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ABSTRACT

We discuss the two point singular “nonresonant” boundary value problem
f(t,y,py’) a.e. on [0,1] with y satisfying Sturm Liouville, Neumann,
Periodic or Bohr boundary conditions. Here f is an L'-Carathéodory function

»py) =

and p € C[0,1]NC*(0,1) with p > 0 on (0,1).
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1. Introduction

In this paper, problems of the form
POV = £ y(0),p()Y (1) e on [0,1]
are discussed with y satisfying either
()  (Sturm Liouville)
—ay(0) + Blim  p(t)y'(t) = ¢y @ 20, 20, o + §7 >0
t—0

ay(1) + btlir;z__ p(t)y'(t) =c¢q, a >0, b> 0,a2+b2>0

maz{a,a} >0

(i) (Neumann)

tim _p(Oy'(2) = cq
t—0

fi’?— p(t)y'(t) = ¢y
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(#42) (Periodic)

y(0) = y(1)

tim_p(t/(1) = lim_p()y/(1) )
lim  p()y'(t) = lim_p y'(

or

(i) (Bohr)

y(0) = ¢

1 (Br)
ds / =

[t rw=u = e

Remark: If a function u € C[0,1]N C1(0,1) with pu’ € C[0,1] satisfies boundary condition (3),
we write u € (SL). A similar remark applies for the other boundary condition. If u satisfies (z)
with ¢y = ¢; = 0, we write u € (SL),, etc.

Throughout the paper, p € C[O,l]ﬂCl(O,l) together with p >0 on (0,1). Also pf:[0,1]x
R?—R is an L'-Carathéodory function. By this we mean:
() t—p(t)f(t,y,q) is measurable for all (y,q) € R,
(@) (y,9)—p(t)f(t,y,q) is continuous for a.e. ¢ € [0,1],
(432) for any r >0 there exists h, € Ll[O, 1] such that |p(t)f(t,y,9)| < h,(t) for ae.
te[0,1]and for all |y| <r, |q| <.

The results in the literature [ 7, 10, 13-16] concern the nonresonant second order problem

y"'+ f(t,y) =0 a.e. on [0,1]

(1.2)
y € (SL), (N) or (P).

. . t, . . .
In particular, if f(yy) stays asymptotically between two consecutive eigenvalues or to the left of

the spectrum of the differential operator then certain existence results can be established. The
most advanced results to date seem to be [7], where quadratic forms associated with the
eigenvalues and eigenfunctions are used to establish various existence criteria.

This paper deals with the more general problem (1.1). By using properties of the Green’s
function and by examining appropriate Sturm Liouville eigenvalue problems, we are able to
establish various existence results. The paper will be divided into three sections. In section 2,
fixed point methods, in particular a nonlinear alternative of Leray-Schauder type, will be used to
establish existence principles for (1.1) with the various boundary conditions. We remark here
that the existence principles are constructed with the nonresonant problem in mind. Section 3
establishes various existence theorems and section 4 discusses the Sturm Liouville eigenvalue
problem.

In the remainder of the introduction we gather together some facts on second order
differential equations which will be used throughout this paper. For notational purposes, let w be

1

a weight function. By L.[0,1] we mean the space of functions u such that [w(t)|u(t)]|dt < co.
1 0

L2[0,1] denotes Ehe space of functions u such that {w(t) | u(t) | 2dt < oo; also for u,v € L2[0,1]

define (u,v) = [w(t)u(t)v(t)dt. Let AC[0,1] be the space of functions which are absolutely
0

continuous on [0, 1].
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Theorem 1.1: Suppose

p € C[0,1]nCY(0,1) with p >0 on (0,1) and / < o0 (1.3)
and
r,g € L}[0,1] (1.4)
are satisfied. Then
%(py')’ +r(t)y = g(t) a.e. on [0,1] (15)
y(0) = aq, lim  p(t)y'(t) = by
t—bO+

has ezactly one solution y € C[0, 1]ﬂC1(0 1) with py' € AC[0,1]. (By a solution to (1.5), we
mean a function y € C[0,1]NCY(0,1), py' € AC[0,1] which satisfies the differential equation a.e.
on [0,1] and the stated initial condition).

Proof: Let C[0,1] denote the Banach space of continuous functions on [0,1] with norm
1 t

|ul = sup le™ KR(t)u(t) | where K = 45 and R(t) = /p(s)r(s)ds.
t € [0, / p(s) |

Solving (1.5) is equivalent to finding a y € C[0, 1] which satisfies

t
y(t) =ay+ bo/% /p(s)/ p(s)[ — r(z)y(z) + g(z)]dzds.
0

Define the operator N:C[0,1]—C[0,1] by

t t s
Ny(t) = ag+ bOZ%—}- Zp—(lsj{p(x)[ —r(z)y(z) + g(z)]dzds.
Now N is a contraction since
t s
| Nu—Nv| g < |u—v|K;n€a.Eco 1] —KR() {——%——/p(m)r x)e KR(x)dmds|

t

_Ju—vlg ~KR(t) [ 1 [ KR(s) — KR(1)
=g e e KRO [LIKRO 11ds| < Jum v 1 - T KA

The Banach contraction principle now establishes the result. O

Let u; be the unique solution to

{ l(py’)' +r(t)y =0 a.e. on [0,1]

y(0) =1, lim p(t)y'(t) =0
t—»O

and u, the unique solution to

%( Y +r(t)y =0 a.e. on [0,1]

y(0) =0, tim _p(t)y'(1) = 1.
t—»O
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Now wu; and wu, are linearly independent and their Wronskian W(t), at ¢, satisfies
p()W'(t) + p'(t)W(t) = 0 so p(t)W(t) = constant # 0, t € [0,1]. The general solution (method
of variation of parameters) of

