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ABSTICT

We discuss the two point singular "nonresonant" boundary value problem
Jf(py’)’-f(t,y, py’) a.e. on [0,1] with y satisfying Sturm Liouville, Neumann,
Periodic or Bohr boundary conditions. Here f is an L1-Carathodory function
and p E C[0, 1] N ca(0, 1) with p > 0 on (0, 1).
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1. Introduction

In this paper, problems of the form

1p(t)(P(t)y’(t))’- f(t,y(t),p(t)y’(t)) a.e. on [0,1]

are discussed with y satisfying either

(/) (Sturm Liouville)

(1.1)

-(o) + Ztim p(t)’(t) Co, > o / > o + > o
t---O +

ay(1) + blim_ p(t)y’(t) Cl, a >_ O, b O, a + b2 > 0
tl

max{a, a} > 0

(SL)

(Neumann)

i p(t)’(t) Co
t---O +

lim_p(t)y’(t)--c
t---

(N)
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(iii) (Periodic)

or

(iv) (Bohr)

y(O) y(1)

lira p(t)y’(t)- lira p(t)y’(t)
tO + t--*l

(P)

Co
1

ds lira-t--l
0

p(t)y’(t) y(1) c1.

(Br)

Remark: If a function u E C[0, 1] N cl(0, 1) with pu’ C[0, 1] satisfies boundary condition (/),
we write u (SL). A similar remark applies for the other boundary condition. If u satisfies (_/)
with co c 0, we write u (SL)o etc.

Throughout the paper, p C[0, 1] fq C1(0, 1) together with p > 0 on (0, 1). Also pf: [0, 1] x
R.2---R. is an L1-Carathodory function. By this we mean"

(i) tp(t)f(t,y,q) is measurable for all (y,q) R2,
(i_i) (y, q)---,p(t)f(t, y, q) is continuous for a.e. t E [0, 1],
(iii) for any r >0 there exists hr LI[0,1] such that ]p(t)f(t,y,q)l < hr(t for a.e.

t [0,1] and for all lYl <r, Iql <r.

The results in the literature 7, 10, 13-16] concern the nonresonant second order problem

y"+ f(t,y) 0 a.e. on [0,1]
y e (SL), (N) or (P).

(1.2)

In particular if [(t,u) stays asymptotically between two consecutive eigenvalues or to the left ofy
the spectrum of the differential operator then certain existence results can be established. The
most advanced results to date seem to be [7], where quadratic forms associated with the
eigenvalues and eigenfunctions are used to establish various existence criteria.

This paper deals with the more general problem (1.1). By using properties of the Green’s
function and by examining appropriate Sturm Liouville eigenvalue problems, we are able to
establish various existence results. The paper will be divided into three sections. In section 2,
fixed point methods, in particular a nonlinear alternative of Leray-Schauder typc, will be used to
establish existence principles for (1.1) with the various boundary conditions. We remark here
that the existence principles are constructed with the nonresonant problem in mind. Section 3
establishes various existence theorems and section 4 discusses the Sturm Liouville eigenvalue
problem.

In the remainder of the introduction we gather together some facts on second order
differential equations which will be used throughout this paper. For notational purposes, let w be

1
a weight function. By Llw[0, 1] we mean the space of functions u such that fw(t) lu(t)ldt <

1 0

L2w[0, 1] denotes the space of functions u such that f w(t) lu(t)12dt < x; also for u,v e L2w[0, 1]
0

define (u,v)- f w(t)u(t)v(t)dt. Let AC[0,1] be the space of functions which are absolutely
0

continuous on [0, 1].
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and

Theorem 1.1: Suppose
1

p E C[O, 1] f’lci(o 1) with p > 0 on (0 1) and / ds

0

r, g E Lp[0, 1]

(1.3)

(1.4)

are satisfied. Then

(py’)’ + r(t)y g(t) a.e. on [0, 1]
y(0)- ao, lim p(t)y’(t) bo

t---O -F

(1.5)

has exactly one solution yC[O, 1]flcl(o, 1) with py’ AC[O, 1]. (By a solution to (1..5), we
mean a function y C[0, 1] 71CI(0, 1), py’ AC[O, 1] which satisfies the differential equation a.e.
on [0, 1] and the stated initial condition).

Let C[O, 1] denote the Banach space of continuous functions on [0, 1] with norm
1

/ ds and R(t)- /p(s)r(s)ds.u K sup e KR(t)u(t)] where g p-e [o,1 o o

Solving (1.5) is equivalent to finding a y E C[0, 1] which satisfies

s

y(t)_ao+bo/ ds / 1 /+ +
0 0 0

Define the operator N: C[0, 1]--,C[0, 1] by

s

Ny(t) ao + bo -+ ( p(x)[- r(x)y(x) + g(x)]dxds.
0 0 0

Now N is a contraction since
s

INu-NVI K <- in-v[ ’max le-KR(t)/ 1 / KR(x)
E [0,1] ( p(x)r(x)e dxds

0 0

max e 1 In- v [1 e- KR(1)].K e [o,1]
0

The Banach contraction principle now establishes the result.

