
wG.

Proof. Define O: x X--,2x by

(w,x) {y e X:A(w,y) 9)P(w,y) and y e B(w,y)}

for each (w,x)E x X. Then by Theorem 2 of Ding and Tan [11], for each w f/, there exists

x X such that x q(w, x) for all x X. It follows that q: x X2X\{0} and x E (w, x)
for all w so that q has a deterministic fixed point in X. Now define a mapping C’f x X x
X OxXxX, by C(w, x, y) (w, y, x) for each (w,x,y)OxXxX. Then C is measurable.
Note that

Graph C 1([ x X)\Dom(A 9) P)] X)

9) C l(Proj x x[Graph r"l ( x A)] x X)

e r (R) (x x x),

so that Graph E (R) %(X x X). By Theorem A, has a random fixed point , i.e., : x X is
measurable such that A(w, (w)) N P(w, (w)) 0 and (w) ( B(w, (w)) for all w

As another application of Theorem A, we have the following:

Theorem 3. Let (,E) be a measurable space with E a Suslin family and F-(;Xi;Ai, Bi;
Pi)i 6 I a random generalized game such that I is countable and X- H 6 IXi is paracompact.
For each G I, suppose that the followin9 conditions are satisfied"

(I) X is a non-empty convex and Sv.in subset of a locally convex Hausdorff topological
vector space;
Do. (A x[a av B r *
xeX).

(III) for each a, Ei(w {z X:Ai(w,x n Pi(w,x) 7 O} is open in X;
(IV) for each fixed w G , either

(i) (a) ai(w .):X---+2Xi is lower semicontinuous such that for each x G X,
ai(w,x is non-empty and coai(w,x c Bi(,x), and



Non-Compact Random Generalized Games and Random Quasi-Variational Inequalities 473

(b) Ai(w V Pi(w, is L-majorized;
or

(ii) (a) Bi(w .) is upper semicontinuous with non-empty compact and convex
values such that for each x G X, Ai(w,x C Bi(w,x), and

(b) Pi(co, is lower semicontinuous and L-majorized, and X is closed and has
he property (K);

(v) .o.- mvtu comv c Xo( 4 X
and a non-empty compact subset K(w) of X such lhat for each y G XK(w) lhere is
an x G co(Xo( {y}) wilh x G co(Ai(w,y Pi(w,y)) for all G I.

Then F as a random equilibrium.

Prof. First we note that as each X is a Suslin space and I is countable, X is also a Suslin
space. For each G I, define i: x X2X by

i(w,x) {y E X’Ai(w,y) NPi(w,y) 0 and ri(y Bi(w,y)}

for each (co, x) xX. Define :xX--+2X by (co, x) iEii(co, x)for each (co, x)xX.
Then by Lemma 1 or Lemma 2, for each co , there exists xw X such that xo i(co, x) for
all x X and for all I so that x (w,x) for all x X. It follows that : x X-2x\{o}
and x, (co, xw) for all co so that has a deterministic fixed point in X. Now define a

mapping C: x X x X-- x X x X by

v) v,

for each (co, x, y) EFt x X x X. Then C is measurable. Note that

Graphq C 1([ x X\Dom(A V1 Pi)] X)

C l(Projfl x[GraphBi ( Ai)] X)

e r,(R) x x),

and I is countable, we have Graphq- i IGraphqli E(R) %(X x X). By Theorem A, there
exists a measurable mapping :-+X such that (w)qI(w,(w)) for all w; i.e.,
Ai(w (w) V) Pi(co, (w)) 0 and 7ri(i(w)) Bi(w (w)) for all co E and for all I. [-I

As a consequence of Theorem 3, we have the following existence theorem of random
qualitative games:

Theorem 4. Let (,E) be a measurable space with E a Suslin family and F (;Xi;Pi) I
a random qualitative game such that I is countable and X H iX is paracompact. For each

I, suppose that the following conditions are satisfied:
(i) X is a non-empty convex and Suslin subset of a locally convex Hausdorff topological

vector space;
(ii) nomP E (R) %(X);
(iii) for each co , nomPi(co .)is open in X;
(iv) for each fixed co gt, Pi(w, is L-majorized;
(v) for each fixed co , there exist a non-empty compact convex subset Xo(co of X

and a non-empty compact subset K(w) of X such thai for each y X\h’(w) there is

an x co(Xo(co U {y)) with x co(Pi(co y)) for all I.
Then F has a random equilibrium.