Hoy') +7(ty = o(t) ae- on [0,1]

t
y(t) = doul(t) + d1u2(t) + /[u2(t)ul(33V'E:;l(t)u2(5)]g(s)ds (16)
0

where d;, and d, are constants. The standard construction of the Green’s function, see [17-18] for
example, yields

Theorem 1.2: Let B denote either (SL), (N), (P) or (Br) and By either (SL)y, (N)y, (P) or
(Br)y. Suppose (1.3) and (1.4) are satisfies. If

%(py’)’ +7(t)y =0 a.e. on [0,1]
y € B,

has only the trivial solution, then

(1.7)

L(py') +r()y =0 a.e. on [0,1]
yeEB

has ezactly one solution y, given by (1.6), where dy and d, are uniquely determined from the
boundary condition. In fact,

1
y(t) = Agyq(t) + Aqy,(t) + /G(t,s)g(s)ds (1.8)
0

where G(t,s) is the Green’s function and A, and A, are uniquely determined by the boundary
conditions. Of course,

¥1(5)y5(1)

Glns) = Ws) 0<s<t
’ y1()y,(s)
JW_(s%—’ t<s<l1

where y, and y, are the two “usual” linearly independent solutions i.e., choose y; # 0, y, #0 so
that y,, y, satisfy %(py')'+r(t)y =0 a.e. on [0,1] with y, satisfying the first boundary condition
of By and y, satisfying the second boundary condition of B,,.

Of course, analogue versions of theorems 1.1 and 1.2 hold for the more general problem
%(py’)' +r(t)y + &(t)p(t)y'(t) = g(t) a.e. on [0,1]
y€(SL), (N), (P) or (Br)

where k satisfies
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k€ L1[0,1]. (1.10)
Theorem 1.3: If (1.3), (1.4) and (1.10) are satisfied and if

%(py’)’ +r(t)y + &(t)p(t)y'(t) =0 a.e. on [0,1]
y € (SL)y, (N)g, (P) or (Br)g

has only the trivial solution, then (1.9) has ezactly one solution given by (1.8) (where G(t,s) is the
appropriate Green’s function).

In practice, one usually examines (1.7) and not the more general problem (1.9). This is due
to the fact that numerical schemes [3] are available for Sturm Liouville eigenvalue problems (see
section 4). However from a theoretical point of view, it is of interest to establish the most general
result.

2. Existence Principles

We use a fixed point approach to establish our existence principles. In particular, we use a
nonlinear alternative of Leray-Schauder type [9] which is an immediate consequence of the
topological transversality theorem [8] of Granas. For completeness, we state the result. By a
map being compact we mean it is continuous with relatively compact range. A map is
completely continuous if it is continuous and the image of every bounded set in the domain is
contained in a compact set of the range.

Theorem 2.1: (Nonlinear Alternative) Assume U is a relatively open subset of a conver set
K in a Banach space E. Let N:U—K be a compact map with p € U. Then either
(2) N has a fized point in U; or
(12)  there is a point u € AU and X € (0,1) such that u = ANu+ (1 —X)p.

Consider first the boundary value problem

Loy + r(t)y = £(t,y,py’) a-e. on [0,1]

2.1
y € (SL) or (N). @1)

By a solution to (2.1) we mean a function y € C[0,1]NC(0,1), py’ € AC[0,1] which satisfies the
differential equation in (2.1) a.e. on [0,1] and the stated boundary conditions.

Theorem 2.2: Let pf:[O,l]xR2—~>R be an L'-Carathéodory function and assume p satisfies
(1.3) and T satisfies

T € L1[0,1]. (2.2)
In addition, suppose

%(py')’ +7y =0 a.e. on[0,1]
Yy € (SL) or (N)g

(2.3)

has only the trivial solution. Now suppose there is a constant M, independent of A, with

Nyl = maw{s[up | [y(1) | ,s(up | [p()y'(t) ]} < Mg

’ 1
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for any solution y to

(2.4))

L(ov') +r(t)y = Af(t,y, p') a.e. on [0,1]
y € (SL) or (N)

for each A € (0,1). Then (2.1) has at least one solution.

Proof: Let y,; and y, be two linearly independent solutions (see section 1) of (py')’ + T7py =0
a.e. on [0,1] with y,,y, € C[0,1] and py}, py; € ACI0,1].

Remark: In the analysis that follows, (N) will be thought of as (SL) with a =a=0,
B=b=1.