Let u be the unique solution to

and u2 the unique solution to

(py’)’ + r(t)y 0 a.e. on [0, 1]

y(O)- 1, lira p(t)y’(t)- 0
tO +

(py’)’ + r(t)y 0 a.e. on [0, 1]

y(O)- O, lira p(t)y’(t)- 1.
t--*O +



490 DONAL O’REGAN

Now uI and u2 are linearly independent and their Wronskian W(t), at t, satisfies
p(t)W’(t) + p’(t)W(t) 0 so p(t)W(t) constant -7(: 0, t E [0, 1]. The general solution (method
of variation of parameters) of

(py’)’ + r(t)y g(t) a.e. on [0, 1]

y(t) doul(t) + dlu2(t -- /[u2(t)ul(8) u1(t)t2(8

0

(1.6)

where do and d1 are constants. The standard construction of the Green’s function, see [17-18] for
example, yields

Theorem 1.2: Let B denote either (SL), (N), (P) or (Br) and Bo either (SL)o (N)o (e) or

(Br)o. Suppose (1.3) and (1.4) are satisfies. If

(py’)’+ r(t)y 0 a.e. on [0,!

YEBo

has only the trivial solution, then

(py’)’+ r(t)y 0 a.e. on [0, 1]
yGB

(1.7)

has exactly one solution y, given by (1.6), where do and dI are uniquely determined from the
boundary condition. In fact,

1

y(t) AoYl(t + AlY2(t + / G(t,s)g(s)ds (1.8)
0

where G(t,s) is the Green’s function and Ao and A1 are uniquely determined by the boundary
conditions. Of course,

o < <_

Yl(t)Y2(s)
W(s)

<_s < l

where Yl and Y2 are the two "usual" linearly independent solutions i.e., choose Yl O, Y2 0 so

that Ya, Y2 satisfy (py’)’+ r(t)y- 0 a.e. on [0,1] with Yl satisfying the first boundary condition

of Bo and Y2 satisfying the second boundary condition of Bo.

Of course, analogue versions of theorems 1.1 and 1.2 hold for the more general problem

(py’)’ + r(t)y + (t)p(t)y’(t) g(t) a.e. on [0, 1]

y e (SL), (N), (P) or (Br)
(1.9)

where n satisfies
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e LI[o, 1]. (1.10)

Theorem 1.3: If (1.3), (1.4) and (1.10) are satisfied and if

(py’)’ + r(t)y + (t)p(t)y’(t) 0 a.e. on [0, 1]

V e (SL)o, (N)o, (P) or (Br)o

has only the trivial solution, then (1.9) has exactly one solution given by (1.8) (where G(t,s) is the
appropriate Green’s function).

In practice, one usually examines (1.7) and not the more general problem (1.9). This is due
to the fact that numerical schemes [3] are available for Sturm Liouville eigenvalue problems (see
section 4). However from a theoretical point of view, it is of interest to establish the most general
result.

2. Existence Principles

We use a fixed point approach to establish our existence principles. In particular, we use a

nonlinear alternative of Leray-Schauder type [9] which is an immediate consequence of the
topological transversality theorem [8] of Granas. For completeness, we state the result. By a

map being compact we mean it is continuous with relatively compact range. A map is
completely continuous if it is continuous and the image of every bounded set in the domain is
contained in a compact set of the range.

Theorem 2.1: (Nonlinear Alternative) Assume U is a relatively open subset of a convex set
K in a Banach space E. Let N:U---K be a compact map with p E U. Then either

(i) U has a fixed point in U; or

(i_i) there is a point u G OU and A G (0, 1) such that u ANn -t- (1 $)p.

Consider first the boundary value problem

-(py’)’+ r(t)y f(t,y, py’) a.e. on [0,1]

y e (SL) or (N).
(2.1)

By a solution to (2.1) we mean a function y G C[0, 11V1CI(0, 1), py’G AC[0, 1] which satisfies the
differential equation in (2.1) a.e. on [0, 1] and the stated boundary conditions.

Theorem 2.2: Let pf:[0, 1] x R2R be an L1-Carathodory function and assume p satisfies
(1.3) and r satisfies

In addilion, suppose
r E Llp[0, 11. (2.2)

(py’)’+vy 0 a.e. on [0,1]

y (SL)o or (N)o
(2.3)

has only the trivial solution. Now suppose there is a constant Mo, independent of A, with

[[ Y Ill rrtax{sttp y(t) ,sttp
[0,1] (0,1)

p(t)y’(t) } <_ Mo
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for any solution y to

(py’)’ + r(t)y Af(t,.y, py’) a.e. on [0, 1]
y e (SL) or (N)

for each $ E (0, 1). Then (2.1) has at least one solution.

Proof: Let Yl and Y2 be two linearly independent solutions (see section 1) of (py’)’ + rpy 0
a.e. on [0, 1] with Yl, Y2 E C[0, 1] and PY’I, PY’2 AC[O, 1].

Remark: In the analysis that follows, (N) will be thought of as (SL) with c a =0,
/3=b=l.