Proof. For each iI, define Ai, Bi’fxX---2xi by Ai(w,x)-Bi(w,x)-X for each
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(w,x) E x X. Then it is easily seen that all hypotheses of Theorem 3 are satisfied. By Theorem
3, the conclusion follows. V1

4. Random Quasi-Variational Inequalities

In this section, by our existence theorems of random equilibria for random generalized games,
namely, Theorem 3, some existence theorems of random quasi-variational inequalities and genera-
lized random quasi-variational inequalities are given. Our results not only generalize the results
of Tan [36] and Zhang [47], but also they are the stochastic versions of corresponding results in
the literatures, e.g., see Aubin [3], Aubin and Ekeland [4], Hildenbrand and Sonnenschein [15],
Shih and Tan [33], Tan [35, 36], Zhang [47], Zhou and Chen [48] and the references therein.

Here we emphasize that our arguments for the existence of solutions for non-compact random
quasi-variational inequalities are different from the approaches used in the literatures by Tan [36]
and Zhang [47].

Theorem 5. Let (,E) be a measurable space with E a eouslin family and I be countable. For
each I, suppose that the following conditions are satisfied:

(a) X is a non-empty convex and closed Suslin subset of a locally convex Hausdorff
topological vector space such that X has the property (K) and X H E IXi is
paracompact;

(b) for each fixed w , Ai(w )’X H e IX ---*2xi is upper semicontinuous with
non-empty compac and convex values;

(c) i: a x X x Xi--,R U { cx, + cx} is such that:
(c)1: (,*,) o .co.t.uou o. x o ach zd (, ) a x
(c)2: x q co{y Xi:i(w,x,y > 0} for each fixed (w,x) x X;
(c)3: for each fixed w , the set {x X:ai(w,x > 0} is open in X, where ci:fx

X-R U { cx, + cx} is defined by ai(w, x) supy e Ai(w, x)i(w’ x, Yi) for each
(w.x)axX;

() ((.)x:.(.)>o). a,((.)ZX:()zA(.))Z(R)(X);
(e) for each given w , there exist a non-empty compact convex subset Xo(w of X

and a non-empty compact subset K(w) of X such that for each y X\K(w) there
i co(Xo() {}) it co(A(,) {z x:(,,z) > 0}).

Then there exists a measurable mapping : --,X such that for I, ri((w)) Ai(w (w)) and

p (,(), ) < o
A(, ())

for all w E .
Proof. For each i I, define Pi:xX2Xi by Pi(w,x)- {y Xi’i(w,x,y) >0} for each

(w,x) xX. We shall show that G (;Xi;Ai;Pi)ie I satisfies all hypotheses of Theorem 3

withAi B for all I.

Suppose iI and w. By (c)1 for each fixed yXi, (Pi(w,.))-l(y)-{xX"
i(w,x,y) > 0} is open in X and by (c)2 x coPi(w,x) for each x X. This shows that

Pi(w,. is lower semicontinuous and is of class L and hence is L-majorized. By the definition of

ai, we note that {xX:Ai(w,x)pi(w,x)O}={xX:ai(,x)>0}, so that {xX:
Ai(w,x)Pi(w,x # O} is open in X by (c)3..By (d), we know that Dom(AiPi) E@(X)
and

Pojn x[GavA ( )] r (X).

Thus G (,Xi, Ai, Pi) I satisfies all hypothesis of Theorem 3 with A B for each I. By
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Theorem 3, there exists a measurable mapping : --,X such that for each E I,

ri((w)) E Ai(w (w)) and Ai( ()) gl Pi(w, (w)) 0

for all w f, i.e.,

rri((w)) Ai(w (w)) and sup i(w, (w), y) < 0
y Ai(w

for all w

Letting I {1} in Theorem 5, we have the following existence results on random quasi-varia-
tional inequalities:

Theorem ft. Let (,E) be a measurable space with E a Suslin family. Suppose hat the
following conditions are satisfied:

(a) X is a non-empty closed paracompact convex and Suslin subset of a locally convex

Hausdorff topological vector space, and X has the property (K);
() fo ac fid , A(,.)’X2x u cotiuo ith on-t

compact and convex values;
(c) : x X xX { , +} is such that:
(C)l (,,) i lo ico.ti.uou o. x fo ac fid (,) X;
(c): o{v X:(,,v) > O} o ac fid (,) e nxX;
(ch fo ac fid , t t { e X:.(,)> O} i ova. i. X, .:aX