Choose y, so that —-ay2(0)+ﬂlzm p(t)ya(t) #0. If this is not possible, then the two
linearly independent solutions are such that —ay1(0)+ﬂlzm p(t)y (t) = —ayy(0)+ Blim
p(t)y4(t) = 0. Let -0t t—0 T

u(z) = [ay,(1) + b lim_ p(t)y(t)lyy (=) — [ay, (1) + blim_ p(t)y; ()]y,(x)

so u satisfles (pu')+7pu=0 a.e. on [0,1] with —au(O)-l—ﬁlzm p(t)u'(t) =0 and
t—»O
au(1)+btliqz_ p(t)u'(t) = 0. Consequently, u =0, a contradiction since y; and y, are linearly

independent. Solving (2.4), is equivalent to finding a y € C[0,1] with py’ € C[0,1] which satisfies

t
y(t) — A)\yl(t)+ BAyZ(t) +A/[yl(S)yZ(t‘?I/_(:gl(t)y2(8)]f(3, y(s), pyl)ds (2.5)
0

where W (s) is the Wronskian of y, and y, at s and

_Co—Ax\Qs co@z — @1 + AQs
B, = a and A, = 0.0, - 0,0,
Here Q= —ayy(0) + ﬁlim+ p(t)y5(t), Qy = ayy(1) + btlig’_ p()yy(1), Q3 = — ayy(0) +
ﬁlzm p(t)yy(t) and Q4 = ayl(l) +blzm p(t)yy(t) with

t——»O

Qs = 0, / 00 W,y ), oy s

[yy(s)tim_ p(t)y3(t) — ya(s)lim _ p(t)yy ()]
00, / T F(5,(s), p(s)y/(s))ds

0

Remarks: (1) Note Q3Q,—Q4Q; #0. To see this, let u(z) = Q,y,(x) — Q3y,(z). Notice
(pu') + rpu=0 a.e. on [0,1] and —au(0)+ﬁlzm p()u'(t) =0. If Q3Q,—Q4Q, =0 then

O
au(1 )-}—btlzr?_p( Ju'(t) =0. Consequently, u_O, iLe., y(z) = —g—3y2(a:), a contradiction. (i)
- 1
Since pW' + p'W = 0 then pW = constant.
We can rewrite (2.5) as
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t
y(t) =X (Cyl(t) + Dy,(t) + [yl(s)%(?‘,—( :;l(t)yZ(s)]f (s,y(s), py’)ds)
0
+ (1 = A)[Ey,(t) + Fy,(t)]
where
.G~ EQs . coQy—c1Qy _ Qs+ cg@y— @y -CQ;
P P = g,y O =g, D =g
Define the operator N: K‘I:'B—)K%B by setting
t
Ny(t) — Cyl(t) + Dy2(t) + /[yl(S)y2(t3‘/_(sy)l(t)y2(8)]f(3, y(s),py')ds.
0

Here K‘li'B ={ueC[0,1],pu' € C[0,1]:u € (SL) or (N)}. Then (2.4), is equivalent to the fixed
problem
y=ANy+(1-X)p (2.6)

where p = Ey,(t)+ Fy,(t). We claim that N:K%B—J(%B is continuous and completely
continuous. Let u,—u in Kg,, i.e., u,—u and pu/—pu’ uniformly on [0,1]. Thus there exists
r>0 with |u,(t)] <7, |p(t)u,(t)] <r, |u(t)| <r, |p)'(t)|] <r for te€[0,1]. By the
above uniform convergence we have p(t)f(t,u,(t), p(t)u,(t))—p(t)f(t,u(t), p(t)u'(t)) pointwise
a.e. on [0,1]. Also there exists an integrable function h, with

| P8 F (1 (1), PO (D) | < (1) e t € [0, 1] (2.7)
Now

¢
Nu, (1) = Cyy(t) + Dyy(t) +/y1 S)y2(tgv(s‘1;1(t)y2(s)]f(s,un(s),pu;ds

0

p(t)(Nu,)'(t) = Cp(t)yy (1)

together with

t
+ Dp(t)yy(t) + /[yl(S)p(t)y2(t&,—(£(t)yl(t)y2(s)]f(s,un(s),pu'n)ds
0

and the Lebesgue dominated convergence theorem implies that Nu,—Nu and p(Nu,)'—p(Nu)'
pointwise for each t € [0 1]. In fact, the convergence is uniform because of (2.7). Consequently,
Nu,—Nu in KL so N is continuous. To see that N is completely continuous, we use the Arzela-
Ascoh theorem.” To see this, let @ C KL be bounded, i.e., there exists a constant M > 0 with
lyll; <M for each y € Q. Also there exist constants C* and D* (which may depend on M)
such that |C| <C* and | D| < D* for all y € Q. The boundedness of N2 is immediate and to
see the equicontinuity on [0,1] consider y € © and ¢, z € [0,1]. Then

[ Ny(t) = Ny(z) | <C™ |y (t) —yy(2) | + D™ [y,y(t) — yqo(2) |

+ | yq( (s), py')ds |
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1) —w() | | ] B3 (s, u(s), s |

Flu®] | / 52 o, 3(6),ps |

Fln®-u@)] | / 52 0(5),pw s |

and
| p()(Ny)'(t) — p(2)(Ny)'(2) | <C*|p()yy(t) — p(2)y1(2) |

+ D™ | p(t)y(t) — p(2)yy(2) |

+ (w0 | / P u(s), s |

yi(s )

+ 100 — ) | | /

f(s,9,py')ds |
10w | / Y23, (5) p)ds|

+ | p()yy(t) — p(2)yi(2) | | /%E )f(s vy, py')ds |

so the equicontinuity of N follows from the above inequalities. Thus N: I‘QB“’I‘G_B is completely
continuous. Set

—{uER Sully <My+1}, K = KG_BandE_{ueC[O 1] with pu’ € C[0,1]}.