Choose Y2 so that -cy2(0)+ 31im. p(t)y(t)# O. If this is not possible, then the two
tO +

linearly idependen solutions are such tha y(O) + fl tim p(t)y(t) y(O) + fl lim
p(t)y(.t) O. Let to + to +

u(x) laY2(1 + blim_p(t)y’2(t)]Yl(X -lay1(1 + b[i_,r_p(t)y’l(t)]Y2(Xt--,1

so u satisfies (pu’)’+vpu-- 0 a.e. on [0,1] with -u(O)+fllim p(t)u’(t)- 0 and
t---0 +

au(1)+blim_p(t)u’(t) O. Consequently, u 0, a contradiction since Yl and Y2 are linearly
t---,1

independent. Solving (2.4)), is equivalent to finding a y C[0, 1] with py’ C[0, 1] which satisfies

y(t) A),Yl(t + B),y2(t A- A /[Yl(S)y2(t)- Yl(t)y2(s)]

0

f(s,y(s),py’)ds (2.5)

where W(s) is the Wronskian of Yl and Y2 at s and

B), co A),Q3
and A),

cQ2 clQ1 + Q5
Q Q3Q2 -Q4Q1

Here QI ay2(O + fllimt_,o + p(t)y’(t), Q2 ay2(1) + btlr
_

P(t)y’2(t), Q3 aye(O) +
fllim, p(t)y’l(t and Q4- aYl(1) + btli_,r-p(t)Y’(t) with
t---,0 +

Q5 aQ1 / [Yl (s)y2(1)..,/W(s-yl(1)y2(s)]f(s, y(s), p(s)y’(s))ds
0. [Yl(S)lti_r_ p(t)Y’2(t Y2(s)lti_,r_ p(t)yi(t)]

A- bQ W(s) .f (s, y(s), p(s)y’(s))ds.
0

Pemarks: (/) Note Q3Q2-Q4Q1 O. To see this, let u(x)- Qlyl(x)- Q3y2(x). Notice
/hm p(t)u’(t) O. If Q3Q2-Q4Qi 0 then(pu’)’+pu-O a.e. on [0,1] and -au(0)+
to+ Q3

au(1) + blim_t__, p(t)u’(t) O. Consequently, u 0, i.e., yi(x) 11Y2(X), a contradiction. (/_/)

Since pW’ + p’W 0 then pW constant.

We can rewrite (2.5) as
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( tf[Yl(S)Y2(t)-Yl(t)Y2(S)]f(sy(s)’py’)dsIy(t) , Cy1 (t)-- Dy2(t + W(s)
o

+ (1 )[Eyl(t + Fy2(t)]

where

F Co- EQ3
Q1

E= cQ2 -ClQ1 c
Q3Q2 -Q4Q1

Q5 + coQ2 ClQ
and D Co- CQ3

Q3Q2 -Q4Q1 Q1

Define the operator N’/t’--/t’ by setting

Ny(t) CYl(t + DY2(t + / [yl(8)y2(t)-w-(iyl(t)y2(8)]f(8,y(8),py’)dS.
0

Here K {u e C[O, 1],pu’ e C[0,1]:u e (SL) or (N)}. Then (2.4).x is equivalent to the fixed
problem

y )Ny + (1- )p (2.6)

where p--EYl(t) nUFY2(t). We claim that N:Kg-K is continuous and completely
continuous. Let un--*u in K, i.e., un-*u and Pu’nPu’ uniformly on [0, 1]. Thus there exists
r > 0 with lun(t) <_ r, p()u’n(t)l <_ r, lu(t) <_ r, p(t)u’(t)l <_ r for t E [0,1]. By the
above uniform convergence we have p(t)f(t, un(t),p(t)U’n(t))p(t)f(t,u(t),p(t)u’(t))pointwise
a.e. on [0, 1]. Also there exists an integrable function hr with

p(t)f(t, un(t), p(t)u’n(t))

_
hr(t a.e. t E [0, 1]. (2.7)

Now

Nun(t) CYl(t) + Dy2(t) + f [yl(*)y2(t) Yl(t)y2(s)]

0
together with

p(t)(Nun)’(t Cp(t)yi(t

f(S, Un(S),PU’nds

+ Dp(t)y’2(t)+ /[Yl(S)p(t)Y’2(t)- p(t)y’(t)y2(s)]
f

0

and the Lebesgue dominated convergence theorem implies that Nun---Nu and p(Nun)’---p(Nu)’
pointwise for each [0, 1]. In fact, the convergence is uniform because of (2.7). Consequently,

Nun--*Nu in Kg so N is continuous. To see that N is completely continuous, we use the Arzela-
Ascoli theorem. To see this, let.12 C_ Kg be bounded, i.e., there exists a constant M > 0 with

II y II1 _< M for each y e f. Also there exist constants C* and D* (which may depend on M)
such that CI _< C* and DI _< D* for all y e ft. The boundedness of Nft is immediate and to
see the equicontinuity on [0, 1] consider y a and t, z E [0, 1]. Then