X;
(d) {(,x)nx:(,)>O}, .U{(,)enX:xeA(,)}r.(X);
(e) for each given w G , there exist a non-empty compact convex subset Xo(w # X

it co(Xo()v{v}) it co(A(,v){z ex:(,v,z) > o}).
Then there exists a measurable mapping :X such that (w)G A(w,(w)) and

for all w . p (,(), ) < o
y A(w,

4. Generalized Random Quasi-Variational Inequalities

Let (, E) be a measurable space, X a non-empty compact convex subset of a locally convex
Hausdorff topological vector E and E* the dual space of E. Suppose the correspondences

F:xX--2X, T:X--2E* and the function f’xXxX--,U{-oc, +cx} are given. We
want to find a measurable mapping :fl--,X which satisfies the following generalized random
quasi-variational inequalities:

() .,F(, ())

supy F(w, (wll[SUPu T(,, (ollRe(u, 2(w) y) + f(w, g2(w, y)] _< 0

for each w ft. We also want to find two measurable maps : f2--+X and : f2---+E* such that

(w) E F(w, (w)) and (w)

Re((w), (w) y} + f(w, (w), y) _< 0
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for all y F(w, V(w)) and for all w ft.

In this section, by applying results in Section 3, we shall consider the generalized random
variational inequality problems (,) and (**) above.

Now we recall some definitions (e.g., see [48]). Let X be a non-empty convex subset of
topological vector space E. A function (w, y): X x X--- U { cx, + oe} is said to be

(1) 7-diagonally quasi-convex (respectively, 7-diagonally quasi-concave) in y, in short
7-DQCX (respectively, 7-DQCV) in y, if for each A e 5(X) and each y e co(A),
7 <_ maXx e At(y,x) (respectively, 7 _> inf e A(Y’X));

(2) 7-diagonally convex (respectively, 7-diagonally concave) in y, in short 7-DCX
(respectively, 7-DCV) in y, if for each A e5(X) and each y e co(A) with

Y 2ira= l’iYi (’i >-- 0, and Eim= li- 1), we have 7 _< Eim_ 1Ai(Y, Yi) (respectively,

Let X and Y be two non-empty convex subsets of E, we also recall that a function
X x Y---N U { cxz, + c} is quasi-convex (respectively, quasi-concave) in y, if for each fixed
X, for each A e if(Y) and each y e co(A), (x, y) <_ maxz e A(x’z) (respectively, (x, y) _>

minz e A(X’Z))" Moreover, it is easy to verify that
(i) if (x,y)is 7-DCX (respectively, 7-DCV)in y, then (x,y)is 7-DQCX (respective-

ly, 7-DQCV) in y,
(ii) if i:X x Y--,N is 7-DCX (respectively, 7-DCV) in y for each i= 1,2,...,m, then

(x,y)-Eim=lai(x)i(x,y) is also 7-DCX (respectively, 7-DCV) in y, where

ai: X--N with ai(x >_ 0 and Elm__ lai(x)- 1 for each x e X, and
(iii) the function (x,y): X x XN t2 { c, + c} is 0-DQCV in y if and only if x

co({y e X: (x,y) > 0}) for each x e X.

In what follows, we first, consider the existence of solutions of problem (,) for which
monotonicity is needed.

Theorem 7. Let (f,E) be a measurable space with E a Suslin family and X a non-empty
closed paracompact convex and Suslin subset of a locally convex Hausdorff topological vector
space E such that X has the property (K). Suppose that the following conditions are satisfied:

(i) F:ftxX--2X is such that for each fixed w e fS, r(w,.) is upper semicontinuous
with non-empty compact and convex values;

(ii) T:axX---,2E* is such that for each fixed we a, T(w, .) is monotone (i.e.,
Re(u- v,y- x) O for all u T(w,y) and v T(w,x) for all x,y X) with non-

empty values and for each one-dimensional fiat L C E, T(w,.) ILnX is lower
semicontinuous from the relative topology of X into the weak*-topology a(E*,E) of
E*;

(iii) f a x X x XN U {- , +} is such that xf(w, x, y) is lower semicontinuous on
x fo .ch fid (, v) e a x X a.d fo ach fid (, ) e a x X, wf(, , V) i
co.ca a.d I(, , ) 0 fo ac (, ) e a x X;

(iv) fo ach fid a, th t { e X:p e F(,x)[V- e (,)R(’x- V) +
f(, , V)] > O} i ovn i. X;

(v) {(w,x) GxX’supyF(wx)[suPuT(w,y)Re(u,x--y)+f(w,x,y)]>O}G
(x);