Then theorem 2.1 implies that N has a fixed point, i.e. (2.1) has a solution y € C[0,1] with
py’' € C[0,1]. The fact that py’ € AC[0,1] follows from (2.5) with A = 1. O

We next consider the problem

{ %(py')' +7(t)y = f(t,y, py') a.e. on [0,1] (2.8)

y € (P).

Theorem 2.3: Let pf:[0,1]x R2—R be an L'-Carathéodory function and assume (1.3) and
(2.2) hold. In addition, suppose

11)( Y+ 71y =0 a.e. on[0,1]

»(py')
y€(P)
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has only the trivial solution. Also suppose there 1s a constant M, independent of A, with
lyll4 < Mg for any solution y to

oy +7(tyy = M(t,y, py') a.e. on [0,1]

y €(P) (25

for each A € (0,1). Then (2.8) has at least one solution.

Proof: Let y, and y, be two linearly independent solutions of (py") + 7py =0 with
Y1,¥5 € C[0,1] and pyj, pyy € AC[0,1]. Choose y, with y,(0) — yy(1) # 0.

If this is not possible, then the two linearly independent solutions are such that
Y9(0) — yy(1) = y4(0) — yy(1) = 0. Let

u(z) = [lim _p(t)yy(t) - Jim_ p(t)y5(t)]y, ()
t—0 -
- [lim+ p(t)yi(t) = lim_ p(t)y1(t)]yy(x)
t—0 -

so u satisfies (pu')' + rpu = 0 a.e. on [0,1] with u(0) = u(1) and lim+ p(t)u'(t) = tlir{z_ p(t)u'(2).
t—0 -
Consequently, u = 0, a contradiction since y; and y, are linearly independent.

Solving (2.9), is equivalent to finding a y € C[0,1] with py’' € C[0,1] which satisfies (2.5)
where
Ayly1(1) —y1(0)] + M,

¥2(0) —y,(1)

By =

and
AT, + 13]

A= 0 =50 ~ 1, (D = 5, Oy

Here Io = lim _p(t)y;(t) = lim_ p(t)y1 (1), I, = lim+ p(t)ya(t) = lim _ p(t)yy(t) with
t—0 t—1 t—0 -

1= /[y1 5)y,(1) yl(l)y2(s)]f(s,y(s),p(s)y'(S))dS

and

[yy(s)tim _ p(t)y5(t) = ya(s)lim_ p(t)y1(1)]
I3 =[y,(0) — yy( 1)]/ W) f(s,y(s), py’ )ds.

Remark: Notice [y,(0) — y,(1)]1 — [y1(1) — y1(0)]I; # 0 for if not, then

_ [y,(1) - y1(0)]
ue) = () + [ @) —gmre®

satisfies (pu') +7pu=0 a.e. on [0,1] with u(0) =wu(1) and lim p(t) (t) = lir{z_ p(t)u'(t).
Then u = 0, a contradiction. t—0 7+ =

Essentially, the same reasoning as in theorem 2.2 establishes the result. O

Next consider the problem
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{ $(Py) +7(0)y = F(t,y,py) ae. on [0,1] (2.10)

y € (Br).

Theorem 2.4: Let pf:[0,1]x RZ=R be a Carathéodory function and assume (1.3) and (2.2)
hold. In addition, suppose

%(py')’ +7y =0 a.e. on[0,1]
y € (Br)y

has only the trivial solution. Also, suppose there is a constant M, independent of A, with
|yl < My for any solution y to

(2.11),

L(py') +7(t)y = M (t,y,py') ae. on [0,1]
y € (Br)

for each A € (0,1). Then (2.10) has at least one solution.

Proof: Let y, and y, be two linearly independent solutions of (py’)'+ 7py =0 with
Y1,Y9 € C[0,1] and pyi, py; € AC[0,1]. Choose y, with y,(0) # 0. Solving (2.11), is equivalent
to finding a y € C[0,1] with py’ € C[0,1] which satisfies (2.5) where

_¢o— Ayy(0)
By= ) y2(0)l
and
1
_ y1(0) ds y1(0)
0= / p(s) - PO (D) - (y2<0>>/ plsy - P(va(D) = yl“”( <o>) (1)
with
! [ya(s)lim_ p(1)y3(t) — yo(s)lim _ p(t)y; ()]
— 1 ds r 1]
Ay = ¢ley + / p(s)l)\ / ) f(s,y(s), py')ds