Ny(t)- Ny(z)[ <_ C* yl(t yl(z) + D*lyu(t)- y2(z)

+ y2(t) W(s),j(s, y(s), py’)ds
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+ Y2(t) y2(z) W(s)Jl,s, y(s), py’)ds
0

z

f()/ ly(t) W(sl,s,y(s),py’)ds

z () ,+ Yl(t) Yl(Z) W(s)Jl,8, y(s), py’)ds
o

and

p(t)(Ny)’(t)- p(z)(Ny)’(z)l <_ C*lp(t)yi(t p(z)yi(z)l

+ D*lp(t)y’2(t p(z)y2(z)l

Yl(8)"’ y(8),py’)d8+ p(t)yz(t)l W(s)][s,

z

j Yl(8)+ p(t)y’2(t)- p(z)y(z)l W(s)Y(s, y, py’)ds
0

z

fu().,+ P(t)Yl(t)l W(s)Jl,s, y(s), py’)ds

z
(),+ P(t)Y’(t) P(z)Y’l(Z)l W(s)J[s,y, Py’)ds

0

so the equicontinuity of N,2 follows from the above inequalities. Thus N" KI--,K is completely
continuous. Set

u { e K: II II1 < M0 + 1}, K K and E {u .G C[0, 1] with pu’ e C[0, 1]}.

Then theorem 2.1 implies that N has a fixed point, i.e. (2.1) has a solution y E C[0,1] with
py’E C[0, 1]. The fact that py’ AC[O, 1] follows from (2.5) with A- 1. Yl

We next consider the problem

(py’)’ + 7(t)y- f(t,y, py’).a.e, on [0,1]
ye(P).

Theorem 2.a: Let pf:[0,1]xR.2--R be an L1-Caralhodory function and assume (1.3) and

(2.2) hold. In addition, suppose

(py’)’+7-y 0 a.e. on [0,1]

e(P)
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has only the trivial solution. Also suppose there is a constant Mo, independent of A, with

II v II1 <_ Mo for any solution y to

(py’)’+ r(t)y- Af(t,y, py’) a.e. on [0,1]
(2.9),x

for each A G (0, 1). Then (2.8) has at least one solution.

Proof: Let Ya and Y2 be two linearly independent solutions of (py’)’+ vpy-O with

Yl, Y2 E C[0, 1] and PY’I, PY’2 AC[O, 1]. Choose Y2 with Y2(0) y2(1) 0.

If this is not possible, then the two linearly independent solutions are such that
Y2(0)- Y2(1) Yl(0)- Yl(1) 0. Let

u(x) [lirn p(t)Y’2(t -lirn p(t)Y2(t)]Yl(X)
t--o + t---l

-[lim p(t)Y’l(t -lirn p(t)Y’l(t)]Y2(X
t--o + t-,1

so u satisfies (pu’)’+ vpu- 0 a.e. on [0,1] with u(0)- u(1) and lim p(t)u’(t)- lim p(t)u’(t).
t--,o + t--,l

Consequently, u- 0, a contradiction since Yl and Y2 are linearly independent.

Solving (2.9).x is equivalent to finding a y C[0,1] with py’ C[0,1] which satisfies (2.5)
where

A[Yl(1 Yl(0)] + AI2

Y2(0) Y2(1)
and

A[I2 + I3]A,X [Y2(0) y2(1)]Io -[Yl(1) Y1(0)]11"

Here I0 lirn p(t)Y’l(t -lirn p(t)y’(t),I1 tim p(t)Y’2(t -lira p(t)Y’2(t with
o + ---,1 o + --,1

1
[yl(s)y2(1) Yl( 1)y2(s)]f(s, y(s) p(s)y’(s))ds12 W(s)

o
and

lf Yl S)/r p Y’2 t Y2 s )/i_,r p t yi
13 [Y2(O) Y2(1)] W(s) .f(s, y(s), py’ )ds.

o

Remark: Notice [y(0)- y2(1)]I0 -[Yl(1)- Y1(0)]I1 0 for if not, then

u(x) yl(x)+ [Yl(1)- Yl(0)]
[Y2(0) Y2(1)]y2(x)

satisfies (pu’)’+-pu--O a.e. on [0,1] with u(0)-u(1)and tim p(t)u’(t)- lim_p(t)u’(t).
Then u 0, a contradiction, t0 + tl

Essentially, the same reasoning as in theorem 2.2 establishes the result.

Next consider the problem
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(py’)’ + v(t)y f(t,y, py’) a.e. on [0,1]

yE(Br).
(2.10)

Theorem 2.4: Let pf’[O, 1]xR2-l be a Carathodory function and assume (1.3) and (2.2)
hold. In addition, suppose

(py’)’+ vy- 0 a.e. on [0,1]
y e (Br)o

has only the trivial solution. Also, suppose there is a constant Mo, independent of A, with

II y II1 <_ Mo for ay solutio y o

(py’)’ + r(t)y Af(t,y, py’) a.e. on [0,1]

y(Br)

for each A (0, 1). Then (2.10) has at least one solution.