(i) {(,x)eax:er(,)}e.(x);
(vii) for each 9ivan G , there exist a non-empty compact convex subset Xo(w of X

and a non-empty compact subset K(w) of X such that for each x XK(w) there
i v e co(Xo() {}) it v e co(r(,) {z e x. v. e r(,)R(, z) +
f(,,) > o}).

n it a ma.at mavpiu :aX .c tat ()e (,()) a.d
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sup IRe(u, (w) y) + f(w, (w), y)] _< 0. T(,())

.for all y G F(w, (w)) and w

Proof. Define a function " [2 x X x X---[ t2 { cxz, + cxz} by

(w, x, y) sup Re<u, x y) + f(w, x, y)
=eT(,u)

for each (w,x,y) fix X x X. By (iii), x(w, x, y) is lower semicontinuous on X for each
(w,y) ftxX. For each w ft, since T(w,.) is monotone, by (iii), it is easy to verify that
(w, x, y) is 0-DCV in y by Proposition 3.2 of Zhou and Chen [48]. The conditions (i)-(vi) imply
that all hypotheses of Theorem 6 are satisfied. By Theorem 6, there exists a measurable mapping
(I): ftX such that (w) F(w, (w)) and

sup sup
e (,()) e T(,)

for all w G ft. We shall now prove that

[R<,() ) + (, (), )] < 0 (1)

sup sup [Re(u, (w) y) + f(w, (w), y)] < 0
(,()) T(, ())

for each w .
Fix an w . Let x F(w,(w)) be arbitrarily given and let zt(w tx + (1-t)(w)=

(w)- t(()- x) for t [0, 1]. As F(w, (w)) is convex, we have zt(w F(w, (w)) for t [0, 1].
Therefore, by (1) we have

sup IRe(u, (w)- zt(w))+ f(w, (w), zt(w))] _< 0
u e T(o, zt(o))

for all t [0, 1].
Since for each x X, yf(w, x, y) is concave and f(w, x, x) 0, it follows that for t (0, 1],

sup [Re(u,(w)- x)] + f(w,(w),x)}
uT(,zt())

uET(w, zt(w))
t" IRe(u, (w) x)] + f(w, (w), tx + (1 t)(w))

sup [Re(u,(w) zt(w)) + f(w,(w),zt(w)) <_ 0
uET(w, zt(w))

which implies that for t G (0, 1],

sup [Re(u,(w)-x)]+f(w,(w),x)]<_O.. (..zt(.))

Let zo T(w, (co)) be arbitrarily fixed. For each > 0, let

(2)

Uzo {z E*.lt(zo- z, ()- )1 < ).

Then Uz is a r(E*,E)-neighborhood of z0. Since T(co,. )1 L c X is lower semicontinuous where
L: {ztc0): [0, 1]}, and Uz n T(w,(w)) 7 O, there exists a neighborhood N((a)) of (w) in

L such that if z G N((a)), then T(w,(w))fqVzo 5 . But then there exists 6 G (0,1] such that

zt(w G N((co)) for all G (0,5). Fixing any G (0,5) and u G T(w, zt(co))N UZo we have
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Re<zo- u,(w)- z)[ < . This implies that

R(Zo, ()- > < R<,()- z> + .
Thus

Re<z0, (w) x> + f(w, (w), x) < Re<u, (w) x> + f(w, (w), x) + <

by (2). Since > 0 is arbitrary, ne<zo, (w) x> + f(w, (w), x)

_
0.

arbitrary, we have the following
As z0 E T(w,(w)), is

sup IRe<z, (w) x> + f(w, (w), x)]

_
0

for all x

Corollary 8. Let (,) be a measurable space with a Suslin family, X a non-empty
compact convex Suslin subset of a locally convex Hausdorff topological vector space E and F: x
X2X be such tha {(w,x)xX:xF(w,x)}(X). g for each fixedw, F(w,.) is

upper semicontinuous with non-empty compact convex values, then F has a random fixed point.

We shall now observe that in Theorem 7, the interaction between the correspondences T and
F (namely, the condition (iv)) can be achieved by imposing additional continuity conditions on T
and F.