0 0

colim_ P(t)y'(t)
_ % 2 coy2(0) [y1(8)y5(1) — yo(s)yy(1)] o) ol eV o)\ ds
y2(0) / W(s) f( ,y( )7p( )y ( ))d )

Remark: Notice C' # 0. To see this, let

(o) = o) ~ (L Yoo
so C= }p‘t)lim_ p()u'(t) — u(1). Now (pu')'+7pu=0 ae. on [0,1] with wu(0)=0.
0 t—1

p(sko1

Essentially the same reasoning as in theorem 2.2 establishes the result. a

1
If C'=0 then, f—d—slim_ p(t)u'(t) —u(1l) = 0. Consequently, u = 0, a contradiction.
0

Of course, more general forms of theorems 2.2, 2.3 and 2.4 are immediately available for us
for the boundary value problem

{ %(py')' +7(t)y +o(t)py’ = f(t,y, py’) a.e. on [0,1] (2.12)

y € (SL) or (N) or (P) or (Br).
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Theorem 2.5: Let pf:[0,1]x R—R be an L'-Carathéodory function and assume (1.3) and
(2.2) hold with o satisfying
o € L}[0,1]. (2.13)

In addition, suppose

%(Py')' +7y+opy =0 a.e on[0,1]
y € (SL)y or (N)p or (P) or (Br)y

has only the trivial solution. Also suppose there is a constant M, independent of A, with
Nyl < Mg for any solution y to

Loy'Y + 1y + o(t)py’ = Af(t,y, py') a.e. on [0,1]

2.14
y € (SL) or (N) or (P) or (Br) (2.14),

for each X € (0,1). Then (2.12) has at least one solution.

Proof: Essentially the same reasoning as in theorems 2.2, 2.3 and 2.4 establishes the result. O

3. Existence Theory

We begin by establishing an existence result for the boundary value problem

%)—(py’)’ +7(t)y = f(t,y,py’) a.e. on [0,1]

(3.1)
y € (SL) or (N) or (P) or (Br).

Theorem 3.1: Let pf:[0,1]x R2—R be an L'-Carathéodory function and assume (1.3) and
(2.2) hold. In addition, suppose

%(py')’ +7y =0 a.e. on [0,1]

y € (SL)g or (N), or (P) or (Br), )

has only the trivial solution. Let f(t,u,v) = nv+ g(t,u,v) and assume
n€ L}[0,1] (3.3)

pg 1s an L'-Carathéodory function and
| 9(tyw,v) | < éy(8) + o) [u] 7+ 5(t) | 0] ° (3.4)

for a.e. t €[0,1], for constants v,0 with 0 <+, 6 <1
and functions ¢; € L[0,1], i=1,2,3

and
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1
sup [ | p(1)G,(t,s)n(s) | ds < 1.
tefo0,1]0

)

Here G(t,s) is the Green’s function associated with (3.5)

(py')+ pry =0 a.e. on [0,1] with y € (SL) or (N) or (P) or (Br)

hold. Then (3.1) has at least one solution.
Remark: Since pW' 4+ p'W = 0 then sup | p(t)G,(t,s)| < Eyp(s) for some constant E,.

t €[0,1]
Proof: Let y be a solution to
%(py')’ +7(t)y = M (t,y, py’) a.e. on [0,1] (3:6)
y € (SL) or (N) or (P) or (Br) A
for 0 < A< 1. Then
1
o) = v+ [ Gl (6,351 p(o)y (5)ds, 1€ 10,1] (3.7
0

where y4 is the unique solution of (py') + pry =0 a.e. on [0,1] with y € (SL) or (N) or (P) or
(Br) and G(t,s) is as described in (3.5). Also notice
1
POV = OO+ [ POGL ) (5,506, p(s)y (5))ds. (38)
0

Now (3.4) together with (3.7) yields

lylo=sup |y(t)| <sup |yz(t)]
[0,1] [0,1]

t t
+ 1oy | gsup / | G(t,5)n(s) | ds + sup / | G(t, )6, (s) | ds
tE[O,l]O tG[O,l]O

t t
+ |y | Jsup /lG(t,s)¢2(s)|ds+ | py’ | Ssup /|G(t,s)¢3(s)|d5
t€(0,1]4 t€[0,1]-

so there exist constants A, A4;, A, and A3 with
|ylo< Ao+ 4y 1Py Lo+ A1y 13+ A3l Y |4 (3.9)
Also there exists a constant A, > 0 with
Ay < -12-1‘ + A, for all z > 0.