Proof: Let Yl and Y2 be two linearly independent solutions of (py’)’+ vpy-O with

Yl, Y2 C[0,1] and PY’I, PY’2 AC[0,1]. Choose Y2 with Y2(0) 0. Solving (2.11),x is equivalent
to finding a y E C[0, 1] with py’ C[0, 1] which satisfies (2.5) where

and

with

co-A)Yl(O)

1 1

C / (t---,ldS lira_ p(t)Y’l(t)--(Yl(O)))/Y2(O p(s)-ld’S lim- P(t)Y’2(t)-Yl(1)+(Yl(O))
0 0

lf[Yl(S)li_,r_p(t)y,2(t)_ Y2(S)llm-p(t)yi(t)]d8 A tlA’X (el + p--[ W(s) .f(s, y(s), py’)ds
0 0

colim P(t)Y’2(t)’ (0) [---,1 coY2 [Yl(S)Y2(1) Y2(8)Y1( 1 )]
(0) + +(o) J w() f(s, y(s), p(s)y’(s))ds).

Remark: Notice C # O. To see this, let

u(x) Yl(X)-(yI(O)))y2(xo
so C- f d.s. lim p(t)u’(t)-u(1). Now (pu’)’+vpu-O a.e. on [0,1] with u(0)-0.

0 P(S)t-*l-

If C 0 then, f d.s lira p(t)u’(t)- u(1) 0. Consequently, u 0, a contradiction.
0 p(st--.1-

Essentially the same reasoning as in theorem 2.2 establishes the result. V1

Of course, more general forms of theorems 2.2, 2.3 and 2.4 are immediately available for us

for the boundary value problem

(py’)’ + 7"(t)y +r(t)py’-- f(t,y, py’) a.e. on [0,1]

y e (SL) or (N) or (P) or (Br).
(2.12)
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Theorem 2.5: Let pf:[0,1]R--R be an L1-Carathodory function and assume (1.3) and
(2.2) hold with r satisfying

a e Llp[0, 1]. (2.13)

In addition, suppose

(py’)’ + vy + apy’ 0 a.e. on [0,1]

y e (SL)o or (N)o or (P) or (Br)o

has only the trivial solution. Also suppose there is a constant Mo, independent of , with

I] Y ]11 - Mo for any solution y to

(py’)’ + v(t)y + r(t)py’ f(t, y, py’) a.e. on [0, 1]

y E (SL) or (N) or (P) or (Br)
(2.14).x

for each A E (0, 1). Then (2.12) has at least one solution.

Proof: Essentially the same reasoning as in theorems 2.2, 2.3 and 2.4 establishes the result.

3. Existence Theory

We begin by establishing an existence result for the boundary value problem

(py’)’ + ’(t)y f(t, y, py’) a.e. on [0, 1]
y (SL) or (N) or (P) or (Br).

(3.1)

Theorem 3.1: Let pf:[0,1]R2--l be an L1-Carathodory function and assume (1.3) and

(2.2) hold. In addition, suppose

-(py’)’+ vy 0 a.e. on [0, 1]

y (SL)o or (N)o or (P) or (Br)o

has only the trivial solution. Let f(t, u, v) nv + g(t, u, v) and assume

n e Lip[O, 1] (3.3)

pg is an L1-Carathodory function and

g(t, u, v)] <_ (t) / 2(t)I u / 3(t)I v

for a.e. t G [0, 1], for constants 7,0 with 0 <_ 7, 0 < 1

and functions i G Llp[0,1], i- 1,2,3

(3.4)

and
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sup f p(t)at(t, s)n(s) ds < 1.
tE[0,1]0

Here G(t,s) is the Green’s function associated with

(py’) + pry 0 a.e. on [0, 1] with y E (SL) or (N) or (P) or (Br)

hold. Then (3.1) has at least one solution.

Remark: Since pW’ + p’W 0 then sup
E [0,1]

Proof: Let y be a solution to

p(t)Gt(t,s)l < Eop(s for some constant E0.

(py’)’ + v(t)y $f(t, y, py’) a.e. on [0, 1]

y (SL) or (N) or (P) or (Br)

for0<<l. Then
1

y(t) Y3(t) + /G(t,s)f(s,y(s),p(s)y’(s))ds, t [0,1]
0

where Y3 is the unique solution of (py’)’+ pry- 0 a.e. on [0,1] with y e (SL) or (N)or (P)or
(Br) and G(t,s)is as described in (3.5). Also notice

1

p(t)y’(t) p(t)Y’3(t + / p(t)Gt(t s)f(s, y(s), p(s)y’(s))ds.
0

Now (3.4)together with (3.7) yields

(3.s)

Yl0-sP ly(t) <sp ly3(t)
[0,1] [0,1]

+ Ipy’losup / Ia(t’s)n(s)lds+suP / IG(t’s)l(S)lds
e [o, 1] o e [o, 1] o

[0,1] [0,1]
0 0

so there exist constants Ao, A1, A2 and A3 with

lyl0 < Ao+Aa IPY’Io+A=IyI+A31PY’I O" (3.9)

Also there exists a constant A4 > 0 with

A2x’
_

1/2x + A4 for all x > 0.