Theorem 9. Le (,) be a measurable space with a Suslin family and X a non-empty
closed paracompacl convex and Suslin bounded subset of a locally convex Hausdorff topological

vector space E such tha X has the propery (K). If F:xX2X is such that for each

F(, is continuous wilh non-empty compac and convex values, and T: x X2E* is such ha
for each w, F(w, .) is continuous with non-empty compaci and convex values, and

T:xX2E* is such hat for each given w , T(w, .) is monotone wih non-empty values and
is lower semicontinuous from the relative opology of X to the strong topology of E*. Suppose
that

(i) f: a X X-R U { cx, + cx} is such that for each given w @ , (x, y)f(w, x, y)
is lower semicontinuous and for each fixed (w,x) x X, yf(w,x,y) is concave
and f(w, x, x) 0 for each (w, x) x X;

(ii) the set {(w,x)xX:supeF(w,z)supeT(,)[Re(u,x--y)+f(w,x,y)]>O}
+ (x);

(iii) {(,z) fix X:z F(,z)) (X);
(i) fo c 9i , i o- coac o Xo( q x

o-o g() of X c fo a XK()
i co(Xo()u{}) i co(F(,){z X.,(,z)n(,x-z)+
/(,,z) > 0}).

Then there exists a measurable mapping :X such that (w) F(w,(w)) and

R(() ) + f(, (), )] 0
e (,()) e T(, ())

for all w .
Prof. By Theorem 7, we need only show that for each given w , the set

r():={x: (,-)+/(,,)]>0}, e (,x) e T(,)
is open in X.
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Since X is bounded and f(w, .,. )is lower semicontinuous, the function (u,x,y)-+Re(u,x-
y) + f(w,x,y) is lower semicontinuous from E* x X x X to N for each fixed w E Q. Therefore
(x, y)+suPu T(w, u)[Re{u’ x y) + f(w, x, y)] is also lower semicontinuous by lower semicontin-
uity of T(w,-) and Proposition III-19 of Aubin and Ekeland [4, p.llS]. Since F(w,.)is lower
semicontinuous, xHsupy F(w_,x)supu Tfw, y)[R.e(u,x- y) + f(w,x,y)] is lower semicontinuous
by Proposition III-19 of [4, p. 118] again for each fixed w E Q. Thus the set
E(w)" {x X’supy F(,x)SUPuT(,x)[Re(u,x--y}+ f(w,x,y)] > 0} is open in X.

Now we will consider the existence of solutions for the problems (,) and (**) without
assuming the monotonicity as in Theorem 9.

Theorem 10. Let (f,E) be a measurable space with E a Suslin family and X a non-empty
convex and Polish subset of a locally convex Hausdorff topological vector space E. Suppose that:

(i) F:fx X2x is such that for each w f, F(w,.) is upper semicontinuous with
non-empty compact and convex values;

(it) T: w X-+2E* is such that x-infu T(w,x)Re(u, x- y) is lower semicontinuous for
each (w,y) G X;

(iii) f:n x xu i uh a f(..U) i tow mio.in.ou on X fo a
fixed (w,y) G X; and for each fixed (w,x) G X, y-+f(w,x,y) is O-diagonal
concave;

(iv) for each given w G , the Set

{x G X: sup inf Re(u,x-y) + f(w,x,y)] > O}
y F(w,x) u T(w,x)

is open in X;
(v) {(w,x) GxX:supyeF(,x)infueT(w,x)[Re(u,x--y)+f(w,x,y)]>O} G

+ (x);
(vi) ((,) x: F(,)} +(x);
(vii) for each fl, there exist a non-empty compact convex subset Xo( of X and a

uon-vu ovac ub g() of X .c fo XK() i

V o(Xo() {}) wi V co(F() {z X" (.z)R(. z) +
f(, , z) > 0 }).

T. i a ua6t avvi. : X .a ()e F(.()) a.d

inf IRe(u, (w) y)] + f(w, (w), y) _< 0
uT(w,(w))

for all y G F(w,(w)) and w G .
Suppose that in addition,

(1) for each fixed (, x) G f x X, yf(w, x, y) is lower semicontinuous and concave and

f is measurable;
(2) there exists a non-empty Polish subset E; of E* such that T(,X) C E;, T is

measurable with non-empty strongly compact convex values; and

(3) F is measurable.
Then there exist a measurable function p:.---,E* such lhat p(w) G T(w,(w))and

sup [Re(p(w), (w) y) + f(w, (w), y)] _< 0
(, ())

for allege.

Proof. Define : x X x X---,R tA { oc, + cx} by

(w,x,y)=inf
uT(w,x)

[Re(u, x y) + f(, x, y)],
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for each (w, x, y) e a x X X. Then by (ii), (iii) and (iv) we have:
(a) for each fixed (w,y)E f X, x-b(w, x, y) is lower semicontinuous on X and x

co({y X:b(w,x,y) > 0}) for each (w,x) fX;
(b) for each w G f, the set {x G X: sups F(w,x)b(w, x, y) > 0} is open in X.