Putting this into (3.9) yields

lylo<2(Ag+ A +24, | py' | o+ 245 py' | . (3.10)
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Also (3.8) implies that there are constants A;, Ag, and A, with

t
Iy 1o < As+ | pv' |o | sup / | p(H)G,(t, s)n(s) | ds
te(0,1] b

+ 461yl + A7 19y [§ (3.11)

Put (3.10) into (3.11) to obtain
t
12y 1o < As+ | py' || sup / | p(8)G,(t, s)n(s) | ds
te[o,1] 5
+ A7 py' |5+ Ag(2(Ag+ A + 24, | py' | o+ 245 | py' | §)7

and so there exist constants Ag, Ag, A;(, and A;; with

¢

1—sup / | p(t)G(t,s)n(s) |ds | |py'|g
t€fo0,1] o

< Ag+Ag | py' 13+ Ayl oy’ 13%+ Ay Loy 1§,

Consequently there exists a constant Mg, independent of A, with |py'|, < Mg. This together
with (3.10) yields the existence of a constant M§* with |y |, < Mg*. Let M, = maz{Mg, M3*}
and this together with either theorems 2.2, 2.3 or 2.4 establishes the result. O

Consider the Sturm Liouville eigenvalue problem

Lu = Mu a.e. on [0,1]

(3.12)
u € (SL), or (N), or (P) or (Br),
where Lu = — ﬁm[(pu’)’ + r(t)pu], with p satisfying (1.3) and
r,q € L,[0,1] with ¢ > 0 a.e. on [0,1]. (3.13)

Then L has a countably infinite number of real eigenvalues (see section 4) and it is possible to
estimate these eigenvalues numerically [3].

Theorem 3.1 immediately yields an existence result for

%(py’)’ +r(t)y + pg(t)y = f(t,y,py’) a.e. on [0,1]

(3.14)
y € (SL) or (N) or (P) or (Br)

where p is not an eigenvalue of (3.12).

Theorem 3.2: Let pf:[0,1]x R2=R be an L'-Carathéodory function and assume (1.3)
(3.13) hold. Let f(t,u,v)=nv+ g(t,u,v) and assume (3.3), (3.4) and (3.5), with 7(t)=r
uq(t), are satisfied. Then (3.14) has at least one solution.

and
(1) +
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Proof: Let 7(t) = r(t)+ pq(t) in theorem 3.1. 0

Next in this section we obtain an existence result for the boundary value problem

{ Loy) + () + o(t)py' = 9(t,y, pv’) a-e. on [0,1] (3.15)

y € (SL) or (N) or (P) or (Br).
Theorem 3.3: Let pg:[0,1]x R2—R. be an L'-Carathéordory function and assume (1.3), (2.2),
(2.13) and (3.4) hold. In addition, suppose
{ %(py')’ +71y+opy =0 a.e. on [0,1]
y € (SL)y or (N)y or (P) or (Br),

has only the trivial solution. Then (3.15) has at least one solution.
Proof: Essentially the same argument as in theorem 3.1 (except easier) yields the result. 0O

Remark: We remark here that theorem 3.2 seems to be the most applicable result in this
paper since it is possible to estimate numerically [3] the eigenvalues of (3.12).

Finally we obtain a more subtle existence result for

{ o) + 7y = g(t,y, )y + h(t,y, py') = f(t,y, py') a.e. on [0,1] (3.16)

y(0) =y(1)=0.

Theorem 3.4: Let pg, ph:[0,1]x R?>—>R be L'-Carathéodory functions and assume (1.3) and
(2.2) hold. In addition, suppose (2.3), with 3 =b =0, has only the trivial solution. Also assume

| At u,v) | < 6y(8) + $o(t) || + g3(t) v ]| ¢ (3.17)
forae. t€[0,1] with0<+v,6<1 .
there ezist 7,7, € L}D[O, 1] with 7,(t) < g(t,u,v) < 79(t) for a.e. (3.18)
t €[0,1]; here 7y <0 for a.e. t €[0,1] and 74 > 0 for a.e. t € [0,1] .
! 240 2
61,65 € L1[0,1] with /[p(t)]2 0 (g5 (1)~ Pdt < oo (3.19)
0
and
W},’Z[O, 1]=Q@T where Q C K* is finite dimensional and for every (3.20)
0#y=u+veK* withueQuel we have R(y)>0; T =0+ .
hold; here

= 7 —(r—r1y) )pv?]dt — /[p T—T2)pu ]dt
0
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and
= {w:[0,1]-R: w e AC[0,1] with v’ € L3[0,1] and w(0) = w(1)}.

Then (3.16) has at least one solution.

Remark: (i) In (3.20) wehavey_u+vw1thu€Q vEI‘so fpuvdt-{- fpu’v’dt—O

(i)  For notational purposes, let ||u|| , = (fp | u| 2dt)2
(i17) Recall by W1 '2[0,1] we mean the space of functions u € AC[0,1] with v’ € L2[0 1]
and with norm 1
1 1 2
|IUI|*=(/pIUI2dt+ /pIU’Izdi)-
0 0

Proof: First recall Lemma 2.8 in [7] implies there exists ¢ > 0 with

R >e(Nyl3+1y13) (3.21)

for any y € K*; here y = u+ v with u € Q and v € I'. Let y( = u + v) be a solution to

L(py') + 1y = M(t,y, py’) ae. on [0,1] (3.22)
y(0) =y(1)=0
for some 0 < A < 1. Then
1 1
- /(v —w)[(py") + pryldt = — /\/p(v —u)yg(t,y, py')dt
0 0
1
- / p(v—u)h(t,y, py')dt
0
and so integration by parts yields
1
[ + 02—+ e,
0
1
= [ 1ot + pul (=4 (e, /) (3.23)
0

1

< /p|v—u| | h(t,y, py') | dt.
0
Also

pv[ — 7+ Ag(t,y, py")] = pv*[ — (1 — 1) + Ag(t,y, py') — 74]
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>poi[—(T—T1)+ (A= 171> = p(r —7))v? a.e. on [0,1].
Similarly
pu’l =7+ Ag(t,y,py)] < — p(7 — Ty u’a.e. on [0,1].