Putting this into (3.9) yields

ylo < 2(Ao + A4) + 2A] py’ o + 2A3IPY’] 0" (3.10)
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Also (3.8) implies that there are constants As, A6, and AT. with

PY’ [0 < A5 + PY’[0 ,8t[P0,1] 0
P(t)Gt(t,s)n(s)lds)

+ A6[YI + AT[py’I O
O"

Put (3.10) into (3.11) to obtain

( )PY’ o <- As + py’lo sup p(t)Gt(t,.s)n(s) ds
e [0,1]

0

(3.11)

+ A7 PY’IOo + A6(2(Ao + A4)+ 2A1 ]PY’Io + 2A3 [PY’IOo)"
and so there exist constants A8, A9, AlO and All with

( )1 sup p(t)Gt(t s)n(s)lds
[0,1]

0

_< A8 -4- A91py’ + Alo]py’[0 -4- All py’l o.
Consequently there exists a constant M, independent of , with PY’Io < M. This together
with (3.10) yields the existence of a constant M* with yl0 < Let Mo max{M,M*}
and this together with either theorems 2.2, 2.3 or 2.4 establishes the result. I:!

Consider the Sturm Liouville eigenvalue problem

Lu u a.e. on [0, I]
u e (SL)o or (N)o or (P) or (Br)o

(3.12)

where Lu 1pq(t)[(pu’)’+ r(t)pu], with p satisfying (1.3) and

r, q e Lp[0, 1] with q > 0 a.e. on [0, 1]. (3.13)

Then L has a countably infinite number of real eigenvalues (see section 4) and it is possible to
estimate these eigenvalues numerically [3].

Theorem 3.1 immediately yields an existence result for

(py’)’ + r(t)y + #q(t)y f(t, y, py’) a.e. on [0, 1]

y E (SL) or (N) or (P) or (Br)
(3.14)

where # is not an eigenvalue of (3.12).
Theorem 3.2: Let pf:[0,1]R2R be an L1-Carathodory function and assume (1.3) and

(3.13) hold. Let f(t, u,v) nv + g(t,u,v) and assume (3.3), (3.4) and (3.5), with -() r(t) +
#q(t), are satisfied. Then (3.14) has at least one solution.
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Proof: Let r(t) r(t) 4- #q(t) in theorem 3.1.

Next in this section we obtain an existence result for the boundary value problem

-(py’)’+v(t)y+a(t)py’-g(t,y, py’)a.e, on [0,1]
y E (SL) or (N) or (P) or (Br).

(3.1.5)

Theorem a.a: Let a:- a a il-Carathordory function and assume (1.3), (2.2),

(a.4)

(py’)’ + ry + apy’- 0 a.e. on [0,1]
y (SL)o or (N)o or (P) or (Br)o

has only the trivial solution. Then (3.15) has at least one solution.

Proof: Essentially the same argument as in theorem 3.1 (except easier) yields the result, i-1

Remark: We remark here that theorem 3.2 seems to be the most applicable result in this
paper since it is possible to estimate numerically [3] the eigenvalues of (3.12).

Finally we obtain a more subtle existence result for

-(py’)’ + vy g(t, y, py’)y + h(t, y, py’) f(t, y, py’) a.e. on [0, 1]
y(O) y(1) O.

(3.16)

Theorem 3.4: Let pg, ph’[O, 1] R2--R be L1-Carathodory functions and assume (1.3) and
(2.2) hold. In addition, suppose (2.3), with - b- O, has only the trivial solution. Also assume

u, v) <_ l(t) + 2(t) u

for a.e. t G [0, 1] with
(3.17)

there e2ist vl, ’2 Llp[O, 1] with rl(t <_ g(t, u, v) <_ v2(t for a.e.

[0, 1]; here 7" <_ 0 for a.e. C:_ [0, 1] and T2 >_ 0 for a.e. t [0, 1]
(3.18)

2+0 2

1’ 2 e Lp[O, 1] .with [p(t)]2 0 [3(t)]2 0 dt< cxz

o
(3.19)

and

W1’ 2[0 1] ( r where C K* is finite dimensional and for everyp

O : y u + v C K* with u C ,v C F we have R(y) > O; F +/-

hold; here

/(y) [p(v’)2 (7" 7"1)pv2]dt [p(u’)2 (7 72)Pu2] dt
0 0
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and

2K* {w:[0, liaR: w E AC[0, 1] with w’E Lp[0, 1] and w(O)- w(1)}.

Then (3.16) has at least one solution.

1 1
Remark: (i) In (3.20) we have y u + v with u e f, v e r so . puv dt + f pu’v’dt O.

1 1 3 0
(ii) For notational purposes, let II u II p f p lu 12dr).