Therefore, F and b satisfy all conditions of Theorem 6. By Theorem 6 there exists
measurable mapping : Ft--,X such that (w) G F(w, (w)) and

sup inf
(,()) ,, e T(, ())

IRe<u, () y) + f(, (), y)]

_
0

for all w E Q.

If, in addition, the conditions (1), (2) and (3) hold, we shall find another measurable (single-
valued) mapping p:E* such that p(w) T(w, (w)) and

sup [Re(p(w), (co) y> + f(co, (co), y)]

_
0

y e F(w,
for each co .

Fix any co a. Define fl: F(co, (co)) x T(co, (co))--R by

fl(Y, u) Re(U (co) y) + f(co, (co, y)

for each (y, u) e F(co, (co)) x T(co, (co)). Then for each y e F(co, (co)), u--fl(y, u) is lower semi-
continuous and convex and for each fixed uT(co,(co)), yHfl(Y,U is concave. By Kneser’s
Minimax Theorem [20],

inf sup
e T(,()) u e (,())

IRe(u, (co) y)+ f(co., (co), y)]

sup inf [Ie(u, (co) y) + f(co, (co), y)]

_
0.

u e F(,()) e T(,())
Since T(co, (co))is compact, there exists uo G T(co, (co)) such that

sup [ne(uo, (co) y) + f(co, (co), y)]

_
0.

y e
Now we define (I), T1" --2

X by

(I)(co) {u G T(co, (co)): sup [Re(u, (co) y) + f(co, (co), y)]

_
0}

u e (, ())
and

Tl(W T(co, (co))

for each co G f. Note that (I)(co)7! for all co G f. Since T and 4) are measurable, T is also
measurable by Lemma 3 in [28, p. 55]. Define gl’gt x X x X x E)N by

gl (CO, X, y, tt) te(tt, X y) nt- f(w, X, y)

for each (co, x, y, u) f x X x X x E0.
by

Then 91 is measurable. Also we define g2: X E0--N

92(co, Y, u) le(u, (co) y) + f(co, (co), y)
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for each (co, y, u) G fl X E). Now define Fl:f 2x by

Fl(W F(w,(w))

for each co E f. Since is measurable and F is also measurable, g2 and F1 are measurable by
Lemma 3 in [28, p. 55] again. Let g3:Ft E)--,N by

g3(co, u) sup g2(co, Y, u) sup IRe(u, (co) y) + f(co, (co), y)]
(,()) F(, ())

for each (co, u)E Ft E). We shall show that g3 is measurable. Since F1 is measurable by
Theorem B, there exists a countable family of measurable mappings Pn:X such that F(w)
cl(pn(w): n 1,2,...} for each w . Since is measurable, for each fixed (u,y) E*x X, the
mapping Re{u,(w)-y)is measurable. Note that the mapping (u,y)Re(u,(w)-y)is
continuous, so that the mapping (w,u,y)Re(u,(w)-y) is measurable by Theorem III.14 of
Castaing and Valadier [9, p. 70]. For each n N, the function g: x E*N, defined by

g’n(co, u) Re(u, (co) Pn(co)) + f(co, (co), Pn(co))

for each (co, u) axE*, is measurable Therefore, for each n eN, the mapping (co, u)H
Relu,(co)-pn(co))+f(co,(co),p,(co)) is also measurable. Since for each
yHf(co, z, y) is lower semicontinuous, it follows that for each r N,

e n E*: < e E*: u) < e (R)
n--1

Therefore the function g3 is measurable so that the set M0 ((co, u) E f Eo. g3(co, u) < 0} P (R)

%(E*). Hence Graph (GraphT1) M0 e (R) %(E). By Theorem B, there exists a measur-
able mapping p: f--,E) such that p(co) (I)(co) for each co f. By the definition of (I), the measur-
able mapping p satisfies the following:

(co) E F(co, (co)) and p(co)

supy E F(w,(w))[Re(p(co)’(co) Y) + f(co’ (co)’ Y] < 0.

Note that if T x X--2E* is such that for each co f, T(co,- is upper semicontinuous with
non-empty strongly compact values, then by Lemma 2 of Kim and Tan in [19, p. 140] or Theor-
em 1 of Aubin in [3, p. 67], the condition (ii) of Theorem 10 is satisfied. Thus Theorem 10 is a

stochastic version of Theorem 3 of Shih and Tan in [33, p. 340]. Recall that for a topological
vector space E, the strong topology on its dual space E* is the topology on E* generated by the
family {U(B; ): B is a non-empty bounded subset of E and > 0} as a base for the neighborhood
system at zero, where U(B;e): {f e E*:supx e B e(f,x) < }.