Putting this into (3.23) yields
1

R(y) < /plv—ul | h(t,y, py) | dt.
0

This together with (3.21) implies that there is an ¢ > 0 with

1

(Iwl2+ 19 12)< [plo—ul |4z pv)]dt (3.24)
0

We also have ||v—ul| Z+ || v —u|| ?, = |lyll ?,+ Ly |l f,. Now Sobolev’s inequality (since we
have the imbedding W, 2[0,1]—C[0,1]) implies

1

1
1
[ronto-ulde<o-ul, [pode< PyClo-ulld+ v -a 122
0 0

for some constant F;. Thus

1
/p¢1|v—u|dtsn<ny||,,+ny'n,,). (3.25)
0

Also
1

1

/p¢2|v—u| | dt < |v—u|0|y|3/p¢2dt
0 0

1 vy

2

! ’ 5 ! \2
<y lo—ull 2+l = N2F( 1yl 2+ 11y'112)

for some constant F',. Thus there exists a constant F'5 with

péylv—ul [yl "t < Py lull 3+ w13 +") (3.26)

o\»—a

Finally Hélder’s inequality implies that there is a constant F', with

1 ! 240 2\ ?
/p¢>3lv—UI | py' 1%t < Jv—ulolly' |4 /[P(t)]2‘9[¢3(t)]2"’dt
0

0

1
0 2
<Flly Ig(v=ull+ llv=w i3 ).

Thus there exists a constant F'y with
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1

[roalo—ul 1oy %ae< p Ny l9F 4+ 10115+ (3:27)
0

Put (3.25), (3.26) and (3.27) into (3.24) and since 6,y < 1 there exists a constant Fg with
S(vll2+1yi2)<Fe (3.28)

Thus for ¢ € [0, 1], 1
1 2

|wn</wsna<mn /ma

and this together with (3.28) implies that there exists a constant F';, independent of A, with

|y|o=8[%l)1]|y(t)| SFp llyllp < Fo Yl < Fy (3.29)

for any solution y to (3.22),.
This bound together with (3.22), implies there exist a constant Fg with

1 1
/waﬁs&+/mﬂmﬁﬂ
0 0

Holder’s inequality implies there exist a constant Fg with

1

/l(pyl)/ldtsF8+F9||y'“f>5F8+F9FgEF10-
0

Also there exist t, € (0,1) with y'(t;) = 0 so

[P0t I/Hm Yldt] < Fig
Thus
sup | p(t)y'(t)| < Fyo (3.30)
(0,1)
Theorem 2.2 together with (3.29) and (3.30) completes the proof. |

4. Appendix-Eigenvalues

We now use the ideas of section 2 and results on compact self adjoint operators to give a
unified treatment of the Sturm Liouville eigenvalue problem.

In particular, consider



504 ' DONAL O’REGAN

Lu = Mu a.e. on [0,1]

(4.1)
u € (SL) or (N), or (P) or (Br),

where Lu = ———pqlw[(pu’)’+r(t)pu] and assume (1.3) and (3.13) hold. We first show that there
exists A* € R such that A* is not an eigenvalue of (4.1).

Remark: If r =0 and y € (SL),, then A* =0 will work whereas if » =0 and y € (N), or (P)
or (Br),, then A* = — 1 will work.

Let
D(L) = {w € C[0,1]:w, pw' € AC[0,1] with w € (SL), or (N), or (P) or (Br)y}

and notice that
D(L)( c clo,1] ¢ I2 [0, 1])—>L})q[0, 1].

Theorem 4.1: Let u, be a sequence in D(L). Suppose u € C[0,1] and y € L}
that u,—u in C[0,1] and Lu WY in L q0,1]. Thus u € D(L) and Lu =y a.e. on ﬁ)

Proof: Let || - || 5t Il Ll and | - |, denote the usual norms in L'[0,1], L 40,1] and

ql0,1] be such

Pq
C[0,1] respectively. For n =1,2,... there exist constants C; and C, independent of n with

| (pup) + prug |l 1= ([ Lu, || 1 <Cyand || (puy,) ||
Ly
This together with the boundary condition implies that there exists a constant C'3 independent of
n with

1
Lt < C,,.

|Puln|0303'

Consequently Sobolev’s imbedding theorem [1] guarantees the existence of a subsequence S of
integers with pu, —pu' in C[0,1] as n—oo in S. For z € (0,1) and n € S we have

pla)u () = lim _p(t)u (1) + l (p(s)ui(s)ds

and this together with the fact that (pu; )’ + pru,,— — pqy in L[0,1] implies

T

p(@)i(@) = lim _ p(Ou(0)+ [ p(6) -~ a)y(s) = r(o)u(s)lds.

t—0
- 0

Thus u € D(L) and (pu')' + pru = — pqy a.e. on [0,1]. 0

Theorem 4.2: The eigenvalues, ), of the eigenvalue problem (4.1) are real and the
eigenfunctions corresponding to the distinct eigenvalues of (4.1) are orthogonal in Liq[O,l]. In
addition, the eigenvalues form at most a countable set with no finite limit point.