0
(iii) Recall by Wpl’ 2[0 1] we mean the space of functions u e AC[O, 1] with u’ e L2p[0, 1]

and with norm 1

II II, p lu ]2dt + p lu’]2dt
0 o

Proof: First recall Lemma 2.8 in [7] implies there exists e > 0 with

(y) > II y II p p

for anyyEK*;herey-u+vwithufandvF. Lety(-u+v) be a solution to

for some 0 < $ < 1. Then

(py’)’ + vy $f(t, y, py’) a.e. on [0, 1]

y(O) y(1) 0

1

o o
1

] p(v- ulh(t, , p’ldt
o

and so integration by parts yields

1

[p(v’) + pv2( + Ag(t, y, py’))]dt
0

1

/[p(u’)2 + pu( " + Ag(t, y, py’))]dt
0

Also

< Jlv-l ]h(t,y, Py’)ldt.
0

pv2[- 7" + ,g(t,y, py’)] pv2[- (T 7"1) - ,g(t,y, py’) 7"1]

(3.21)

(3.23)
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pv2[- (’v rl) -t- (A 1)Vl]

_
p(7" Vl)V2 a.e. on [0, 1].

Similarly

pu2[- + Ag(t, y, py’)] <_ p(r- r)u2a.e, on [0,1].

Putting this into (3.23) yields

R(y) <_ / p v u h(t, y, py’) dt.

0

This together with (3.21) implies that there is an c > 0 with

(3.24)

We also have [I v- u [I 2 + II v’- ’ II 2 II y I[ 2 + II y’ II 2
P P P p"

1,2[0 114610, 1]) implieshave the imbedding Wp

Now Sobolev’s inequality (since we

1 1
1/ PI v t [dt _< [v u [o / PIdt < FI( [I v u [[2v + [[ v’- u’ [[ 2),

0 o

for some constant F1. Thus

Also

1

J PI Iv- u dr <_ Fl(ll y II p + II y’ 11
0

1

/ P21 v- u Yl "rdt <_ v- u o y ] p2d
o 0

1 "

for some constant F2. Thus there exists a constant F3 with

1

JP2 v-tt Yl’/d’ .F3( IlY I1 "t-1+ II Y’ limp-t-l)
o

(3.26)

Finally HSlder’s inequality implies that there is a constant F4 with

2-0

J pCalv- u [py’ldt < Iv- u [o II u’ II o [p(t)]2-o[a(t)]2-odtp

0 0

_< F4 II y’ I1(, II v- II , / II "- ’ II ).
Thus there exists a constant F5 with
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1

0

v- py’l dr < 5( II y II 4-1 + II y’ II / 1)/9 /9

Put (3.25), (3.26) and (3.27) into (3.24) and since 0, 7 < i there exists a constant F6 with

IlYllp p- 6

Thus for t E [0, 1],

y(t) < y’() d < II Y’ II p
0 0

and this together with (3.28) implies that there exists a constant FT, independent of , with

[0,1]

for any solution y to (3.22)
This bound together with (3.22),x implies there exist a constant Fs with

1 1

/ I(PY’)’I dt < F8 + J P3 pY’I Odt.
o o

HSlder’s inequality implies there exist a constant F9 with

1

l(py’)’l
0

0 < F8 + F9F07 Flo.dt < F8 + F9 II y’ II p

Also there exist to E (0, 1) with y’(to)- 0 so

[p(t)y’(t)l < / (py’)’[

o
Thus

dt <_ F10.

sup p(t)y’(t)l <_ Flo.
(0,1)

Tom . tot wit (.9) nd (.0) ompts t proof.

(3.27)

(3.,28)

(3.29)

(3.30)

4. Appendix-Eigenvalues

We now use the ideas of section 2 and results on compact self adjoint operators to give a

unified treatment of the Sturm Liouville eigenvalue problem.

In particular, consider
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Lu- Au a.e. on [0, 1]
u E (5’L)0 or (N)0 or (P) or (Br)o

(4.1)

where Lu- 1pq(t)[(ptt’ zt-r(t)ptt] and assume (1.3) and (3.13) hold. We first show that there

exists A* E R such that A* is not an eigenvalue of (4.1).
Remark: If r _= 0 and y (SL)o then A* 0 will work whereas if r 0 and y (N)0 or (P)

or (Br)o then A*= -1 will work.

Let
D(L) {w C[0, 1]: w, pw’ AC[O, 1] with w (SL)o or (N)0 or (P) or (Br)0}

and notice that

( 2 )L: D(L) C_ C[0, 1] C_ Lpq[O, 1] Llpq[O, 1].

that un---u in C[0, 1] and Lun--,y in Lpq[O, 1 s u D(L) and Lu y a. on [0, 1].
Proof: Let I1" II L1, I1" II 1 and I" 10 denote the usual norms in LI[0,1], Lpq[O, 1] and

Lpq
C[0, 1] respectively. For n- 1, 2,... there exist constants C1 and C2 independent of n. with

[] (PUSh)’+ prUn [[
L

[[ Lun [[ < C1 and [[ (PUSh) [I
L1 < C2"Lpq

This together with the boundary condition implies that there exists a constant C3 independent of
n with

pu. Io < C3.