Now if we impose the upper semicontinuity condition to correspondence T, then we have the

following:

Theorem 11. Let (,E) be a measurable space with E a Suslin family and X a non-empty
convex and Polish bounded subset of a locally convex Hausdorff topological vector space E.
Suppose

(ii)

(iii)

F:f x X--+2X is random continuous with non-empty compact and convex values;
T: x X--2E is such that for each given w , T(w,.) is upper semicontinuous

with non-empty strongly compact and convex values;
f: f x X x X---,N is such that
(a) for each fixed (co, y) G a x X, xHf(co, x, y) is lower semicontinuous on X;
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Then

(iv)
(v)

(a)

(b) for each fixed (w, x) e a x X, y--f(w, x, y) is O-diagonally concave;
{(co, x) e ax X:supu e F(w,x)infu e T(,)Re(u’x- Y) + f(w,x,y) > 0} e E (X);
for each , there exist a non-empty compact convex subset Xo(W of X and a

non-empty compact subset K(w) of X such that for each x e XK(w) there exists
yGco(Xo(w){x}) with yGco(F(x) a{zGX:supueT(w,z)Re(u,z-z)+

> 0}).

for each fixed w E.[2, the set {x X" supu e F(w,x)[infu e T(w,x)Re(u, x y) +
f(co, x,y)] > 0} is open in X;

e a x: e e
there exists a measurable mapping :aX such ha () e F(, ()) and

infu e T(,(w))[Re(u’(w) Y) + f(co’(co)’Y)] <- 0

for all y e F(w,(w)) and w e f.

Proof. (a) Fix co f. Since X is a bounded subset of the locally convex Hausdorff
topological vector space E, and E* is equipped with the strong topology, the function l:E*x
X x X--N U { oc, + oc}, defined by

E*for each (u,x, y) G E* x X x X, is continuous. Since T(w, )" X--+2 is upper semicontinuous
with non-empty strongly compact values, by Theorem 1 of Aubin [3, p. 67], the function 2: X x
X--N U { oc, + oc} defined by

2(x, y) inf Re(u, x y)
uET(w,x)

for each (z,9) X x X, is also lower semicontinuous. Thus the mapping (z,y)i_n.fu
Re(u,z-y)+f(co, z, 9) is lower semicontinuous by (iii). As F(co, .):X---,2x is lower
semicontinuous with non-empty values, by Proposition 111-19 in [4, p. 118], the mapping
supuEF(w,z)infueT(w,z)[Re(u,z-y)+f(co,z,y)] is lower semicontinuous from X to

N U {- oe, + oc} for each fixed co [2, so that the set

N(w) {x X: sup inf [Re<u, x y) + (w, x, y)] > 0}
u e F(,x) e T(,)

is open in X.

(b) Since F is random continuous with closed values, by Theorem 3.5 in [17, p. 57] and
Lemma 2.5 of Tan and Yuan [37], the set {(w,x) [2xX:x F(co, x)} 2(R).%(X).

Thus all hypotheses of Theorem 10 are satisfied, the conclusion follows.

If both correspondences T and F are measurable, we have the following:

Theorem 12. Let (,E) be a measurable space with E a Suslin family and X a non-empty
convex and Polish bounded subset of a locally convex Hausdorff topological vector space E.
Suppose that

(it)

F’[2x X---,2x is measurable such that for each co f, F(w,.) is continuous with
non-empty compact and convex values;

E*T’f x X--2 is measurable such that for each co f, T(co,. is upper semiconti-
nuous with non-empty strongly compact and convex values;
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(iii) f: f X X- is measurable such that
(a) fo ad (,) X, f(, , ) omoiuou o X;
() o ,d (, x) X, f(, , x) 0 d f(,,) o
semicontinuous and concave;

(iv) fo a a, a on-m oma ovu Xo( of X and a

non-empty compact subset h’(w) of X such that for each x E X\K(w) there exists
y G co(Xo(w U {x)) with y G co(F(w) N {z G X" supu e r(w,z)Re(u,x z) + f(w,x,z)
>o)).

Then there exist measurable maps :f--,X and p:f--,E* such that (w)G F(w,(w)), p(w)G
T(w, (w)) and

sup
(,())

[Re(p(co), (w) y) -+- f(w, (w), y)] _< 0

for all co f.