Proof: Suppose Ay € R is a limit point of the set of eigenvalues of (4.1). Then there exists a
distinct sequence {A.}, A, # Ay, of eigenvalues of (4.1) with A\ —X,. Let ¢, denote the
eigenfunction for (4.1) corresponding to A, and with | ¢, |, =1 for all n. Now ¢, satisfies the
boundary condition and of course Lé, = A, ¢,, a.e. on [0,1]. Thus

1 1

1
An/pq|¢n|2dt:Ao+/p|¢;,|2dt—/pr|¢n|2dt
0

0 0
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where

E16a(1) 17+ 516,001 8, € (SDo

Ay = 0, ¢, € (N)q or (P)

_ |¢n(1)|2
}'ds

o P(s)

) ¢n € (BT)O'

This together with | ¢, |, =1 implies that there is a constant C'y independent of n with
1
JEEARTEA
0

Consequently, {¢, .} is bounded and equicontinuous on [0,1] so there exists a ¢ € C[0,1] and a
subsequence S of integers with ¢,—¢ in C[0,1] as n—oo in S. Let n € S and notice Lé, = A, ¢,
a.e. on [0,1] implies L¢$,—Ay¢ in L;Q[O,l]. Then theorem 4.1 implies ¢ € D(L) and L¢ = Ay¢
a.e. on [0,1]. Notice also |¢ |, =1 and so A; is an eigenvalue of L. Now

1
(B @) = /pq¢n¢_3 dt=0forallnes
0

1
so [pq|¢]| 2dt = 0. Consequently, ¢(z) =0 a.e. on [0,1], a contradiction. O
0

Now theorem 4.2 implies that there exists \* € R such that A* is not an eigenvalue of (4.1).
Assume without loss of generality for the remainder of this section that 0 is not an eigenvalue of
(4.1).

Let y, and y, be two linearly independent solutions of (py')'+rpy =0 a.e. on [0,1] with
Y1, Y5 € C[0,1] and pyj, pyy € AC[O0,1].

Remark: If (SL), or (N), is considered, choose y, as in theorem 2.2. For (P) choose y, as in
theorem 2.3 whereas for (Br), choose y, as in theorem 2.4.

Now for any h € L})q[O, 1] the boundary value problem

Lu=h a.e. on [0,1]
u € (SL)g or (N)g or (P) or (Br)g

has a unique solution

t
L~ lh(t) — u(t) — Ahyl(t) + Bhyz(t) + /[yl(S)yZ(th_(Sy)l(t)yz(S)]q(s)h(S)dS
0

where A, and Bj may be constructed as in theorems 2.2, 2.3 or 2.4; see [14, 16]. It follows
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immediately that
L% L, [0,11-D(L) € C[0,1] € L2 [0,1].
The Arzela-Ascoli theorem (see [14, 16] or the ideas in theorem 2.2) implies that L ™! is

completely continuous. Next, define the imbedding j: Liq[O,l]—eL},q[O,l] by ju =wu. Note j is
continuous since Hoélder’s inequality yields

1
1 1 2/ 1 2
/quUIdtS /pqlulzdt (/pth
0 0

0

Consequently,
L~ 12 [0,1]-D(L) € L2 [0,1]

is completely continuous. In addition, [14, 16), for u,v € Liq[O, 1] it is easy to check that
(L~ Yju,v) = (u, L~ Ljv).

The spectral theorem for compact self adjoint operators [18] implies that L has an countably
infinite number of real eigenvalues A; with corresponding eigenfunctions u; € D(L). Of course

1 1
A0+£p|u;|2dt—£prlui|2dt

[ pa|u;|?dt
where 0
3 lui(1)] 2+%|ui(0) 1%, u; € (SL),
Ao = 0, u; € (N)g or (P)
— u(1) |
—g— u; €(Br),.
f ds
o P(s)
1
- fpr[uilzdt
Remark: Notice that A; 2—1—0————. This is clear in all cases except maybe when
qulu,-lzdt
0
u; € (Br),. However if u; € (Br),, then
1 1
1 1 2 1 2
] 1 ] 2 ds
u~1:/\/ s)u;(s ds < / s) | ui(s) | “ds /
z() A p()()m S Op()| z()l Op(s)

and the result follows.

Now the eigenfunctions u; may be chosen so that they form a orthonormal set. We may also
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arrange the eigenvalues so that
A <A <A<

In addition, [18, pp. 282, 373] implies that the set of eigenfunctions u,; form a basis for Liq[O, 1]
and if h € Liq[O, 1] then h has a Fourier series representation and h satisfies Parseval’s equality,
i.e.,

1
o0 o0
h= Z(hvui)“i and /pq|h|2dt: Z |(h,ui)|2.
= 0

1=0 1=0
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