Consequently Sobolev’s imbedding theorem [1] guarantees the existence of a subsequence S of
integers with Pu’n---,pu’ in C[0, 1] as n-c in S. For x (0, 1) and n S we have

p(x)u’n(x) lirn
tO +

x

0

and this together with the fact that (PU’n)’+ prun-- pqy in LI[0, 1] implies

t---O +

x

p(t)u’n(t) + f
0

p(s)[- q(s)y(s) r(s)u(s)]ds.

Thus u e D(L) and (pu’)’ + pru pqy a.e. on [0, 1].
Theorem 4.2: The eigenvalues, A, of the eigenvalue problem (4.1) are real and the

2eigenfunctions corresponding to the distinct eigenvalues of (4.1) are orthogonal in Lpq[0,1]. In
addition, the eigenvalues form at most a countable set with no finite limit point.

Proof: Suppose A0 E R is a limit point of the set of eigenvalues of (4.1).
distinct sequence {An} An A0, of eigenvalues of (4.1) with Anna0.
eigenfunction for (4.1) corresponding to An and with lea 10 1 for all n.

boundary condition and of course Lea Ann a.e. on [0, 1]. Thus

Then there exists a

Let en denote the
Now en satisfies the

1

An / pq Cn 2dt Ao + / P ’n 2dr- /
o o o



Existence Principles for Second Order Nonresonant Boundary Value Problems 505

where

a 2 ( 2

0, Cn E (N)0 or (P)

n(1) 2

1 n
dsf ()0

E(Br)O.

This together with Cn [0 1 implies that there is a constant C4 independent of n with

1

p JO’12dt
_
C4.

Consequently, {On) is bounded and equicontinuous on [0,1] so there exists a G C[0,1] and a

subsequence S of integers with n--* in C[0, 1] as n---,oc in S. Let n G S and notice L,- AnCn
a.e. on [0,1] implies LOn,0 in Lq[0,1]. Then theorem 4.1 implies G D(L)and L- A0
a.e. on [0, 1]. Notice also I10 1 and so "0 is an eigenvalue of L. Now

(., ) PqCnCdt 0 for all n S

1
so f pqlOl2dt O. Consequently, (x) 0 a.e. on [0,1], a contradiction.

0

Now theorem 4.2 implies that there exists * E R. such that ,* is not an eigenvalue of (4.1).
Assume without loss of generality for the remainder of this section that 0 is not an eigenvalue of
(4.1).

Let Yl and Y2 be two linearly independent solutions of (py’)’+ rpy- 0 a.e. on [0, 1] with

Yl, Y2 C[0, 1] and PY’I, PY’2 e AC[O, 1].
Remark: If (SL)o or (N)o is considered, choose Y2 as in theorem 2.2.

theorem 2.3 whereas for (Br)o choose Y2 as in theorem 2.4.
For (P) choose Y2 as in

Now for any h Llpq[O, 1] the boundary value problem

Lu- h a.e. on [0, 1]
u e (SL)o or (N)0 or (P) or (Br)o

has a unique solution

L- lh(t) u(t) AhYl(t) -- BhY2(t) -t- ff Yl(t)Y2(S)]q(s)h( )dsW()
0

where Ah and Bh may be constructed as in theorems 2.2, 2.3 or 2.4; see [14, 16]. It follows
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immediately that

L 1. Llpq[O, 1]D(L) C_ C[0, 1] C_ L2pq[O, 1].

The Arzela-Ascoli theorem (see [14, 16] or the ideas in theorem 2.2) implies that L -1 is
completely continuous. Next, define the imbedding j: Lq[O, 1]--,Lq[0, 1] by ju- u. Note j is
continuous since HSlder’s inequality yields

1 1

pq u dt < pq u 12dt pqdt
0 0 0

Consequently,
L-j Lq[0 1]Lpq[O, 1]--,D(L) C

2is completely continuous. In addition, [14, 16], for u, v E Lpq[O, 1] it is easy to check that

(L- lju, v) (u,L- ljv).

The spectral theorem for compact self adjoint operators [18] implies that L has an countably
infinite number of real eigenvalues A with corresponding eigenfunctions u D(L). Of course

Ao+ fp[u[dt- fpr[ui[dt
0 0

f Pqlui[ 2dt
where o

a 2 2[ui(1) +-]ui(O) ,uie(Sn)o

O, u e (N)o or (P)

ui(1) 12
f d
o v()

u e (Br)o.

Remark: Notice that
fprluil2dt
0

f pq ui 2dt
0

This is clear in all cases except maybe when

u e (Br)o. However if u @ (Br)0 then

1 .ds <_ p(s) lu(s)12ds dsui(1) V/(s)u(s)x/ -0 0 o

and the result follows.

Now the eigenfunctions u may be chosen so that they form a orthonormal set. We may also
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arrange the eigenvalues so that

In addition, [18, pp. 282, 373] implies that the set of eigenfunctions u form a basis for Lq[0,1]
and if h E L2pq[O, 1] then h has a Fourier series representation and h satisfies Parseval’s equality,
i.e.,

h Z (h, ui}u and pqJh[2dt [(h, ui}[ 2.
i=0 0 i-0
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