Proof. By Theorem 10 and Theorem 11, it remains to prove that {(co, x)fxX:
sups F(,x)infu T(,x)Re(u,x- y)+ f(w,x,y) > 0} E (R) %(X).

Since T and F are measurable, by Theorem 4.2 (e) of Wagner [44], there exist two countable
families of measurable maps pn:fxX-X and qn:fxX--*E* such that F(co, x)= cl{Pn(W,x):
n 1,2,...} and T(w, x) cl{qn(CO x): n 1, 2,...} for each (w, x) f x X. We define go: E* x
XxX-U{-oc, +oc} by

o(U, , ) R(u, )

for each (u, x, y) E* x X x X. Then go is continuous and is measurable. Therefore the function
1. Ego" f x x X x X--, U { oc, + oc) defined by

g’o(W, u, x, y) Re(u, x y) + f(w, x, y)

for each (co, u,x,y)E fx E*x X x X, is also measurable since f is measurable. Now fix any
x N, note that pn: x X--X is measurable and f is measurable. For each j N, the function
n. f x X-N U { oc, + ec} defined bygj.

g(w, x) Re(qj(a,x),x- pn(W,x)) + f(w,x, pn(W,X))

for each (w,x)G fxX, is measurable by Lemma 3 in [28, p. 55].
9n: f x X-- { oc, + oc} defined by

Therefore the mapping

gn(C, X) inf g(w, x) inf [Re(qj(w, x), x Pn(W, x)) + f(w, x, pn(W, x))]
jEN

for each (a, x) f x X, is measurable. Note that 9: f x XN U { oc, + oe} defined by

(,) ; .(,)
sen

for each (a,x) GfX, is also measurable. Since for each (w,x) GfX, the mapping
yv-f(c, x, y) is lower semicontinuous, the set
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Therefore, we have

{(w,x) G D x X: sup inf Re<u,x- y> + f(w,x,y) > O}
y e F(w,x) u e T(w,x)

Corollary 13. Let (f,) be a measurable space with a Suslin family and X a non-empty
compact convex subset of a Banach space E whose dual space E* is separable. Suppose thal

(i) F:xX2X is measurable such that for each w G fl, F(w,.) is continuous with
non-empty compact and convex values;

(ii) T x X2E* is measurable such that for each w , T(w,. is upper semicontin-
uous with non-empty strongly compact and convex values;

(iii) f: x X xX is measurable such that
(a) for each fixed (w, y) G x X, xf(w, x, y) is lower semiconlinuous on X;
(b) for each fixed (w, x) G x X, f(w, x, x) 0 and yf(w, x, y) is lower semicontin-
uous and concave.

Then there exist measurable maps :X and p:E* such that (w)
T(w, (w)) and

v) + v)] 5 0
u e (,())

for all w G .
By allowing f to be zero in Corollary 13, we have the following:

Corollary 14. Let (,) be a measurable space with a Suslin family and X a non-amply
compact convex subset of a Banach space E whose dual space E* is separable. Suppose that

(i) F:xX2X is measurable such that for each wG, F(w,.) is continuous with
non-empty compact and convex values;

(ii) T: X2E* is measurable such that for each G , T(w, is upper semiconlin-
uous with non-empty strongly compact and convex values.

Then there exisl measurable map :X and p:E* such that
p(w) G T(, ()) and

v)5 0
u e (,())

for allege.

Theorem 11 is also a stochastic version of Theorem 4 of Shih and Tan in [33, p. 341] (and its
improvements due to Kim [18] and due to Shih and Tan [33, Theorem 2, p. 69-70] (with M 0)).

Theorem 11 generalizes a theorem of Tan [36, p. 326] in the following ways:
(1) the correspondence T is upper semicontinuous instead of being continuous, and
(2) the function f need not be random continuous.

In the case where F(x)= X and T(x)= 0 for each x e X, Theorem 11 also improves Theorem
9.2.3 of Zhang [47, p. 304] with weaker continuity and measurability conditions. We also remark
that our arguments used in proving the existence of solutions for generalized random quasi-
variational inequalities in this section are different from those used by Tan [36] and Zhang [47],
etc.

Quasi-variational inequalities and generalized quasi-variational inequalities have many
applications in mathematical economics, game theory and optimization and other applied science
(e.g., see [3-4], [7], [15] and [25]). Random quasi-variational inequalities and generalized random
quasi-variational inequalities will also have many applications in random mathematical
economics, random game theory and related fields.
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